
File I

Implementation
1 l3backend-basics implementation

1 ⟨∗package⟩

Whilst there is a reasonable amount of code overlap between backends, it is much
clearer to have the blocks more-or-less separated than run in together and DocStripped
out in parts. As such, most of the following is set up on a per-backend basis, though
there is some common code (again given in blocks not interspersed with other material).

All the file identifiers are up-front so that they come out in the right place in the
files.

2 \ProvidesExplFile
3 ⟨∗dvipdfmx⟩
4 {l3backend-dvipdfmx.def}{2026-02-18}{}
5 {L3 backend support: dvipdfmx}
6 ⟨/dvipdfmx⟩
7 ⟨∗dvips⟩
8 {l3backend-dvips.def}{2026-02-18}{}
9 {L3 backend support: dvips}

10 ⟨/dvips⟩
11 ⟨∗dvisvgm⟩
12 {l3backend-dvisvgm.def}{2026-02-18}{}
13 {L3 backend support: dvisvgm}
14 ⟨/dvisvgm⟩
15 ⟨∗luatex⟩
16 {l3backend-luatex.def}{2026-02-18}{}
17 {L3 backend support: PDF output (LuaTeX)}
18 ⟨/luatex⟩
19 ⟨∗pdftex⟩
20 {l3backend-pdftex.def}{2026-02-18}{}
21 {L3 backend support: PDF output (pdfTeX)}
22 ⟨/pdftex⟩
23 ⟨∗xetex⟩
24 {l3backend-xetex.def}{2026-02-18}{}
25 {L3 backend support: XeTeX}
26 ⟨/xetex⟩

Check if the loaded kernel is at least enough to load this file. The kernel date has
to be at least equal to \ExplBackendFileDate or later. If __kernel_dependency_-
version_check:Nn doesn’t exist we’re loading in an older kernel, so it’s an error anyway.
With time, this test should vanish and only the dependency check should remain.

27 \cs_if_exist:NTF __kernel_dependency_version_check:nn
28 {
29 __kernel_dependency_version_check:nn {2023-10-10}
30 ⟨dvipdfmx⟩ {l3backend-dvipdfmx.def}
31 ⟨dvips⟩ {l3backend-dvips.def}
32 ⟨dvisvgm⟩ {l3backend-dvisvgm.def}
33 ⟨luatex⟩ {l3backend-luatex.def}
34 ⟨pdftex⟩ {l3backend-pdftex.def}
35 ⟨xetex⟩ {l3backend-xetex.def}

1

36 }
37 {
38 \cs_if_exist_use:cF { @latex@error } { \errmessage }
39 {
40 Mismatched~LaTeX~support~files~detected. \MessageBreak
41 Loading~aborted!
42 }
43 { \use:c { @ehd } }
44 \tex_endinput:D
45 }

The order of the backend code here is such that we get somewhat logical outcomes
in terms of code sharing whilst keeping things readable. (Trying to mix all of the code
by concept is almost unmanageable.) The key parts which are shared are

• Color support is either dvips-like or LuaTEX/pdfTeX-like.

• LuaTEX/pdfTeX and dvipdfmx/X ETEX share drawing routines.

• X ETEX is the same as dvipdfmx other than image size extraction so takes most of
the same code.

__kernel_backend_literal:e
__kernel_backend_literal:n

The one shared function for all backends is access to the basic \special primitive: it
has slightly odd expansion behavior so a wrapper is provided.

46 \cs_new_eq:NN __kernel_backend_literal:e \tex_special:D
47 \cs_new_protected:Npn __kernel_backend_literal:n #1
48 { __kernel_backend_literal:e { \exp_not:n {#1} } }

(End of definition for __kernel_backend_literal:e.)

__kernel_backend_first_shipout:n We need to write at first shipout in a few places. As we want to use the most up-to-date
method,

49 \cs_if_exist:NTF \@ifl@t@r
50 {
51 \@ifl@t@r \fmtversion { 2020-10-01 }
52 {
53 \cs_new_protected:Npn __kernel_backend_first_shipout:n #1
54 { \hook_gput_code:nnn { shipout / firstpage } { l3backend } {#1} }
55 }
56 { \cs_new_eq:NN __kernel_backend_first_shipout:n \AtBeginDvi }
57 }
58 { \cs_new_eq:NN __kernel_backend_first_shipout:n \use:n }

(End of definition for __kernel_backend_first_shipout:n.)

1.1 dvips backend
59 ⟨∗dvips⟩

__kernel_backend_literal_postscript:n
__kernel_backend_literal_postscript:e

Literal PostScript can be included using a few low-level formats. Here, we use the form
with no positioning: this is overall more convenient as a wrapper. Note that this does
require that where position is important, an appropriate wrapper is included.

60 \cs_new_protected:Npn __kernel_backend_literal_postscript:n #1
61 { __kernel_backend_literal:n { ps:: #1 } }
62 \cs_generate_variant:Nn __kernel_backend_literal_postscript:n { e }

2

(End of definition for __kernel_backend_literal_postscript:n.)

__kernel_backend_postscript:n
__kernel_backend_postscript:e

PostScript data that does have positioning, and also applying a shift to SDict (which is
not done automatically by ps: or ps::, in contrast to ! or ").

63 \cs_new_protected:Npn __kernel_backend_postscript:n #1
64 { __kernel_backend_literal:n { ps: SDict ~ begin ~ #1 ~ end } }
65 \cs_generate_variant:Nn __kernel_backend_postscript:n { e }

(End of definition for __kernel_backend_postscript:n.)
PostScript for the header: a small saving but makes the code clearer. This is held

until the start of shipout such that a document with no actual output does not write
anything.

66 \bool_if:NT \g__kernel_backend_header_bool
67 {
68 __kernel_backend_first_shipout:n
69 { __kernel_backend_literal:n { header = l3backend-dvips.pro } }
70 }

__kernel_backend_align_begin:
__kernel_backend_align_end:

In dvips there is no built-in saving of the current position, and so some additional Post-
Script is required to set up the transformation matrix and also to restore it afterwards.
Notice the use of the stack to save the current position “up front” and to move back to
it at the end of the process. Notice that the [begin]/[end] pair here mean that we can
use a run of PostScript statements in separate lines: not required but does make the code
and output more clear.

71 \cs_new_protected:Npn __kernel_backend_align_begin:
72 {
73 __kernel_backend_literal:n { ps::[begin] }
74 __kernel_backend_literal_postscript:n { currentpoint }
75 __kernel_backend_literal_postscript:n { currentpoint~translate }
76 }
77 \cs_new_protected:Npn __kernel_backend_align_end:
78 {
79 __kernel_backend_literal_postscript:n { neg~exch~neg~exch~translate }
80 __kernel_backend_literal:n { ps::[end] }
81 }

(End of definition for __kernel_backend_align_begin: and __kernel_backend_align_end:.)

__kernel_backend_scope_begin:
__kernel_backend_scope_end:

Saving/restoring scope for general operations needs to be done with dvips positioning
(try without to see this!). Thus we need the ps: version of the special here. As only the
graphics state is ever altered within this pairing, we use the lower-cost g-versions.

82 \cs_new_protected:Npn __kernel_backend_scope_begin:
83 { __kernel_backend_literal:n { ps:gsave } }
84 \cs_new_protected:Npn __kernel_backend_scope_end:
85 { __kernel_backend_literal:n { ps:grestore } }

(End of definition for __kernel_backend_scope_begin: and __kernel_backend_scope_end:.)

86 ⟨/dvips⟩

3

1.2 LuaTEX and pdfTEX backends
87 ⟨∗luatex | pdftex⟩

Both LuaTEX and pdfTEX write PDFs directly rather than via an intermediate file.
Although there are similarities, the move of LuaTEX to have more code in Lua means we
create two independent files using shared DocStrip code.

__kernel_backend_literal_pdf:n
__kernel_backend_literal_pdf:e

This is equivalent to \special{pdf:} but the engine can track it. Without the direct
keyword everything is kept in sync: the transformation matrix is set to the current point
automatically. Note that this is still inside the text (BT . . . ET block).

88 \cs_new_protected:Npn __kernel_backend_literal_pdf:n #1
89 {
90 ⟨∗luatex⟩
91 \tex_pdfextension:D literal
92 ⟨/luatex⟩
93 ⟨∗pdftex⟩
94 \tex_pdfliteral:D
95 ⟨/pdftex⟩
96 { \exp_not:n {#1} }
97 }
98 \cs_new_protected:Npn __kernel_backend_literal_pdf:e #1
99 {

100 ⟨∗luatex⟩
101 \tex_pdfextension:D literal
102 ⟨/luatex⟩
103 ⟨∗pdftex⟩
104 \tex_pdfliteral:D
105 ⟨/pdftex⟩
106 {#1}
107 }

(End of definition for __kernel_backend_literal_pdf:n.)

__kernel_backend_literal_page:n
__kernel_backend_literal_page:e

Page literals are pretty simple. To avoid an expansion, we write out by hand.
108 \cs_new_protected:Npn __kernel_backend_literal_page:n #1
109 {
110 ⟨∗luatex⟩
111 \tex_pdfextension:D literal ~
112 ⟨/luatex⟩
113 ⟨∗pdftex⟩
114 \tex_pdfliteral:D
115 ⟨/pdftex⟩
116 page { \exp_not:n {#1} }
117 }
118 \cs_new_protected:Npn __kernel_backend_literal_page:e #1
119 {
120 ⟨∗luatex⟩
121 \tex_pdfextension:D literal ~
122 ⟨/luatex⟩
123 ⟨∗pdftex⟩
124 \tex_pdfliteral:D
125 ⟨/pdftex⟩
126 page {#1}
127 }

4

(End of definition for __kernel_backend_literal_page:n.)

__kernel_backend_scope_begin:
__kernel_backend_scope_end:

Higher-level interfaces for saving and restoring the graphic state.
128 \cs_new_protected:Npn __kernel_backend_scope_begin:
129 {
130 ⟨∗luatex⟩
131 \tex_pdfextension:D save \scan_stop:
132 ⟨/luatex⟩
133 ⟨∗pdftex⟩
134 \tex_pdfsave:D
135 ⟨/pdftex⟩
136 }
137 \cs_new_protected:Npn __kernel_backend_scope_end:
138 {
139 ⟨∗luatex⟩
140 \tex_pdfextension:D restore \scan_stop:
141 ⟨/luatex⟩
142 ⟨∗pdftex⟩
143 \tex_pdfrestore:D
144 ⟨/pdftex⟩
145 }

(End of definition for __kernel_backend_scope_begin: and __kernel_backend_scope_end:.)

__kernel_backend_matrix:n
__kernel_backend_matrix:e

Here the appropriate function is set up to insert an affine matrix into the PDF. With
pdfTEX and LuaTEX in direct PDF output mode there is a primitive for this, which only
needs the rotation/scaling/skew part.

146 \cs_new_protected:Npn __kernel_backend_matrix:n #1
147 {
148 ⟨∗luatex⟩
149 \tex_pdfextension:D setmatrix
150 ⟨/luatex⟩
151 ⟨∗pdftex⟩
152 \tex_pdfsetmatrix:D
153 ⟨/pdftex⟩
154 { \exp_not:n {#1} }
155 }
156 \cs_new_protected:Npn __kernel_backend_matrix:e #1
157 {
158 ⟨∗luatex⟩
159 \tex_pdfextension:D setmatrix
160 ⟨/luatex⟩
161 ⟨∗pdftex⟩
162 \tex_pdfsetmatrix:D
163 ⟨/pdftex⟩
164 {#1}
165 }

(End of definition for __kernel_backend_matrix:n.)

166 ⟨/luatex | pdftex⟩

5

1.3 dvipdfmx backend
167 ⟨∗dvipdfmx | xetex⟩

The dvipdfmx shares code with the PDF mode one (using the common section to
this file) but also with X ETEX. The latter is close to identical to dvipdfmx and so all of
the code here is extracted for both backends, with some clean up for X ETEX as required.

__kernel_backend_literal_pdf:n
__kernel_backend_literal_pdf:e

Undocumented but equivalent to pdfTEX’s literal keyword. It’s similar to be not the
same as the documented contents keyword as that adds a q/Q pair.

168 \cs_new_protected:Npn __kernel_backend_literal_pdf:n #1
169 { __kernel_backend_literal:n { pdf:literal~ #1 } }
170 \cs_generate_variant:Nn __kernel_backend_literal_pdf:n { e }

(End of definition for __kernel_backend_literal_pdf:n.)

__kernel_backend_literal_page:n Whilst the manual says this is like literal direct in pdfTEX, it closes the BT block!
171 \cs_new_protected:Npn __kernel_backend_literal_page:n #1
172 { __kernel_backend_literal:n { pdf:literal~direct~ #1 } }

(End of definition for __kernel_backend_literal_page:n.)

__kernel_backend_scope_begin:
__kernel_backend_scope_end:

Scoping is done using the backend-specific specials. We use the versions originally from
xdvidfpmx (x:) as these are well-tested “in the wild”.

173 \cs_new_protected:Npn __kernel_backend_scope_begin:
174 { __kernel_backend_literal:n { x:gsave } }
175 \cs_new_protected:Npn __kernel_backend_scope_end:
176 { __kernel_backend_literal:n { x:grestore } }

(End of definition for __kernel_backend_scope_begin: and __kernel_backend_scope_end:.)

177 ⟨/dvipdfmx | xetex⟩

1.4 dvisvgm backend
178 ⟨∗dvisvgm⟩

__kernel_backend_literal_svg:n
__kernel_backend_literal_svg:e

Unlike the other backends, the requirements for making SVG files mean that we can’t
conveniently transform all operations to the current point. That makes life a bit more
tricky later as that needs to be accounted for. A new line is added after each call to help
to keep the output readable for debugging.

179 \cs_new_protected:Npn __kernel_backend_literal_svg:n #1
180 { __kernel_backend_literal:n { dvisvgm:raw~ #1 { ?nl } } }
181 \cs_generate_variant:Nn __kernel_backend_literal_svg:n { e }

(End of definition for __kernel_backend_literal_svg:n.)

\g__kernel_backend_scope_int
\l__kernel_backend_scope_int

In SVG, we need to track scope nesting as properties attach to scopes; that requires a
pair of int registers.

182 \int_new:N \g__kernel_backend_scope_int
183 \int_new:N \l__kernel_backend_scope_int

(End of definition for \g__kernel_backend_scope_int and \l__kernel_backend_scope_int.)

6

__kernel_backend_scope_begin:
__kernel_backend_scope_end:

__kernel_backend_scope_begin:n
__kernel_backend_scope_begin:e

__kernel_backend_scope:n
__kernel_backend_scope:e

In SVG, the need to attach concepts to a scope means we need to be sure we will close all
of the open scopes. That is easiest done if we only need an outer “wrapper” begin/end
pair, and within that we apply operations as a simple scoped statements. To keep down
the non-productive groups, we also have a begin version that does take an argument.

184 \cs_new_protected:Npn __kernel_backend_scope_begin:
185 {
186 __kernel_backend_literal_svg:n { <g> }
187 \int_set_eq:NN
188 \l__kernel_backend_scope_int
189 \g__kernel_backend_scope_int
190 \group_begin:
191 \int_gset:Nn \g__kernel_backend_scope_int { 1 }
192 }
193 \cs_new_protected:Npn __kernel_backend_scope_end:
194 {
195 \prg_replicate:nn
196 { \g__kernel_backend_scope_int }
197 { __kernel_backend_literal_svg:n { </g> } }
198 \group_end:
199 \int_gset_eq:NN
200 \g__kernel_backend_scope_int
201 \l__kernel_backend_scope_int
202 }
203 \cs_new_protected:Npn __kernel_backend_scope_begin:n #1
204 {
205 __kernel_backend_literal_svg:n { <g ~ #1 > }
206 \int_set_eq:NN
207 \l__kernel_backend_scope_int
208 \g__kernel_backend_scope_int
209 \group_begin:
210 \int_gset:Nn \g__kernel_backend_scope_int { 1 }
211 }
212 \cs_generate_variant:Nn __kernel_backend_scope_begin:n { e }
213 \cs_new_protected:Npn __kernel_backend_scope:n #1
214 {
215 __kernel_backend_literal_svg:n { <g ~ #1 > }
216 \int_gincr:N \g__kernel_backend_scope_int
217 }
218 \cs_generate_variant:Nn __kernel_backend_scope:n { e }

(End of definition for __kernel_backend_scope_begin: and others.)

219 ⟨/dvisvgm⟩

220 ⟨/package⟩

2 l3backend-box implementation
221 ⟨∗package⟩
222 ⟨@@=box⟩

2.1 dvips backend
223 ⟨∗dvips⟩

7

__box_backend_clip:N The dvips backend scales all absolute dimensions based on the output resolution selected
and any TEX magnification. Thus for any operation involving absolute lengths there is
a correction to make. See normalscale from special.pro for the variables, noting that
here everything is saved on the stack rather than as a separate variable. Once all of that
is done, the actual clipping is trivial.

224 \cs_new_protected:Npn __box_backend_clip:N #1
225 {
226 __kernel_backend_scope_begin:
227 __kernel_backend_align_begin:
228 __kernel_backend_literal_postscript:n { matrix~currentmatrix }
229 __kernel_backend_literal_postscript:n
230 { Resolution~72~div~VResolution~72~div~scale }
231 __kernel_backend_literal_postscript:n { DVImag~dup~scale }
232 __kernel_backend_literal_postscript:e
233 {
234 0 ~
235 \dim_to_decimal_in_bp:n { \box_dp:N #1 } ~
236 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~
237 \dim_to_decimal_in_bp:n { -\box_ht:N #1 - \box_dp:N #1 } ~
238 rectclip
239 }
240 __kernel_backend_literal_postscript:n { setmatrix }
241 __kernel_backend_align_end:
242 \hbox_overlap_right:n { \box_use:N #1 }
243 __kernel_backend_scope_end:
244 \skip_horizontal:n { \box_wd:N #1 }
245 }

(End of definition for __box_backend_clip:N.)

__box_backend_rotate:Nn
__box_backend_rotate_aux:Nn

Rotating using dvips does not require that the box dimensions are altered and has a
very convenient built-in operation. Zero rotation must be written as 0 not -0 so there is
a quick test.

246 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2
247 { \exp_args:NNf __box_backend_rotate_aux:Nn #1 { \fp_eval:n {#2} } }
248 \cs_new_protected:Npn __box_backend_rotate_aux:Nn #1#2
249 {
250 __kernel_backend_scope_begin:
251 __kernel_backend_align_begin:
252 __kernel_backend_literal_postscript:e
253 {
254 \fp_compare:nNnTF {#2} = \c_zero_fp
255 { 0 }
256 { \fp_eval:n { round (-(#2) , 5) } } ~
257 rotate
258 }
259 __kernel_backend_align_end:
260 \box_use:N #1
261 __kernel_backend_scope_end:
262 }

(End of definition for __box_backend_rotate:Nn and __box_backend_rotate_aux:Nn.)

8

__box_backend_scale:Nnn The dvips backend once again has a dedicated operation we can use here.
263 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3
264 {
265 __kernel_backend_scope_begin:
266 __kernel_backend_align_begin:
267 __kernel_backend_literal_postscript:e
268 {
269 \fp_eval:n { round (#2 , 5) } ~
270 \fp_eval:n { round (#3 , 5) } ~
271 scale
272 }
273 __kernel_backend_align_end:
274 \hbox_overlap_right:n { \box_use:N #1 }
275 __kernel_backend_scope_end:
276 }

(End of definition for __box_backend_scale:Nnn.)

277 ⟨/dvips⟩

2.2 LuaTEX and pdfTEX backends
278 ⟨∗luatex | pdftex⟩

__box_backend_clip:N The general method is to save the current location, define a clipping path equivalent to
the bounding box, then insert the content at the current position and in a zero width box.
The “real” width is then made up using a horizontal skip before tidying up. There are
other approaches that can be taken (for example using XForm objects), but the logic here
shares as much code as possible and uses the same conversions (and so same rounding
errors) in all cases.

279 \cs_new_protected:Npn __box_backend_clip:N #1
280 {
281 __kernel_backend_scope_begin:
282 __kernel_backend_literal_pdf:e
283 {
284 0~
285 \dim_to_decimal_in_bp:n { -\box_dp:N #1 } ~
286 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~
287 \dim_to_decimal_in_bp:n { \box_ht:N #1 + \box_dp:N #1 } ~
288 re~W~n
289 }
290 \hbox_overlap_right:n { \box_use:N #1 }
291 __kernel_backend_scope_end:
292 \skip_horizontal:n { \box_wd:N #1 }
293 }

(End of definition for __box_backend_clip:N.)

__box_backend_rotate:Nn
__box_backend_rotate_aux:Nn

\l__box_backend_cos_fp
\l__box_backend_sin_fp

Rotations are set using an affine transformation matrix which therefore requires
sine/cosine values not the angle itself. We store the rounded values to avoid round-
ing twice. There are also a couple of comparisons to ensure that -0 is not written to the
output, as this avoids any issues with problematic display programs. Note that numbers
are compared to 0 after rounding.

294 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2

9

295 { \exp_args:NNf __box_backend_rotate_aux:Nn #1 { \fp_eval:n {#2} } }
296 \cs_new_protected:Npn __box_backend_rotate_aux:Nn #1#2
297 {
298 __kernel_backend_scope_begin:
299 \box_set_wd:Nn #1 { 0pt }
300 \fp_set:Nn \l__box_backend_cos_fp { round (cosd (#2) , 5) }
301 \fp_compare:nNnT \l__box_backend_cos_fp = \c_zero_fp
302 { \fp_zero:N \l__box_backend_cos_fp }
303 \fp_set:Nn \l__box_backend_sin_fp { round (sind (#2) , 5) }
304 __kernel_backend_matrix:e
305 {
306 \fp_use:N \l__box_backend_cos_fp \c_space_tl
307 \fp_compare:nNnTF \l__box_backend_sin_fp = \c_zero_fp
308 { 0~0 }
309 {
310 \fp_use:N \l__box_backend_sin_fp
311 \c_space_tl
312 \fp_eval:n { -\l__box_backend_sin_fp }
313 }
314 \c_space_tl
315 \fp_use:N \l__box_backend_cos_fp
316 }
317 \box_use:N #1
318 __kernel_backend_scope_end:
319 }
320 \fp_new:N \l__box_backend_cos_fp
321 \fp_new:N \l__box_backend_sin_fp

(End of definition for __box_backend_rotate:Nn and others.)

__box_backend_scale:Nnn The same idea as for rotation but without the complexity of signs and cosines.
322 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3
323 {
324 __kernel_backend_scope_begin:
325 __kernel_backend_matrix:e
326 {
327 \fp_eval:n { round (#2 , 5) } ~
328 0~0~
329 \fp_eval:n { round (#3 , 5) }
330 }
331 \hbox_overlap_right:n { \box_use:N #1 }
332 __kernel_backend_scope_end:
333 }

(End of definition for __box_backend_scale:Nnn.)

334 ⟨/luatex | pdftex⟩

2.3 dvipdfmx/X ETEX backend
335 ⟨∗dvipdfmx | xetex⟩

__box_backend_clip:N The code here is identical to that for LuaTEX/pdfTEX: unlike rotation and scaling, there
is no higher-level support in the backend for clipping.

336 \cs_new_protected:Npn __box_backend_clip:N #1

10

337 {
338 __kernel_backend_scope_begin:
339 __kernel_backend_literal_pdf:e
340 {
341 0~
342 \dim_to_decimal_in_bp:n { -\box_dp:N #1 } ~
343 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~
344 \dim_to_decimal_in_bp:n { \box_ht:N #1 + \box_dp:N #1 } ~
345 re~W~n
346 }
347 \hbox_overlap_right:n { \box_use:N #1 }
348 __kernel_backend_scope_end:
349 \skip_horizontal:n { \box_wd:N #1 }
350 }

(End of definition for __box_backend_clip:N.)

__box_backend_rotate:Nn
__box_backend_rotate_aux:Nn

Rotating in dvipdmfx/X ETEX can be implemented using either PDF or backend-specific
code. The former approach however is not “aware” of the content of boxes: this means
that any embedded links would not be adjusted by the rotation. As such, the backend-
native approach is preferred: the code therefore is similar (though not identical) to the
dvips version (notice the rotation angle here is positive). As for dvips, zero rotation is
written as 0 not -0.

351 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2
352 { \exp_args:NNf __box_backend_rotate_aux:Nn #1 { \fp_eval:n {#2} } }
353 \cs_new_protected:Npn __box_backend_rotate_aux:Nn #1#2
354 {
355 __kernel_backend_scope_begin:
356 __kernel_backend_literal:e
357 {
358 x:rotate~
359 \fp_compare:nNnTF {#2} = \c_zero_fp
360 { 0 }
361 { \fp_eval:n { round (#2 , 5) } }
362 }
363 \box_use:N #1
364 __kernel_backend_scope_end:
365 }

(End of definition for __box_backend_rotate:Nn and __box_backend_rotate_aux:Nn.)

__box_backend_scale:Nnn Much the same idea for scaling: use the higher-level backend operation to allow for box
content.

366 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3
367 {
368 __kernel_backend_scope_begin:
369 __kernel_backend_literal:e
370 {
371 x:scale~
372 \fp_eval:n { round (#2 , 5) } ~
373 \fp_eval:n { round (#3 , 5) }
374 }
375 \hbox_overlap_right:n { \box_use:N #1 }
376 __kernel_backend_scope_end:
377 }

11

(End of definition for __box_backend_scale:Nnn.)

378 ⟨/dvipdfmx | xetex⟩

2.4 dvisvgm backend
379 ⟨∗dvisvgm⟩

__box_backend_clip:N
\g__kernel_clip_path_int

Clipping in SVG is more involved than with other backends. The first issue is that the
clipping path must be defined separately from where it is used, so we need to track how
many paths have applied. The naming here uses l3cp as the namespace with a number
following. Rather than use a rectangular operation, we define the path manually as this
allows it to have a depth: easier than the alternative approach of shifting content up and
down using scopes to allow for the depth of the TEX box and keep the reference point
the same!

380 \cs_new_protected:Npn __box_backend_clip:N #1
381 {
382 \int_gincr:N \g__kernel_clip_path_int
383 __kernel_backend_literal_svg:e
384 { < clipPath~id = " l3cp \int_use:N \g__kernel_clip_path_int " > }
385 __kernel_backend_literal_svg:e
386 {
387 <
388 path ~ d =
389 "
390 M ~ 0 ~
391 \dim_to_decimal:n { -\box_dp:N #1 } ~
392 L ~ \dim_to_decimal:n { \box_wd:N #1 } ~
393 \dim_to_decimal:n { -\box_dp:N #1 } ~
394 L ~ \dim_to_decimal:n { \box_wd:N #1 } ~
395 \dim_to_decimal:n { \box_ht:N #1 + \box_dp:N #1 } ~
396 L ~ 0 ~
397 \dim_to_decimal:n { \box_ht:N #1 + \box_dp:N #1 } ~
398 Z
399 "
400 />
401 }
402 __kernel_backend_literal_svg:n
403 { < /clipPath > }

In general the SVG set up does not try to transform coordinates to the current point. For
clipping we need to do that, so have a transformation here to get us to the right place,
and a matching one just before the TEX box is inserted to get things back on track. The
clip path needs to come between those two such that if lines up with the current point,
as does the TEX box.

404 __kernel_backend_scope_begin:n
405 {
406 transform =
407 "
408 translate ({ ?x } , { ?y }) ~
409 scale (1 , -1)
410 "
411 }
412 __kernel_backend_scope:e

12

413 {
414 clip-path =
415 "url (\c_hash_str l3cp \int_use:N \g__kernel_clip_path_int) "
416 }
417 __kernel_backend_scope:n
418 {
419 transform =
420 "
421 scale (-1 , 1) ~
422 translate ({ ?x } , { ?y }) ~
423 scale (-1 , -1)
424 "
425 }
426 \box_use:N #1
427 __kernel_backend_scope_end:
428 }
429 \int_new:N \g__kernel_clip_path_int

(End of definition for __box_backend_clip:N and \g__kernel_clip_path_int.)

__box_backend_rotate:Nn Rotation has a dedicated operation which includes a center-of-rotation optional pair.
That can be picked up from the backend syntax, so there is no need to worry about the
transformation matrix.

430 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2
431 {
432 __kernel_backend_scope_begin:e
433 {
434 transform =
435 "
436 rotate
437 (\fp_eval:n { round (-(#2) , 5) } , ~ { ?x } , ~ { ?y })
438 "
439 }
440 \box_use:N #1
441 __kernel_backend_scope_end:
442 }

(End of definition for __box_backend_rotate:Nn.)

__box_backend_scale:Nnn In contrast to rotation, we have to account for the current position in this case. That
is done using a couple of translations in addition to the scaling (which is therefore done
backward with a flip).

443 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3
444 {
445 __kernel_backend_scope_begin:e
446 {
447 transform =
448 "
449 translate ({ ?x } , { ?y }) ~
450 scale
451 (
452 \fp_eval:n { round (-#2 , 5) } ,
453 \fp_eval:n { round (-#3 , 5) }
454) ~

13

455 translate ({ ?x } , { ?y }) ~
456 scale (-1)
457 "
458 }
459 \hbox_overlap_right:n { \box_use:N #1 }
460 __kernel_backend_scope_end:
461 }

(End of definition for __box_backend_scale:Nnn.)

462 ⟨/dvisvgm⟩

463 ⟨/package⟩

3 l3backend-color implementation
464 ⟨∗package⟩
465 ⟨@@=color⟩

Color support is split into parts: collecting data from LATEX 2ε, the color stack,
general color, separations, and color for drawings. We have different approaches in each
backend, and have some choices to make about dvipdfmx/X ETEX in particular. Whilst it
is in some ways convenient to use the same approach in multiple backends, the fact that
dvipdfmx/X ETEX is PDF-based means it (largely) sticks closer to direct PDF output.
3.1 The color stack
For PDF-based engines, we have a color stack available inside the specials. This is used
for concepts beyond color itself: it is needed to manage the graphics state generally.
Although dvipdfmx/X ETEX have multiple color stacks in recent releases, the way these
interact with the original single stack and with other graphic state operations means that
currently it is not feasible to use the multiple stacks.

3.1.1 Common code

466 ⟨∗luatex | pdftex⟩

\l__color_backend_stack_int For tracking which stack is in use where multiple stacks are used: currently just
pdfTEX/LuaTEX but at some future stage may also cover dvipdfmx/X ETEX.

467 \int_new:N \l__color_backend_stack_int

(End of definition for \l__color_backend_stack_int.)

468 ⟨/luatex | pdftex⟩

3.1.2 LuaTEXand pdfTEX

469 ⟨∗luatex | pdftex⟩

__kernel_color_backend_stack_init:Nnn

470 \cs_new_protected:Npn __kernel_color_backend_stack_init:Nnn #1#2#3
471 {
472 \int_const:Nn #1
473 {
474 ⟨∗luatex⟩
475 \tex_pdffeedback:D colorstackinit ~
476 ⟨/luatex⟩

14

477 ⟨∗pdftex⟩
478 \tex_pdfcolorstackinit:D
479 ⟨/pdftex⟩
480 \tl_if_blank:nF {#2} { #2 ~ }
481 {#3}
482 }
483 }

(End of definition for __kernel_color_backend_stack_init:Nnn.)

__kernel_color_backend_stack_push:nn
__kernel_color_backend_stack_pop:n 484 \cs_new_protected:Npn __kernel_color_backend_stack_push:nn #1#2

485 {
486 ⟨∗luatex⟩
487 \tex_pdfextension:D colorstack ~
488 ⟨/luatex⟩
489 ⟨∗pdftex⟩
490 \tex_pdfcolorstack:D
491 ⟨/pdftex⟩
492 \int_eval:n {#1} ~ push ~ {#2}
493 }
494 \cs_new_protected:Npn __kernel_color_backend_stack_pop:n #1
495 {
496 ⟨∗luatex⟩
497 \tex_pdfextension:D colorstack ~
498 ⟨/luatex⟩
499 ⟨∗pdftex⟩
500 \tex_pdfcolorstack:D
501 ⟨/pdftex⟩
502 \int_eval:n {#1} ~ pop \scan_stop:
503 }

(End of definition for __kernel_color_backend_stack_push:nn and __kernel_color_backend_stack_-
pop:n.)

504 ⟨/luatex | pdftex⟩

3.2 General color
3.2.1 dvips-style

505 ⟨∗dvips | dvisvgm⟩

__color_backend_select_cmyk:n
__color_backend_select_gray:n

__color_backend_select_named:n
__color_backend_select_rgb:n

__color_backend_select:n
__color_backend_reset:

Push the data to the stack. In the case of dvips also saves the drawing color in raw
PostScript. The spot model is for handling data in classical format.

506 \cs_new_protected:Npn __color_backend_select_cmyk:n #1
507 { __color_backend_select:n { cmyk ~ #1 } }
508 \cs_new_protected:Npn __color_backend_select_gray:n #1
509 { __color_backend_select:n { gray ~ #1 } }
510 \cs_new_protected:Npn __color_backend_select_named:n #1
511 { __color_backend_select:n { ~ #1 } }
512 \cs_new_protected:Npn __color_backend_select_rgb:n #1
513 { __color_backend_select:n { rgb ~ #1 } }
514 \cs_new_protected:Npn __color_backend_select:n #1
515 {
516 __kernel_backend_literal:n { color~push~ #1 }

15

517 ⟨∗dvips⟩
518 __kernel_backend_postscript:n { /color.sc ~ { } ~ def }
519 ⟨/dvips⟩
520 }
521 \cs_new_protected:Npn __color_backend_reset:
522 { __kernel_backend_literal:n { color~pop } }

(End of definition for __color_backend_select_cmyk:n and others.)

523 ⟨/dvips | dvisvgm⟩

3.2.2 LuaTEX and pdfTEX

524 ⟨∗luatex | pdftex⟩

\l__color_backend_fill_tl
\l__color_backend_stroke_tl 525 \tl_new:N \l__color_backend_fill_tl

526 \tl_new:N \l__color_backend_stroke_tl
527 \tl_set:Nn \l__color_backend_fill_tl { 0 ~ g }
528 \tl_set:Nn \l__color_backend_stroke_tl { 0 ~ G }

(End of definition for \l__color_backend_fill_tl and \l__color_backend_stroke_tl.)

__color_backend_select_cmyk:n
__color_backend_select_gray:n
__color_backend_select_rgb:n

__color_backend_select:nn
__color_backend_reset:

Store the values then pass to the stack.
529 \cs_new_protected:Npn __color_backend_select_cmyk:n #1
530 { __color_backend_select:nn { #1 ~ k } { #1 ~ K } }
531 \cs_new_protected:Npn __color_backend_select_gray:n #1
532 { __color_backend_select:nn { #1 ~ g } { #1 ~ G } }
533 \cs_new_protected:Npn __color_backend_select_rgb:n #1
534 { __color_backend_select:nn { #1 ~ rg } { #1 ~ RG } }
535 \cs_new_protected:Npn __color_backend_select:nn #1#2
536 {
537 \tl_set:Nn \l__color_backend_fill_tl {#1}
538 \tl_set:Nn \l__color_backend_stroke_tl {#2}
539 __kernel_color_backend_stack_push:nn \l__color_backend_stack_int { #1 ~ #2 }
540 }
541 \cs_new_protected:Npn __color_backend_reset:
542 { __kernel_color_backend_stack_pop:n \l__color_backend_stack_int }

(End of definition for __color_backend_select_cmyk:n and others.)

543 ⟨/luatex | pdftex⟩

3.2.3 dvipmdfx/X ETEX

These backends have the most possible approaches: it recognizes both dvips-based color
specials and its own format, plus one can include PDF statements directly. Recent
releases also have a color stack approach similar to pdfTEX. Of the stack methods, the
dedicated the most versatile is the latter as it can cover all of the use cases we have.
However, at present this interacts problematically with any color on the original stack.
We therefore stick to a single-stack approach here.

544 ⟨∗dvipdfmx | xetex⟩

16

__color_backend_select:n
__color_backend_select_cmyk:n
__color_backend_select_gray:n
__color_backend_select_rgb:n

__color_backend_reset:

Using the single stack is relatively easy as there is only one route.
545 \cs_new_protected:Npn __color_backend_select:n #1
546 { __kernel_backend_literal:n { pdf : bc ~ [#1] } }
547 \cs_new_eq:NN __color_backend_select_cmyk:n __color_backend_select:n
548 \cs_new_eq:NN __color_backend_select_gray:n __color_backend_select:n
549 \cs_new_eq:NN __color_backend_select_rgb:n __color_backend_select:n
550 \cs_new_protected:Npn __color_backend_reset:
551 { __kernel_backend_literal:n { pdf : ec } }

(End of definition for __color_backend_select:n and others.)

__color_backend_select_named:n For classical named colors, the only value we should get is Black.
552 \cs_new_protected:Npn __color_backend_select_named:n #1
553 {
554 \str_if_eq:nnTF {#1} { Black }
555 { __color_backend_select_gray:n { 0 } }
556 { \msg_error:nnn { color } { unknown-named-color } {#1} }
557 }
558 \msg_new:nnn { color } { unknown-named-color }
559 { Named~color~’#1’~is~not~known. }

(End of definition for __color_backend_select_named:n.)

560 ⟨/dvipdfmx | xetex⟩

3.3 Separations
Here, life gets interesting and we need essentially one approach per backend.

561 ⟨∗dvipdfmx | luatex | pdftex | xetex | dvips⟩

But we start with some functionality needed for both PostScript and PDF based
backends.

\g__color_backend_colorant_prop
562 \prop_new:N \g__color_backend_colorant_prop

(End of definition for \g__color_backend_colorant_prop.)

__color_backend_devicen_colorants:n
__color_backend_devicen_colorants:w 563 \cs_new:Npe __color_backend_devicen_colorants:n #1

564 {
565 \exp_not:N \tl_if_blank:nF {#1}
566 {
567 \c_space_tl
568 << ~
569 /Colorants ~
570 << ~
571 \exp_not:N __color_backend_devicen_colorants:w #1 ~
572 \exp_not:N \q_recursion_tail \c_space_tl
573 \exp_not:N \q_recursion_stop
574 >> ~
575 >>
576 }
577 }
578 \cs_new:Npn __color_backend_devicen_colorants:w #1 ~

17

579 {
580 \quark_if_recursion_tail_stop:n {#1}
581 \prop_if_in:NnT \g__color_backend_colorant_prop {#1}
582 {
583 #1 ~
584 \prop_item:Nn \g__color_backend_colorant_prop {#1} ~
585 }
586 __color_backend_devicen_colorants:w
587 }

(End of definition for __color_backend_devicen_colorants:n and __color_backend_devicen_colorants:w.)

588 ⟨/dvipdfmx | luatex | pdftex | xetex | dvips⟩

589 ⟨∗dvips⟩

__color_backend_select_separation:nn
__color_backend_select_devicen:nn 590 \cs_new_protected:Npn __color_backend_select_separation:nn #1#2

591 { __color_backend_select:n { separation ~ #1 ~ #2 } }
592 \cs_new_eq:NN __color_backend_select_devicen:nn __color_backend_select_separation:nn

(End of definition for __color_backend_select_separation:nn and __color_backend_select_devicen:nn.)

__color_backend_select_iccbased:nn No support.
593 \cs_new_protected:Npn __color_backend_select_iccbased:nn #1#2 { }

(End of definition for __color_backend_select_iccbased:nn.)

__color_backend_separation_init:nnnnn
__color_backend_separation_init:neenn

__color_backend_separation_init_aux:nnnnnn
__color_backend_separation_init_/DeviceCMYK:nnn
__color_backend_separation_init_/DeviceGray:nnn
__color_backend_separation_init_/DeviceRGB:nnn

__color_backend_separation_init_Device:Nn
__color_backend_separation_init:nnn

__color_backend_separation_init_count:n
__color_backend_separation_init_count:w

__color_backend_separation_init:nnnn
__color_backend_separation_init:w
__color_backend_separation_init:n

__color_backend_separation_init:nw
__color_backend_separation_init_CIELAB:nnn

Initializing here means creating a small header set up plus massaging some data. This
comes about as we have to deal with PDF-focussed data, which makes most sense “higher-
up”. The approach is based on ideas from https://tex.stackexchange.com/q/560093
plus using the PostScript manual for other aspects.

594 \cs_new_protected:Npe __color_backend_separation_init:nnnnn #1#2#3#4#5
595 {
596 \bool_if:NT \g__kernel_backend_header_bool
597 {
598 \exp_not:N \exp_args:Ne __kernel_backend_first_shipout:n
599 {
600 \exp_not:N __color_backend_separation_init_aux:nnnnnn
601 { \exp_not:N \int_use:N \g__color_model_int }
602 {#1} {#2} {#3} {#4} {#5}
603 }
604 \prop_gput:Nee \exp_not:N \g__color_backend_colorant_prop
605 { / \exp_not:N \str_convert_pdfname:n {#1} }
606 {
607 << ~
608 /setcolorspace ~ {} ~
609 >> ~ begin ~
610 color \exp_not:N \int_use:N \g__color_model_int \c_space_tl
611 end
612 }
613 }
614 }
615 \cs_generate_variant:Nn __color_backend_separation_init:nnnnn { nee }
616 \cs_new_protected:Npn __color_backend_separation_init_aux:nnnnnn #1#2#3#4#5#6
617 {

18

https://tex.stackexchange.com/q/560093

618 __kernel_backend_literal:e
619 {
620 !
621 TeXDict ~ begin ~
622 /color #1
623 {
624 [~
625 /Separation ~ (\str_convert_pdfname:n {#2}) ~
626 [~ #3 ~] ~
627 {
628 \cs_if_exist_use:cF { __color_backend_separation_init_ #3 :nnn }
629 { __color_backend_separation_init:nnn }
630 {#4} {#5} {#6}
631 }
632] ~ setcolorspace
633 } ~ def ~
634 end
635 }
636 }
637 \cs_new:cpn { __color_backend_separation_init_ /DeviceCMYK :nnn } #1#2#3
638 { __color_backend_separation_init_Device:Nn 4 {#3} }
639 \cs_new:cpn { __color_backend_separation_init_ /DeviceGray :nnn } #1#2#3
640 { __color_backend_separation_init_Device:Nn 1 {#3} }
641 \cs_new:cpn { __color_backend_separation_init_ /DeviceRGB :nnn } #1#2#3
642 { __color_backend_separation_init_Device:Nn 2 {#3} }
643 \cs_new:Npn __color_backend_separation_init_Device:Nn #1#2
644 {
645 #2 ~
646 \prg_replicate:nn {#1}
647 { #1 ~ index ~ mul ~ #1 ~ 1 ~ roll ~ }
648 \int_eval:n { #1 + 1 } ~ -1 ~ roll ~ pop
649 }

For the generic case, we cannot use /FunctionType 2 unfortunately, so we have to code
that idea up in PostScript. Here, we will therefore assume that a range is always given.
First, we count values in each argument: at the backend level, we can assume there are
always well-behaved with spaces present.

650 \cs_new:Npn __color_backend_separation_init:nnn #1#2#3
651 {
652 \exp_args:Ne __color_backend_separation_init:nnnn
653 { __color_backend_separation_init_count:n {#2} }
654 {#1} {#2} {#3}
655 }
656 \cs_new:Npn __color_backend_separation_init_count:n #1
657 { \int_eval:n { 0 __color_backend_separation_init_count:w #1 ~ \s__color_stop } }
658 \cs_new:Npn __color_backend_separation_init_count:w #1 ~ #2 \s__color_stop
659 {
660 +1
661 \tl_if_blank:nF {#2}
662 { __color_backend_separation_init_count:w #2 \s__color_stop }
663 }

Now we implement the algorithm. In the terms in the PostScript manual, we have N = 1
and Domain = [0 1], with Range as #2, C0 as #3 and C1 as #4, with the number of
output components in #1. So all we have to do is implement yi = C0i + x(C1i − C0i)

19

with lots of stack manipulation, then check the ranges. That’s done by adding everything
to the stack first, then using the fact we know all of the offsets. As manipulating the
stack is tricky, we start by re-formatting the C0 and C1 arrays to be interleaved, and
add a 0 to each pair: this is used to keep the stack of constant length while we are doing
the first pass of mathematics. We then working through that list, calculating from the
last to the first value before tidying up by removing all of the input values. We do that
by first copying all of the final y values to the end of the stack, then rolling everything
so we can pop the now-unneeded material.

664 \cs_new:Npn __color_backend_separation_init:nnnn #1#2#3#4
665 {
666 __color_backend_separation_init:w #3 ~ \s__color_stop #4 ~ \s__color_stop
667 \prg_replicate:nn {#1}
668 {
669 pop ~ 1 ~ index ~ neg ~ 1 ~ index ~ add ~
670 \int_eval:n { 3 * #1 } ~ index ~ mul ~
671 2 ~ index ~ add ~
672 \int_eval:n { 3 * #1 } ~ #1 ~ roll ~
673 }
674 \int_step_function:nnnN {#1} { -1 } { 1 }
675 __color_backend_separation_init:n
676 \int_eval:n { 4 * #1 + 1 } ~ #1 ~ roll ~
677 \prg_replicate:nn { 3 * #1 + 1 } { pop ~ }
678 \tl_if_blank:nF {#2}
679 { __color_backend_separation_init:nw {#1} #2 ~ \s__color_stop }
680 }
681 \cs_new:Npn __color_backend_separation_init:w
682 #1 ~ #2 \s__color_stop #3 ~ #4 \s__color_stop
683 {
684 #1 ~ #3 ~ 0 ~
685 \tl_if_blank:nF {#2}
686 { __color_backend_separation_init:w #2 \s__color_stop #4 \s__color_stop }
687 }
688 \cs_new:Npn __color_backend_separation_init:n #1
689 { \int_eval:n { #1 * 2 } ~ index ~ }

Finally, we deal with the range limit if required. This is handled by splitting the range into
pairs. It’s then just a question of doing the comparisons, this time dropping everything
except the desired result.

690 \cs_new:Npn __color_backend_separation_init:nw #1#2 ~ #3 ~ #4 \s__color_stop
691 {
692 #2 ~ #3 ~
693 2 ~ index ~ 2 ~ index ~ lt ~
694 { ~ pop ~ exch ~ pop ~ } ~
695 { ~
696 2 ~ index ~ 1 ~ index ~ gt ~
697 { ~ exch ~ pop ~ exch ~ pop ~ } ~
698 { ~ pop ~ pop ~ } ~
699 ifelse ~
700 }
701 ifelse ~
702 #1 ~ 1 ~ roll ~
703 \tl_if_blank:nF {#4}
704 { __color_backend_separation_init:nw {#1} #4 \s__color_stop }

20

705 }

CIELAB support uses the detail from the PostScript reference, page 227; other than that
block of PostScript, this is the same as for PDF-based routes.

706 \cs_new_protected:Npn __color_backend_separation_init_CIELAB:nnn #1#2#3
707 {
708 __color_backend_separation_init:neenn
709 {#2}
710 {
711 /CIEBasedABC ~
712 << ~
713 /RangeABC ~ [~ \c__color_model_range_CIELAB_tl \c_space_tl] ~
714 /DecodeABC ~
715 [~
716 { ~ 16 ~ add ~ 116 ~ div ~ } ~ bind ~
717 { ~ 500 ~ div ~ } ~ bind ~
718 { ~ 200 ~ div ~ } ~ bind ~
719] ~
720 /MatrixABC ~ [~ 1 ~ 1 ~ 1 ~ 1 ~ 0 ~ 0 ~ 0 ~ 0 ~ -1 ~] ~
721 /DecodeLMN ~
722 [~
723 { ~
724 dup ~ 6 ~ 29 ~ div ~ ge ~
725 { ~ dup ~ dup ~ mul ~ mul ~ ~ } ~
726 { ~ 4 ~ 29 ~ div ~ sub ~ 108 ~ 841 ~ div ~ mul ~ } ~
727 ifelse ~
728 0.9505 ~ mul ~
729 } ~ bind ~
730 { ~
731 dup ~ 6 ~ 29 ~ div ~ ge ~
732 { ~ dup ~ dup ~ mul ~ mul ~ } ~
733 { ~ 4 ~ 29 ~ div ~ sub ~ 108 ~ 841 ~ div ~ mul ~ } ~
734 ifelse ~
735 } ~ bind ~
736 { ~
737 dup ~ 6 ~ 29 ~ div ~ ge ~
738 { ~ dup ~ dup ~ mul ~ mul ~ } ~
739 { ~ 4 ~ 29 ~ div ~ sub ~ 108 ~ 841 ~ div ~ mul ~ } ~
740 ifelse ~
741 1.0890 ~ mul ~
742 } ~ bind
743] ~
744 /WhitePoint ~
745 [~ \tl_use:c { c__color_model_whitepoint_CIELAB_ #1 _tl } ~] ~
746 >>
747 }
748 { \c__color_model_range_CIELAB_tl }
749 { 100 ~ 0 ~ 0 }
750 {#3}
751 }

(End of definition for __color_backend_separation_init:nnnnn and others.)

__color_backend_devicen_init:nnn Trivial as almost all of the work occurs in the shared code.
752 \cs_new_protected:Npn __color_backend_devicen_init:nnn #1#2#3

21

753 {
754 __kernel_backend_literal:e
755 {
756 !
757 TeXDict ~ begin ~
758 /color \int_use:N \g__color_model_int
759 {
760 [~
761 /DeviceN ~
762 [~ #1 ~] ~
763 #2 ~
764 { ~ #3 ~ } ~
765 __color_backend_devicen_colorants:n {#1}
766] ~ setcolorspace
767 } ~ def ~
768 end
769 }
770 }

(End of definition for __color_backend_devicen_init:nnn.)

__color_backend_iccbased_init:nnn No support at present.
771 \cs_new_protected:Npn __color_backend_iccbased_init:nnn #1#2#3 { }

(End of definition for __color_backend_iccbased_init:nnn.)

772 ⟨/dvips⟩

773 ⟨∗dvisvgm⟩

__color_backend_select_separation:nn
__color_backend_select_devicen:nn

No support at present.
774 \cs_new_protected:Npn __color_backend_select_separation:nn #1#2 { }
775 \cs_new_eq:NN __color_backend_select_devicen:nn __color_backend_select_separation:nn

(End of definition for __color_backend_select_separation:nn and __color_backend_select_devicen:nn.)

__color_backend_separation_init:nnnnn
__color_backend_separation_init_CIELAB:nnn

No support at present.
776 \cs_new_protected:Npn __color_backend_separation_init:nnnnn #1#2#3#4#5 { }
777 \cs_new_protected:Npn __color_backend_separation_init_CIELAB:nnnnnn #1#2#3 { }

(End of definition for __color_backend_separation_init:nnnnn and __color_backend_separation_-
init_CIELAB:nnn.)

__color_backend_select_iccbased:nn As detailed in https://www.w3.org/TR/css-color-4/#at-profile, we can apply a
color profile using CSS. As we have a local file, we use a relative URL.

778 \cs_new_protected:Npn __color_backend_select_iccbased:nn #1#2
779 {
780 __kernel_backend_literal_svg:e
781 {
782 <style>
783 @color-profile ~
784 \str_if_eq:nnTF {#2} { cmyk }
785 { device-cmyk }
786 { --color \int_use:N \g__color_model_int }
787 \c_space_tl
788 {

22

https://www.w3.org/TR/css-color-4/#at-profile

789 src:("#1")
790 }
791 </style>
792 }
793 }

(End of definition for __color_backend_select_iccbased:nn.)

794 ⟨/dvisvgm⟩

795 ⟨∗dvipdfmx | luatex | pdftex | xetex⟩

__color_backend_select_separation:nn
__color_backend_select_devicen:nn

__color_backend_select_iccbased:nn
796 ⟨∗dvipdfmx | xetex⟩
797 \cs_new_protected:Npn __color_backend_select_separation:nn #1#2
798 { __kernel_backend_literal:e { pdf : bc ~ \pdf_object_ref:n {#1} ~ [#2] } }
799 ⟨/dvipdfmx | xetex⟩
800 ⟨∗luatex | pdftex⟩
801 \cs_new_protected:Npn __color_backend_select_separation:nn #1#2
802 { __color_backend_select:nn { /#1 ~ cs ~ #2 ~ scn } { /#1 ~ CS ~ #2 ~ SCN } }
803 ⟨/luatex | pdftex⟩
804 \cs_new_eq:NN __color_backend_select_devicen:nn __color_backend_select_separation:nn
805 \cs_new_eq:NN __color_backend_select_iccbased:nn __color_backend_select_separation:nn

(End of definition for __color_backend_select_separation:nn , __color_backend_select_devicen:nn ,
and __color_backend_select_iccbased:nn.)

__color_backend_init_resource:n Resource initiation comes up a few times. For dvipdfmx/X ETEX, we skip this as at
present it’s handled by the backend.

806 \cs_new_protected:Npn __color_backend_init_resource:n #1
807 {
808 ⟨∗luatex | pdftex⟩
809 \bool_lazy_and:nnT
810 { \cs_if_exist_p:N \pdfmanagement_if_active_p: }
811 { \pdfmanagement_if_active_p: }
812 {
813 \use:e
814 {
815 \pdfmanagement_add:nnn
816 { Page / Resources / ColorSpace }
817 { #1 }
818 { \pdf_object_ref_last: }
819 }
820 }
821 ⟨/luatex | pdftex⟩
822 }

(End of definition for __color_backend_init_resource:n.)

__color_backend_separation_init:nnnnn
__color_backend_separation_init:nn

__color_backend_separation_init_CIELAB:nnn

Initializing the PDF structures needs two parts: creating an object containing the “real”
name of the Separation, then adding a reference to that to each page. We use a separate
object for the tint transformation following the model in the PDF reference. The object
here for the color needs to be named as that way it’s accessible to dvipdfmx/X ETEX.

823 \cs_new_protected:Npn __color_backend_separation_init:nnnnn #1#2#3#4#5
824 {
825 \pdf_object_unnamed_write:ne { dict }

23

826 {
827 /FunctionType ~ 2
828 /Domain ~ [0 ~ 1]
829 \tl_if_blank:nF {#3} { /Range ~ [#3] }
830 /C0 ~ [#4] ~
831 /C1 ~ [#5] /N ~ 1
832 }
833 \exp_args:Ne __color_backend_separation_init:nn
834 { \str_convert_pdfname:n {#1} } {#2}
835 __color_backend_init_resource:n { color \int_use:N \g__color_model_int }
836 }
837 \cs_new_protected:Npn __color_backend_separation_init:nn #1#2
838 {
839 \use:e
840 {
841 \pdf_object_new:n { color \int_use:N \g__color_model_int }
842 \pdf_object_write:nnn { color \int_use:N \g__color_model_int } { array }
843 { /Separation /#1 ~ #2 ~ \pdf_object_ref_last: }
844 }
845 \prop_gput:Nne \g__color_backend_colorant_prop { /#1 }
846 { \pdf_object_ref_last: }
847 }

For CIELAB colors, we need one object per document for the illuminant, plus initializa-
tion of the color space referencing that object.

848 \cs_new_protected:Npn __color_backend_separation_init_CIELAB:nnn #1#2#3
849 {
850 \pdf_object_if_exist:nF { __color_illuminant_CIELAB_ #1 }
851 {
852 \pdf_object_new:n { __color_illuminant_CIELAB_ #1 }
853 \pdf_object_write:nne { __color_illuminant_CIELAB_ #1 } { array }
854 {
855 /Lab ~
856 <<
857 /WhitePoint ~
858 [\tl_use:c { c__color_model_whitepoint_CIELAB_ #1 _tl }]
859 /Range ~ [\c__color_model_range_CIELAB_tl]
860 >>
861 }
862 }
863 __color_backend_separation_init:nnnnn
864 {#2}
865 { \pdf_object_ref:n { __color_illuminant_CIELAB_ #1 } }
866 { \c__color_model_range_CIELAB_tl }
867 { 100 ~ 0 ~ 0 }
868 {#3}
869 }

(End of definition for __color_backend_separation_init:nnnnn , __color_backend_separation_-
init:nn , and __color_backend_separation_init_CIELAB:nnn.)

__color_backend_devicen_init:nnn
__color_backend_devicen_init:w

Similar to the Separations case, but with an arbitrary function for the alternative space
work.

870 \cs_new_protected:Npn __color_backend_devicen_init:nnn #1#2#3
871 {

24

872 \pdf_object_unnamed_write:ne { stream }
873 {
874 {
875 /FunctionType ~ 4 ~
876 /Domain ~
877 [~
878 \prg_replicate:nn
879 { 0 __color_backend_devicen_init:w #1 ~ \s__color_stop }
880 { 0 ~ 1 ~ }
881] ~
882 /Range ~
883 [~
884 \str_case:nn {#2}
885 {
886 { /DeviceCMYK } { 0 ~ 1 ~ 0 ~ 1 ~ 0 ~ 1 ~ 0 ~ 1 }
887 { /DeviceGray } { 0 ~ 1 }
888 { /DeviceRGB } { 0 ~ 1 ~ 0 ~ 1 ~ 0 ~ 1 }
889 } ~
890]
891 }
892 { {#3} }
893 }
894 \use:e
895 {
896 \pdf_object_new:n { color \int_use:N \g__color_model_int }
897 \pdf_object_write:nnn { color \int_use:N \g__color_model_int } { array }
898 {
899 /DeviceN ~
900 [~ #1 ~] ~
901 #2 ~
902 \pdf_object_ref_last:
903 __color_backend_devicen_colorants:n {#1}
904 }
905 }
906 __color_backend_init_resource:n { color \int_use:N \g__color_model_int }
907 }
908 \cs_new:Npn __color_backend_devicen_init:w #1 ~ #2 \s__color_stop
909 {
910 + 1
911 \tl_if_blank:nF {#2}
912 { __color_backend_devicen_init:w #2 \s__color_stop }
913 }

(End of definition for __color_backend_devicen_init:nnn and __color_backend_devicen_init:w.)

__color_backend_iccbased_init:nnn Lots of data to save here: we only want to do that once per file, so track it by name.
914 \cs_new_protected:Npn __color_backend_iccbased_init:nnn #1#2#3
915 {
916 \pdf_object_if_exist:nF { __color_icc_ #1 }
917 {
918 \pdf_object_new:n { __color_icc_ #1 }
919 \pdf_object_write:nne { __color_icc_ #1 } { fstream }
920 {
921 {

25

922 /N ~ \exp_not:n { #2 } ~
923 \tl_if_empty:nF { #3 } { /Range~[#3] }
924 }
925 {#1}
926 }
927 }
928 \pdf_object_unnamed_write:ne { array }
929 { /ICCBased ~ \pdf_object_ref:n { __color_icc_ #1 } }
930 __color_backend_init_resource:n { color \int_use:N \g__color_model_int }
931 }

(End of definition for __color_backend_iccbased_init:nnn.)

__color_backend_iccbased_device:nnn This is very similar to setting up a color space: the only part we add to the page resources
differently.

932 \cs_new_protected:Npn __color_backend_iccbased_device:nnn #1#2#3
933 {
934 \pdf_object_if_exist:nF { __color_icc_ #1 }
935 {
936 \pdf_object_new:n { __color_icc_ #1 }
937 \pdf_object_write:nnn { __color_icc_ #1 } { fstream }
938 {
939 { /N ~ #3 }
940 {#1}
941 }
942 }
943 \pdf_object_unnamed_write:ne { array }
944 { /ICCBased ~ \pdf_object_ref:n { __color_icc_ #1 } }
945 __color_backend_init_resource:n { Default #2 }
946 }

(End of definition for __color_backend_iccbased_device:nnn.)

947 ⟨/dvipdfmx | luatex | pdftex | xetex⟩

3.4 Fill and stroke color
Here, dvipdfmx/X ETEX we write direct PDF specials for the fill, and only use the stack
for the stroke color (see above for comments on why we cannot use multiple stacks with
these backends). LuaTEX and pdfTEX have multiple stacks that can deal with fill and
stroke. For dvips we have to manage fill and stroke color ourselves. We also handle
dvisvgm independently, as there we can create SVG directly.

948 ⟨∗dvipdfmx | xetex⟩

__color_backend_fill:n
__color_backend_fill_cmyk:n
__color_backend_fill_gray:n
__color_backend_fill_rgb:n

__color_backend_stroke:n
__color_backend_stroke_cmyk:n
__color_backend_stroke_gray:n
__color_backend_stroke_rgb:n

949 \cs_new_protected:Npn __color_backend_fill:n #1
950 { __kernel_backend_literal:n { pdf : bc ~ fill ~ [#1] } }
951 \cs_new_eq:NN __color_backend_fill_cmyk:n __color_backend_fill:n
952 \cs_new_eq:NN __color_backend_fill_gray:n __color_backend_fill:n
953 \cs_new_eq:NN __color_backend_fill_rgb:n __color_backend_fill:n
954 \cs_new_protected:Npn __color_backend_stroke:n #1
955 { __kernel_backend_literal:n { pdf : bc ~ stroke ~ [#1] } }
956 \cs_new_eq:NN __color_backend_stroke_cmyk:n __color_backend_stroke:n
957 \cs_new_eq:NN __color_backend_stroke_gray:n __color_backend_stroke:n
958 \cs_new_eq:NN __color_backend_stroke_rgb:n __color_backend_stroke:n

26

(End of definition for __color_backend_fill:n and others.)

__color_backend_fill_separation:nn
__color_backend_stroke_separation:nn

__color_backend_fill_devicen:nn
__color_backend_stroke_devicen:nn

959 \cs_new_protected:Npn __color_backend_fill_separation:nn #1#2
960 {
961 __kernel_backend_literal:e
962 { pdf : bc ~ fill ~ \pdf_object_ref:n {#1} ~ [#2] }
963 }
964 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2
965 {
966 __kernel_backend_literal:e
967 { pdf : bc ~ stroke ~ \pdf_object_ref:n {#1} ~ [#2] }
968 }
969 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn
970 \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill_reset:
__color_backend_stroke_reset: 971 \cs_new_eq:NN __color_backend_fill_reset: __color_backend_reset:

972 \cs_new_eq:NN __color_backend_stroke_reset: __color_backend_reset:

(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)

973 ⟨/dvipdfmx | xetex⟩
974 ⟨∗luatex | pdftex⟩

__color_backend_fill_cmyk:n
__color_backend_fill_gray:n
__color_backend_fill_rgb:n

__color_backend_fill:n
__color_backend_stroke_cmyk:n
__color_backend_stroke_gray:n
__color_backend_stroke_rgb:n

__color_backend_stroke:n

Drawing (fill/stroke) color is handled in dvipdfmx/X ETEX in the same way as LuaTEX/pdfTEX.
We use the same approach as earlier, except the color stack is not involved so the generic
direct PDF operation is used. There is no worry about the nature of strokes: everything
is handled automatically.

975 \cs_new_protected:Npn __color_backend_fill_cmyk:n #1
976 { __color_backend_fill:n { #1 ~ k } }
977 \cs_new_protected:Npn __color_backend_fill_gray:n #1
978 { __color_backend_fill:n { #1 ~ g } }
979 \cs_new_protected:Npn __color_backend_fill_rgb:n #1
980 { __color_backend_fill:n { #1 ~ rg } }
981 \cs_new_protected:Npn __color_backend_fill:n #1
982 {
983 \tl_set:Nn \l__color_backend_fill_tl {#1}
984 __kernel_color_backend_stack_push:nn \l__color_backend_stack_int
985 { #1 ~ \l__color_backend_stroke_tl }
986 }
987 \cs_new_protected:Npn __color_backend_stroke_cmyk:n #1
988 { __color_backend_stroke:n { #1 ~ K } }
989 \cs_new_protected:Npn __color_backend_stroke_gray:n #1
990 { __color_backend_stroke:n { #1 ~ G } }
991 \cs_new_protected:Npn __color_backend_stroke_rgb:n #1
992 { __color_backend_stroke:n { #1 ~ RG } }
993 \cs_new_protected:Npn __color_backend_stroke:n #1
994 {
995 \tl_set:Nn \l__color_backend_stroke_tl {#1}
996 __kernel_color_backend_stack_push:nn \l__color_backend_stack_int
997 { \l__color_backend_fill_tl \c_space_tl #1 }
998 }

27

(End of definition for __color_backend_fill_cmyk:n and others.)

__color_backend_fill_separation:nn
__color_backend_stroke_separation:nn

__color_backend_fill_devicen:nn
__color_backend_stroke_devicen:nn

999 \cs_new_protected:Npn __color_backend_fill_separation:nn #1#2
1000 { __color_backend_fill:n { /#1 ~ cs ~ #2 ~ scn } }
1001 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2
1002 { __color_backend_stroke:n { /#1 ~ CS ~ #2 ~ SCN } }
1003 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn
1004 \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill_reset:
__color_backend_stroke_reset: 1005 \cs_new_eq:NN __color_backend_fill_reset: __color_backend_reset:

1006 \cs_new_eq:NN __color_backend_stroke_reset: __color_backend_reset:

(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)

1007 ⟨/luatex | pdftex⟩

1008 ⟨∗dvips⟩

__color_backend_fill_cmyk:n
__color_backend_fill_gray:n
__color_backend_fill_rgb:n

__color_backend_fill:n
__color_backend_stroke_cmyk:n
__color_backend_stroke_gray:n
__color_backend_stroke_rgb:n

Fill color here is the same as general color except we skip the stroke part.
1009 \cs_new_protected:Npn __color_backend_fill_cmyk:n #1
1010 { __color_backend_fill:n { cmyk ~ #1 } }
1011 \cs_new_protected:Npn __color_backend_fill_gray:n #1
1012 { __color_backend_fill:n { gray ~ #1 } }
1013 \cs_new_protected:Npn __color_backend_fill_rgb:n #1
1014 { __color_backend_fill:n { rgb ~ #1 } }
1015 \cs_new_protected:Npn __color_backend_fill:n #1
1016 {
1017 __kernel_backend_literal:n { color~push~ #1 }
1018 }
1019 \cs_new_protected:Npn __color_backend_stroke_cmyk:n #1
1020 { __kernel_backend_postscript:n { /color.sc { #1 ~ setcmykcolor } def } }
1021 \cs_new_protected:Npn __color_backend_stroke_gray:n #1
1022 { __kernel_backend_postscript:n { /color.sc { #1 ~ setgray } def } }
1023 \cs_new_protected:Npn __color_backend_stroke_rgb:n #1
1024 { __kernel_backend_postscript:n { /color.sc { #1 ~ setrgbcolor } def } }

(End of definition for __color_backend_fill_cmyk:n and others.)

__color_backend_fill_separation:nn
__color_backend_stroke_separation:nn

__color_backend_fill_devicen:nn
__color_backend_stroke_devicen:nn

1025 \cs_new_protected:Npn __color_backend_fill_separation:nn #1#2
1026 { __color_backend_fill:n { separation ~ #1 ~ #2 } }
1027 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2
1028 { __kernel_backend_postscript:n { /color.sc { separation ~ #1 ~ #2 } def } }
1029 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn
1030 \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill_reset:
__color_backend_stroke_reset: 1031 \cs_new_eq:NN __color_backend_fill_reset: __color_backend_reset:

1032 \cs_new_protected:Npn __color_backend_stroke_reset: { }

28

(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)

1033 ⟨/dvips⟩

1034 ⟨∗dvisvgm⟩

__color_backend_fill_cmyk:n
__color_backend_fill_gray:n
__color_backend_fill_rgb:n

__color_backend_fill:n

Fill color here is the same as general color.
1035 \cs_new_protected:Npn __color_backend_fill_cmyk:n #1
1036 { __color_backend_fill:n { cmyk ~ #1 } }
1037 \cs_new_protected:Npn __color_backend_fill_gray:n #1
1038 { __color_backend_fill:n { gray ~ #1 } }
1039 \cs_new_protected:Npn __color_backend_fill_rgb:n #1
1040 { __color_backend_fill:n { rgb ~ #1 } }
1041 \cs_new_protected:Npn __color_backend_fill:n #1
1042 {
1043 __kernel_backend_literal:n { color~push~ #1 }
1044 }

(End of definition for __color_backend_fill_cmyk:n and others.)

__color_backend_stroke_cmyk:n
__color_backend_stroke_gray:n

__color_backend_stroke_gray_aux:n
__color_backend_stroke_rgb:n
__color_backend_stroke_rgb:w

__color_backend:nnn

For drawings in SVG, we use scopes for all stroke colors. The backend provides the
necessary conversion for CMYK but only if that is set as the main color: a little bit of
gymnastics as a result.

1045 \cs_new_protected:Npn __color_backend_stroke_cmyk:n #1
1046 {
1047 __color_backend_fill_cmyk:n {#1}
1048 __kernel_backend_scope:n { stroke = "{?color}" }
1049 __color_backend_reset:
1050 }
1051 \cs_new_protected:Npn __color_backend_stroke_gray:n #1
1052 {
1053 \use:e
1054 {
1055 __color_backend_stroke_gray_aux:n
1056 { \fp_eval:n { 100 * (#1) } }
1057 }
1058 }
1059 \cs_new_protected:Npn __color_backend_stroke_gray_aux:n #1
1060 { __color_backend:nnn {#1} {#1} {#1} }
1061 \cs_new_protected:Npn __color_backend_stroke_rgb:n #1
1062 { __color_backend_rgb:w #1 \s__color_stop }
1063 \cs_new_protected:Npn __color_backend_stroke_rgb:w
1064 #1 ~ #2 ~ #3 \s__color_stop
1065 {
1066 \use:e
1067 {
1068 __color_backend:nnn
1069 { \fp_eval:n { 100 * (#1) } }
1070 { \fp_eval:n { 100 * (#2) } }
1071 { \fp_eval:n { 100 * (#3) } }
1072 }
1073 }
1074 \cs_new_protected:Npe __color_backend:nnn #1#2#3
1075 {
1076 __kernel_backend_scope:n

29

1077 {
1078 stroke =
1079 "
1080 rgb
1081 (
1082 #1 \c_percent_str ,
1083 #2 \c_percent_str ,
1084 #3 \c_percent_str
1085)
1086 "
1087 }
1088 }

(End of definition for __color_backend_stroke_cmyk:n and others.)

__color_backend_fill_separation:nn
__color_backend_stroke_separation:nn

__color_backend_fill_devicen:nn
__color_backend_stroke_devicen:nn

At present, these are no-ops.
1089 \cs_new_protected:Npn __color_backend_fill_separation:nn #1#2 { }
1090 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2 { }
1091 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn
1092 \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill_reset:
__color_backend_stroke_reset: 1093 \cs_new_eq:NN __color_backend_fill_reset: __color_backend_reset:

1094 \cs_new_protected:Npn __color_backend_stroke_reset: { }

(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)

__color_backend_devicen_init:nnn
__color_backend_iccbased_init:nnn

No support at present.
1095 \cs_new_protected:Npn __color_backend_devicen_init:nnn #1#2#3 { }
1096 \cs_new_protected:Npn __color_backend_iccbased_init:nnn #1#2#3 { }

(End of definition for __color_backend_devicen_init:nnn and __color_backend_iccbased_init:nnn.)

1097 ⟨/dvisvgm⟩

1098 ⟨/package⟩

3.5 Font handling integration
In LuaTEX these colors should also be usable to color fonts, so luaotfload color handling
is extended to include these.

1099 ⟨∗lua⟩

1100 local l = lpeg
1101 local spaces = l.P’ ’^0
1102 local digit16 = l.R(’09’, ’af’, ’AF’)
1103

1104 local octet = digit16 * digit16 / function(s)
1105 return string.format(’%.3g ’, tonumber(s, 16) / 255)
1106 end
1107

1108 if luaotfload and luaotfload.set_transparent_colorstack then
1109 local htmlcolor = l.Cs(octet * octet * octet * -1 * l.Cc’rg’)
1110 local color_export = {

30

1111 token.create’tex_endlocalcontrol:D’,
1112 token.create’tex_hpack:D’,
1113 token.new(0, 1),
1114 token.create’color_export:nnN’,
1115 token.new(0, 1),
1116 ’’,
1117 token.new(0, 2),
1118 token.new(0, 1),
1119 ’backend’,
1120 token.new(0, 2),
1121 token.create’l_tmpa_tl’,
1122 token.create’exp_after:wN’,
1123 token.create’__color_select:nn’,
1124 token.create’l_tmpa_tl’,
1125 token.new(0, 2),
1126 }
1127 local group_end = token.create’group_end:’
1128 local value = (1 - l.P’}’)^0
1129 luatexbase.add_to_callback(’luaotfload.parse_color’, function (value)
1130 % Also allow HTML colors to preserve compatibility
1131 local html = htmlcolor:match(value)
1132 if html then return html end
1133

1134 % If no l3color named color with this name is known, check for defined xcolor colors
1135 local l3color_prop = token.get_macro(string.format(’l__color_named_%s_prop’, value))
1136 if l3color_prop == nil or l3color_prop == ’’ then
1137 local legacy_color_macro = token.create(string.format(’\\color@%s’, value))
1138 if legacy_color_macro.cmdname ~= ’undefined_cs’ then
1139 token.put_next(legacy_color_macro)
1140 return token.scan_argument()
1141 end
1142 end
1143

1144 tex.runtoks(function()
1145 token.get_next()
1146 color_export[6] = value
1147 tex.sprint(-2, color_export)
1148 end)
1149 local list = token.scan_list()
1150 if not list.head or list.head.next
1151 or list.head.subtype ~= node.subtype’pdf_colorstack’ then
1152 error’Unexpected backend behavior’
1153 end
1154 local cmd = list.head.data
1155 node.free(list)
1156 return cmd
1157 end, ’l3color’)
1158 end

1159 ⟨/lua⟩

1160 ⟨∗luatex⟩

1161 ⟨∗package⟩
1162 \lua_load_module:n {l3backend-luatex}
1163 ⟨/package⟩

31

1164 ⟨/luatex⟩

4 l3backend-draw implementation
1165 ⟨∗package⟩
1166 ⟨@@=draw⟩

4.1 dvips backend
1167 ⟨∗dvips⟩

__draw_backend_literal:n
__draw_backend_literal:e

The same as literal PostScript: same arguments about positioning apply here.
1168 \cs_new_eq:NN __draw_backend_literal:n __kernel_backend_literal_postscript:n
1169 \cs_generate_variant:Nn __draw_backend_literal:n { e }

(End of definition for __draw_backend_literal:n.)

__draw_backend_begin:
__draw_backend_end:

The ps::[begin] special here deals with positioning but allows us to continue on to a
matching ps::[end]: contrast with ps:, which positions but where we can’t split material
between separate calls. The @beginspecial/@endspecial pair are from special.pro
and correct the scale and y-axis direction. As for pgf, we need to save the current point
as this is required for box placement. (Note that @beginspecial/@endspecial forms a
backend scope.)

1170 \cs_new_protected:Npn __draw_backend_begin:
1171 {
1172 __draw_backend_literal:n { [begin] }
1173 __draw_backend_literal:n { /draw.x~currentpoint~/draw.y~exch~def~def }
1174 __draw_backend_literal:n { @beginspecial }
1175 }
1176 \cs_new_protected:Npn __draw_backend_end:
1177 {
1178 __draw_backend_literal:n { @endspecial }
1179 __draw_backend_literal:n { [end] }
1180 }

(End of definition for __draw_backend_begin: and __draw_backend_end:.)

__draw_backend_scope_begin:
__draw_backend_scope_end:

Scope here may need to contain saved definitions, so the entire memory rather than just
the graphic state has to be sent to the stack.

1181 \cs_new_protected:Npn __draw_backend_scope_begin:
1182 { __draw_backend_literal:n { save } }
1183 \cs_new_protected:Npn __draw_backend_scope_end:
1184 { __draw_backend_literal:n { restore } }

(End of definition for __draw_backend_scope_begin: and __draw_backend_scope_end:.)

__draw_backend_moveto:nn
__draw_backend_lineto:nn

__draw_backend_rectangle:nnnn
__draw_backend_curveto:nnnnnn

Path creation operations mainly resolve directly to PostScript primitive steps, with only
the need to convert to bp. Notice that e-type expansion is included here to ensure that
any variable values are forced to literals before any possible caching. There is no native
rectangular path command (without also clipping, filling or stroking), so that task is
done using a small amount of PostScript.

1185 \cs_new_protected:Npn __draw_backend_moveto:nn #1#2
1186 {
1187 __draw_backend_literal:e

32

1188 {
1189 \dim_to_decimal_in_bp:n {#1} ~
1190 \dim_to_decimal_in_bp:n {#2} ~ moveto
1191 }
1192 }
1193 \cs_new_protected:Npn __draw_backend_lineto:nn #1#2
1194 {
1195 __draw_backend_literal:e
1196 {
1197 \dim_to_decimal_in_bp:n {#1} ~
1198 \dim_to_decimal_in_bp:n {#2} ~ lineto
1199 }
1200 }
1201 \cs_new_protected:Npn __draw_backend_rectangle:nnnn #1#2#3#4
1202 {
1203 __draw_backend_literal:e
1204 {
1205 \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#3} ~
1206 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~
1207 moveto~dup~0~rlineto~exch~0~exch~rlineto~neg~0~rlineto~closepath
1208 }
1209 }
1210 \cs_new_protected:Npn __draw_backend_curveto:nnnnnn #1#2#3#4#5#6
1211 {
1212 __draw_backend_literal:e
1213 {
1214 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~
1215 \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~
1216 \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~
1217 curveto
1218 }
1219 }

(End of definition for __draw_backend_moveto:nn and others.)

__draw_backend_evenodd_rule:
__draw_backend_nonzero_rule:

\g__draw_draw_eor_bool

The even-odd rule here can be implemented as a simply switch.
1220 \cs_new_protected:Npn __draw_backend_evenodd_rule:
1221 { \bool_gset_true:N \g__draw_draw_eor_bool }
1222 \cs_new_protected:Npn __draw_backend_nonzero_rule:
1223 { \bool_gset_false:N \g__draw_draw_eor_bool }
1224 \bool_new:N \g__draw_draw_eor_bool

(End of definition for __draw_backend_evenodd_rule: , __draw_backend_nonzero_rule: , and \g__-
draw_draw_eor_bool.)

__draw_backend_closepath:
__draw_backend_stroke:

__draw_backend_closestroke:
__draw_backend_fill:

__draw_backend_fillstroke:
__draw_backend_clip:

__draw_backend_discardpath:
\g__draw_draw_clip_bool

Unlike PDF, PostScript doesn’t track separate colors for strokes and other elements. It is
also desirable to have the clip keyword after a stroke or fill. To achieve those outcomes,
there is some work to do. For color, the stoke color is simple but the fill one has to be
inserted by hand. For clipping, the required ordering is achieved using a TEX switch.
All of the operations end with a new path instruction as they do not terminate (again in
contrast to PDF).

1225 \cs_new_protected:Npn __draw_backend_closepath:
1226 { __draw_backend_literal:n { closepath } }
1227 \cs_new_protected:Npn __draw_backend_stroke:

33

1228 {
1229 __draw_backend_literal:n { gsave }
1230 __draw_backend_literal:n { color.sc }
1231 __draw_backend_literal:n { stroke }
1232 __draw_backend_literal:n { grestore }
1233 \bool_if:NT \g__draw_draw_clip_bool
1234 {
1235 __draw_backend_literal:e
1236 {
1237 \bool_if:NT \g__draw_draw_eor_bool { eo }
1238 clip
1239 }
1240 }
1241 __draw_backend_literal:n { newpath }
1242 \bool_gset_false:N \g__draw_draw_clip_bool
1243 }
1244 \cs_new_protected:Npn __draw_backend_closestroke:
1245 {
1246 __draw_backend_closepath:
1247 __draw_backend_stroke:
1248 }
1249 \cs_new_protected:Npn __draw_backend_fill:
1250 {
1251 __draw_backend_literal:e
1252 {
1253 \bool_if:NT \g__draw_draw_eor_bool { eo }
1254 fill
1255 }
1256 \bool_if:NT \g__draw_draw_clip_bool
1257 {
1258 __draw_backend_literal:e
1259 {
1260 \bool_if:NT \g__draw_draw_eor_bool { eo }
1261 clip
1262 }
1263 }
1264 __draw_backend_literal:n { newpath }
1265 \bool_gset_false:N \g__draw_draw_clip_bool
1266 }
1267 \cs_new_protected:Npn __draw_backend_fillstroke:
1268 {
1269 __draw_backend_literal:e
1270 {
1271 \bool_if:NT \g__draw_draw_eor_bool { eo }
1272 fill
1273 }
1274 __draw_backend_literal:n { gsave }
1275 __draw_backend_literal:n { color.sc }
1276 __draw_backend_literal:n { stroke }
1277 __draw_backend_literal:n { grestore }
1278 \bool_if:NT \g__draw_draw_clip_bool
1279 {
1280 __draw_backend_literal:e
1281 {

34

1282 \bool_if:NT \g__draw_draw_eor_bool { eo }
1283 clip
1284 }
1285 }
1286 __draw_backend_literal:n { newpath }
1287 \bool_gset_false:N \g__draw_draw_clip_bool
1288 }
1289 \cs_new_protected:Npn __draw_backend_clip:
1290 { \bool_gset_true:N \g__draw_draw_clip_bool }
1291 \bool_new:N \g__draw_draw_clip_bool
1292 \cs_new_protected:Npn __draw_backend_discardpath:
1293 {
1294 \bool_if:NT \g__draw_draw_clip_bool
1295 {
1296 __draw_backend_literal:e
1297 {
1298 \bool_if:NT \g__draw_draw_eor_bool { eo }
1299 clip
1300 }
1301 }
1302 __draw_backend_literal:n { newpath }
1303 \bool_gset_false:N \g__draw_draw_clip_bool
1304 }

(End of definition for __draw_backend_closepath: and others.)

__draw_backend_dash_pattern:nn
__draw_backend_dash:n

__draw_backend_linewidth:n
__draw_backend_miterlimit:n

__draw_backend_cap_butt:
__draw_backend_cap_round:

__draw_backend_cap_rectangle:
__draw_backend_join_miter:
__draw_backend_join_round:
__draw_backend_join_bevel:

Converting paths to output is again a case of mapping directly to PostScript operations.
1305 \cs_new_protected:Npn __draw_backend_dash_pattern:nn #1#2
1306 {
1307 __draw_backend_literal:e
1308 {
1309 [
1310 \exp_args:Nf \use:n
1311 { \clist_map_function:nN {#1} __draw_backend_dash:n }
1312] ~
1313 \dim_to_decimal_in_bp:n {#2} ~ setdash
1314 }
1315 }
1316 \cs_new:Npn __draw_backend_dash:n #1
1317 { ~ \dim_to_decimal_in_bp:n {#1} }
1318 \cs_new_protected:Npn __draw_backend_linewidth:n #1
1319 {
1320 __draw_backend_literal:e
1321 { \dim_to_decimal_in_bp:n {#1} ~ setlinewidth }
1322 }
1323 \cs_new_protected:Npn __draw_backend_miterlimit:n #1
1324 { __draw_backend_literal:n { #1 ~ setmiterlimit } }
1325 \cs_new_protected:Npn __draw_backend_cap_butt:
1326 { __draw_backend_literal:n { 0 ~ setlinecap } }
1327 \cs_new_protected:Npn __draw_backend_cap_round:
1328 { __draw_backend_literal:n { 1 ~ setlinecap } }
1329 \cs_new_protected:Npn __draw_backend_cap_rectangle:
1330 { __draw_backend_literal:n { 2 ~ setlinecap } }
1331 \cs_new_protected:Npn __draw_backend_join_miter:

35

1332 { __draw_backend_literal:n { 0 ~ setlinejoin } }
1333 \cs_new_protected:Npn __draw_backend_join_round:
1334 { __draw_backend_literal:n { 1 ~ setlinejoin } }
1335 \cs_new_protected:Npn __draw_backend_join_bevel:
1336 { __draw_backend_literal:n { 2 ~ setlinejoin } }

(End of definition for __draw_backend_dash_pattern:nn and others.)

__draw_backend_transform:nnnn
__draw_backend_shift:nn

In dvips, keeping the transformations in line with the engine is unfortunately not possible
for scaling and rotations: even if we decompose the matrix into those operations, there is
still no backend tracking (cf. dvipdfmx/X ETEX). Thus we take the shortest path available
and simply dump the matrix as given.

1337 \cs_new_protected:Npn __draw_backend_transform:nnnn #1#2#3#4
1338 {
1339 __draw_backend_literal:n
1340 { [#1 ~ #2 ~ #3 ~ #4 ~ 0 ~ 0] ~ concat }
1341 }
1342 \cs_new_protected:Npn __draw_backend_shift:nn #1#2
1343 {
1344 __draw_backend_literal:n
1345 { [1 ~ 0 ~ 0 ~ 1 ~ #1 ~ #2] ~ concat }
1346 }

(End of definition for __draw_backend_transform:nnnn and __draw_backend_shift:nn.)

__draw_backend_box_use:Nnnnn Inside a picture @beginspecial/@endspecial are active, which is normally a good
thing but means that the position and scaling would be off if the box was inserted
directly. To deal with that, there are a number of possible approaches. A previ-
ous implementation suggested by Tom Rokici used @endspecial/@beginspecial. This
avoids needing internals of dvips, but fails if there the box is used inside a scope (see
https://github.com/latex3/latex3/issues/1504). Instead, we use the same method
as pgf, which means tracking the position at the PostScript level. Also note that us-
ing @endspecial would close the scope it creates, meaning that after a box insertion,
any local changes would be lost. Keeping dvips on track is non-trivial, hence the
[begin]/[end] pair before the save and around the restore.

1347 \cs_new_protected:Npn __draw_backend_box_use:Nnnnn #1#2#3#4#5
1348 {
1349 __draw_backend_literal:n { save }
1350 __draw_backend_literal:n { 72~Resolution~div~72~VResolution~div~neg~scale }
1351 __draw_backend_literal:n { magscale { 1~DVImag~div~dup~scale } if }
1352 __draw_backend_literal:n { draw.x~neg~draw.y~neg~translate }
1353 __draw_backend_literal:n { [end] }
1354 __draw_backend_literal:n { [begin] }
1355 __draw_backend_literal:n { save }
1356 __draw_backend_literal:n { currentpoint }
1357 __draw_backend_literal:n { currentpoint~translate }
1358 __draw_backend_transform:nnnn { 1 } { 0 } { 0 } { -1 }
1359 __draw_backend_transform:nnnn {#2} {#3} {#4} {#5}
1360 __draw_backend_transform:nnnn { 1 } { 0 } { 0 } { -1 }
1361 __draw_backend_literal:n { neg~exch~neg~exch~translate }
1362 __draw_backend_literal:n { [end] }
1363 \hbox_overlap_right:n { \box_use:N #1 }
1364 __draw_backend_literal:n { [begin] }

36

https://github.com/latex3/latex3/issues/1504

1365 __draw_backend_literal:n { restore }
1366 __draw_backend_literal:n { [end] }
1367 __draw_backend_literal:n { [begin] }
1368 __draw_backend_literal:n { restore }
1369 }

(End of definition for __draw_backend_box_use:Nnnnn.)

1370 ⟨/dvips⟩

4.2 LuaTEX, pdfTEX, dvipdfmx and X ETEX
LuaTEX, pdfTEX, dvipdfmx and X ETEX directly produce PDF output and understand a
shared set of specials for drawing commands.

1371 ⟨∗dvipdfmx | luatex | pdftex | xetex⟩

4.2.1 Drawing

__draw_backend_literal:n
__draw_backend_literal:e

Pass data through using a dedicated interface.
1372 \cs_new_eq:NN __draw_backend_literal:n __kernel_backend_literal_pdf:n
1373 \cs_new_eq:NN __draw_backend_literal:e __kernel_backend_literal_pdf:e

(End of definition for __draw_backend_literal:n.)

__draw_backend_begin:
__draw_backend_end:

No special requirements here, so simply set up a drawing scope.
1374 \cs_new_protected:Npn __draw_backend_begin:
1375 { __draw_backend_scope_begin: }
1376 \cs_new_protected:Npn __draw_backend_end:
1377 { __draw_backend_scope_end: }

(End of definition for __draw_backend_begin: and __draw_backend_end:.)

__draw_backend_scope_begin:
__draw_backend_scope_end:

Use the backend-level scope mechanisms.
1378 \cs_new_eq:NN __draw_backend_scope_begin: __kernel_backend_scope_begin:
1379 \cs_new_eq:NN __draw_backend_scope_end: __kernel_backend_scope_end:

(End of definition for __draw_backend_scope_begin: and __draw_backend_scope_end:.)

__draw_backend_moveto:nn
__draw_backend_lineto:nn

__draw_backend_curveto:nnnnnn
__draw_backend_rectangle:nnnn

Path creation operations all resolve directly to PDF primitive steps, with only the need
to convert to bp.

1380 \cs_new_protected:Npn __draw_backend_moveto:nn #1#2
1381 {
1382 __draw_backend_literal:e
1383 { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ m }
1384 }
1385 \cs_new_protected:Npn __draw_backend_lineto:nn #1#2
1386 {
1387 __draw_backend_literal:e
1388 { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ l }
1389 }
1390 \cs_new_protected:Npn __draw_backend_curveto:nnnnnn #1#2#3#4#5#6
1391 {
1392 __draw_backend_literal:e
1393 {
1394 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~

37

1395 \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~
1396 \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~
1397 c
1398 }
1399 }
1400 \cs_new_protected:Npn __draw_backend_rectangle:nnnn #1#2#3#4
1401 {
1402 __draw_backend_literal:e
1403 {
1404 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~
1405 \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~
1406 re
1407 }
1408 }

(End of definition for __draw_backend_moveto:nn and others.)

__draw_backend_evenodd_rule:
__draw_backend_nonzero_rule:

\g__draw_draw_eor_bool

The even-odd rule here can be implemented as a simply switch.
1409 \cs_new_protected:Npn __draw_backend_evenodd_rule:
1410 { \bool_gset_true:N \g__draw_draw_eor_bool }
1411 \cs_new_protected:Npn __draw_backend_nonzero_rule:
1412 { \bool_gset_false:N \g__draw_draw_eor_bool }
1413 \bool_new:N \g__draw_draw_eor_bool

(End of definition for __draw_backend_evenodd_rule: , __draw_backend_nonzero_rule: , and \g__-
draw_draw_eor_bool.)

__draw_backend_closepath:
__draw_backend_stroke:

__draw_backend_closestroke:
__draw_backend_fill:

__draw_backend_fillstroke:
__draw_backend_clip:

__draw_backend_discardpath:

Converting paths to output is again a case of mapping directly to PDF operations.
1414 \cs_new_protected:Npn __draw_backend_closepath:
1415 { __draw_backend_literal:n { h } }
1416 \cs_new_protected:Npn __draw_backend_stroke:
1417 { __draw_backend_literal:n { S } }
1418 \cs_new_protected:Npn __draw_backend_closestroke:
1419 { __draw_backend_literal:n { s } }
1420 \cs_new_protected:Npn __draw_backend_fill:
1421 {
1422 __draw_backend_literal:e
1423 { f \bool_if:NT \g__draw_draw_eor_bool * }
1424 }
1425 \cs_new_protected:Npn __draw_backend_fillstroke:
1426 {
1427 __draw_backend_literal:e
1428 { B \bool_if:NT \g__draw_draw_eor_bool * }
1429 }
1430 \cs_new_protected:Npn __draw_backend_clip:
1431 {
1432 __draw_backend_literal:e
1433 { W \bool_if:NT \g__draw_draw_eor_bool * }
1434 }
1435 \cs_new_protected:Npn __draw_backend_discardpath:
1436 { __draw_backend_literal:n { n } }

(End of definition for __draw_backend_closepath: and others.)

38

__draw_backend_dash_pattern:nn
__draw_backend_dash:n

__draw_backend_linewidth:n
__draw_backend_miterlimit:n

__draw_backend_cap_butt:
__draw_backend_cap_round:

__draw_backend_cap_rectangle:
__draw_backend_join_miter:
__draw_backend_join_round:
__draw_backend_join_bevel:

Converting paths to output is again a case of mapping directly to PDF operations.
1437 \cs_new_protected:Npn __draw_backend_dash_pattern:nn #1#2
1438 {
1439 __draw_backend_literal:e
1440 {
1441 [
1442 \exp_args:Nf \use:n
1443 { \clist_map_function:nN {#1} __draw_backend_dash:n }
1444] ~
1445 \dim_to_decimal_in_bp:n {#2} ~ d
1446 }
1447 }
1448 \cs_new:Npn __draw_backend_dash:n #1
1449 { ~ \dim_to_decimal_in_bp:n {#1} }
1450 \cs_new_protected:Npn __draw_backend_linewidth:n #1
1451 {
1452 __draw_backend_literal:e
1453 { \dim_to_decimal_in_bp:n {#1} ~ w }
1454 }
1455 \cs_new_protected:Npn __draw_backend_miterlimit:n #1
1456 { __draw_backend_literal:e { #1 ~ M } }
1457 \cs_new_protected:Npn __draw_backend_cap_butt:
1458 { __draw_backend_literal:n { 0 ~ J } }
1459 \cs_new_protected:Npn __draw_backend_cap_round:
1460 { __draw_backend_literal:n { 1 ~ J } }
1461 \cs_new_protected:Npn __draw_backend_cap_rectangle:
1462 { __draw_backend_literal:n { 2 ~ J } }
1463 \cs_new_protected:Npn __draw_backend_join_miter:
1464 { __draw_backend_literal:n { 0 ~ j } }
1465 \cs_new_protected:Npn __draw_backend_join_round:
1466 { __draw_backend_literal:n { 1 ~ j } }
1467 \cs_new_protected:Npn __draw_backend_join_bevel:
1468 { __draw_backend_literal:n { 2 ~ j } }

(End of definition for __draw_backend_dash_pattern:nn and others.)

__draw_backend_transform:nnnn
__draw_backend_transform_aux:nnnn

__draw_backend_shift:nn

Another split here between LuaTEX/pdfTeX and dvipdfmx/X ETEX. In the former, we
have a direct method to maintain alignment: the backend can use a matrix itself. For
dvipdfmx/X ETEX, we can to decompose the matrix into rotations and a scaling, then
use those operations as they are handled by the backend. (There is backend support for
matrix operations in dvipdfmx/X ETEX, but as a matched pair so not suitable for the
“stand alone” transformation set up here.) The specials used here are from xdvipdfmx
originally: they are well-tested, but probably equivalent to the pdf: versions! As working
out the rotation is relatively expensive, we optimize for the case where there is only a
scaling.

1469 \cs_new_protected:Npn __draw_backend_transform:nnnn #1#2#3#4
1470 {
1471 ⟨∗luatex | pdftex⟩
1472 __kernel_backend_matrix:n { #1 ~ #2 ~ #3 ~ #4 }
1473 ⟨/luatex | pdftex⟩
1474 ⟨∗dvipdfmx | xetex⟩
1475 \str_if_eq:nnTF { #2 ~ #3 } { 0 ~ 0 }
1476 {

39

1477 __kernel_backend_literal:n { x:rotate~0 }
1478 __kernel_backend_literal:n { x:scale~#1~#4 }
1479 __kernel_backend_literal:n { x:rotate~0 }
1480 }
1481 {
1482 __draw_backend_transform_decompose:nnnnN {#1} {#2} {#3} {#4}
1483 __draw_backend_transform_aux:nnnn
1484 }
1485 ⟨/dvipdfmx | xetex⟩
1486 }
1487 ⟨∗dvipdfmx | xetex⟩
1488 \cs_new_protected:Npn __draw_backend_transform_aux:nnnn #1#2#3#4
1489 {
1490 __kernel_backend_literal:e
1491 {
1492 x:rotate~
1493 \fp_compare:nNnTF {#1} = \c_zero_fp
1494 { 0 }
1495 { \fp_eval:n { round (-#1 , 5) } }
1496 }
1497 __kernel_backend_literal:e
1498 {
1499 x:scale~
1500 \fp_eval:n { round (#2 , 5) } ~
1501 \fp_eval:n { round (#3 , 5) }
1502 }
1503 __kernel_backend_literal:e
1504 {
1505 x:rotate~
1506 \fp_compare:nNnTF {#4} = \c_zero_fp
1507 { 0 }
1508 { \fp_eval:n { round (-#4 , 5) } }
1509 }
1510 }
1511 ⟨/dvipdfmx | xetex⟩

Much less complex for a shift: this is deliberately not tracked by the engine (we would
otherwise do stuff in TEX), so use the same approach for all PDF-based routes.

1512 \cs_new_protected:Npn __draw_backend_shift:nn #1#2
1513 {
1514 __draw_backend_literal:n
1515 { 1 ~ 0 ~ 0 ~ 1 ~ #1 ~ #2 ~ cm }
1516 }

(End of definition for __draw_backend_transform:nnnn , __draw_backend_transform_aux:nnnn , and
__draw_backend_shift:nn.)

__draw_backend_transform_decompose:nnnnN
__draw_backend_transform_decompose_auxi:nnnnN

__draw_backend_transform_decompose_auxii:nnnnN
__draw_backend_transform_decompose_auxiii:nnnnN

Internally, transformations for drawing are tracked as a matrix. Not all engines provide
a way of dealing with this: if we use a raw matrix, the engine looses track of positions
(for example for hyperlinks), and this is not desirable. They do, however, allow us to
track rotations and scalings. Luckily, we can decompose any (two-dimensional) matrix
into two rotations and a single scaling:[

A B
C D

]
=

[
cos β sin β

− sin β cos β

] [
w1 0
0 w2

] [
cos γ sin γ

− sin γ cos γ

]

40

The parent matrix can be converted to[
A B
C D

]
=

[
E H

−H E

]
+

[
F G
G −F

]
From these, we can find that

w1 + w2

2 =
√

E2 + H2

w1 − w2

2 =
√

F 2 + G2

γ − β = tan−1(G/F)
γ + β = tan−1(H/E)

at which point we just have to do various pieces of re-arrangement to get all of the values.
(See J. Blinn, IEEE Comput. Graph. Appl., 1996, 16, 82–88.) There is one wrinkle: the
PostScript (and PDF) way of specifying a transformation matrix exchanges where one
would normally expect B and C to be.

1517 ⟨∗dvipdfmx | xetex⟩
1518 \cs_new_protected:Npn __draw_backend_transform_decompose:nnnnN #1#2#3#4#5
1519 {
1520 \use:e
1521 {
1522 __draw_backend_transform_decompose_auxi:nnnnN
1523 { \fp_eval:n { (#1 + #4) / 2 } }
1524 { \fp_eval:n { (#1 - #4) / 2 } }
1525 { \fp_eval:n { (#3 + #2) / 2 } }
1526 { \fp_eval:n { (#3 - #2) / 2 } }
1527 }
1528 #5
1529 }
1530 \cs_new_protected:Npn __draw_backend_transform_decompose_auxi:nnnnN #1#2#3#4#5
1531 {
1532 \use:e
1533 {
1534 __draw_backend_transform_decompose_auxii:nnnnN
1535 { \fp_eval:n { 2 * sqrt (#1 * #1 + #4 * #4) } }
1536 { \fp_eval:n { 2 * sqrt (#2 * #2 + #3 * #3) } }
1537 { \fp_eval:n { atand (#3 , #2) } }
1538 { \fp_eval:n { atand (#4 , #1) } }
1539 }
1540 #5
1541 }
1542 \cs_new_protected:Npn __draw_backend_transform_decompose_auxii:nnnnN #1#2#3#4#5
1543 {
1544 \use:e
1545 {
1546 __draw_backend_transform_decompose_auxiii:nnnnN
1547 { \fp_eval:n { (#4 - #3) / 2 } }
1548 { \fp_eval:n { (#1 + #2) / 2 } }
1549 { \fp_eval:n { (#1 - #2) / 2 } }
1550 { \fp_eval:n { (#4 + #3) / 2 } }
1551 }

41

1552 #5
1553 }
1554 \cs_new_protected:Npn __draw_backend_transform_decompose_auxiii:nnnnN #1#2#3#4#5
1555 {
1556 \fp_compare:nNnTF { abs(#2) } > { abs (#3) }
1557 { #5 {#1} {#2} {#3} {#4} }
1558 { #5 {#1} {#3} {#2} {#4} }
1559 }
1560 ⟨/dvipdfmx | xetex⟩

(End of definition for __draw_backend_transform_decompose:nnnnN and others.)

__draw_backend_box_use:Nnnnn Inserting a TEX box transformed to the requested position and using the current matrix
is done using a mixture of TEX and low-level manipulation. The offset can be handled
by TEX, so only any rotation/skew/scaling component needs to be done using the matrix
operation. As this operation can never be cached, the scope is set directly not using the
draw version.

1561 \cs_new_protected:Npn __draw_backend_box_use:Nnnnn #1#2#3#4#5
1562 {
1563 __kernel_backend_scope_begin:
1564 ⟨∗luatex | pdftex⟩
1565 __kernel_backend_matrix:n { #2 ~ #3 ~ #4 ~ #5 }
1566 ⟨/luatex | pdftex⟩
1567 ⟨∗dvipdfmx | xetex⟩
1568 __kernel_backend_literal:n
1569 { pdf:btrans~matrix~ #2 ~ #3 ~ #4 ~ #5 ~ 0 ~ 0 }
1570 ⟨/dvipdfmx | xetex⟩
1571 \hbox_overlap_right:n { \box_use:N #1 }
1572 ⟨∗dvipdfmx | xetex⟩
1573 __kernel_backend_literal:n { pdf:etrans }
1574 ⟨/dvipdfmx | xetex⟩
1575 __kernel_backend_scope_end:
1576 }

(End of definition for __draw_backend_box_use:Nnnnn.)

1577 ⟨/dvipdfmx | luatex | pdftex | xetex⟩

4.3 dvisvgm backend
1578 ⟨∗dvisvgm⟩

__draw_backend_literal:n
__draw_backend_literal:e

The same as the more general literal call.
1579 \cs_new_eq:NN __draw_backend_literal:n __kernel_backend_literal_svg:n
1580 \cs_generate_variant:Nn __draw_backend_literal:n { e }

(End of definition for __draw_backend_literal:n.)

__draw_backend_scope_begin:
__draw_backend_scope_end:

Use the backend-level scope mechanisms.
1581 \cs_new_eq:NN __draw_backend_scope_begin: __kernel_backend_scope_begin:
1582 \cs_new_eq:NN __draw_backend_scope_end: __kernel_backend_scope_end:

(End of definition for __draw_backend_scope_begin: and __draw_backend_scope_end:.)

42

__draw_backend_begin:
__draw_backend_end:

A drawing needs to be set up such that the coordinate system is translated. That is done
inside a scope, which as described below

1583 \cs_new_protected:Npn __draw_backend_begin:
1584 {
1585 __kernel_backend_scope_begin:
1586 __kernel_backend_scope:n { transform="translate({?x},{?y})~scale(1,-1)" }
1587 }
1588 \cs_new_eq:NN __draw_backend_end: __kernel_backend_scope_end:

(End of definition for __draw_backend_begin: and __draw_backend_end:.)

__draw_backend_moveto:nn
__draw_backend_lineto:nn

__draw_backend_rectangle:nnnn
__draw_backend_curveto:nnnnnn
__draw_backend_add_to_path:n

\g__draw_backend_path_tl

Once again, some work is needed to get path constructs correct. Rather then write the
values as they are given, the entire path needs to be collected up before being output
in one go. For that we use a dedicated storage routine, which adds spaces as required.
Since paths should be fully expanded there is no need to worry about the internal e-type
expansion.

1589 \cs_new_protected:Npn __draw_backend_moveto:nn #1#2
1590 {
1591 __draw_backend_add_to_path:n
1592 { M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} }
1593 }
1594 \cs_new_protected:Npn __draw_backend_lineto:nn #1#2
1595 {
1596 __draw_backend_add_to_path:n
1597 { L ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} }
1598 }
1599 \cs_new_protected:Npn __draw_backend_rectangle:nnnn #1#2#3#4
1600 {
1601 __draw_backend_add_to_path:n
1602 {
1603 M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2}
1604 h ~ \dim_to_decimal:n {#3} ~
1605 v ~ \dim_to_decimal:n {#4} ~
1606 h ~ \dim_to_decimal:n { -#3 } ~
1607 Z
1608 }
1609 }
1610 \cs_new_protected:Npn __draw_backend_curveto:nnnnnn #1#2#3#4#5#6
1611 {
1612 __draw_backend_add_to_path:n
1613 {
1614 C ~
1615 \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} ~
1616 \dim_to_decimal:n {#3} ~ \dim_to_decimal:n {#4} ~
1617 \dim_to_decimal:n {#5} ~ \dim_to_decimal:n {#6}
1618 }
1619 }
1620 \cs_new_protected:Npn __draw_backend_add_to_path:n #1
1621 {
1622 \tl_gset:Ne \g__draw_backend_path_tl
1623 {
1624 \g__draw_backend_path_tl
1625 \tl_if_empty:NF \g__draw_backend_path_tl { \c_space_tl }
1626 #1

43

1627 }
1628 }
1629 \tl_new:N \g__draw_backend_path_tl

(End of definition for __draw_backend_moveto:nn and others.)

__draw_backend_evenodd_rule:
__draw_backend_nonzero_rule:

The fill rules here have to be handled as scopes.
1630 \cs_new_protected:Npn __draw_backend_evenodd_rule:
1631 { __kernel_backend_scope:n { fill-rule="evenodd" } }
1632 \cs_new_protected:Npn __draw_backend_nonzero_rule:
1633 { __kernel_backend_scope:n { fill-rule="nonzero" } }

(End of definition for __draw_backend_evenodd_rule: and __draw_backend_nonzero_rule:.)

__draw_backend_path:n
__draw_backend_closepath:

__draw_backend_stroke:
__draw_backend_closestroke:

__draw_backend_fill:
__draw_backend_fillstroke:

__draw_backend_clip:
__draw_backend_discardpath:

\g__draw_draw_clip_bool
\g__draw_draw_path_int

Setting fill and stroke effects and doing clipping all has to be done using scopes. This
means setting up the various requirements in a shared auxiliary which deals with the
bits and pieces. Clipping paths are reused for path drawing: not essential but avoids
constructing them twice. Discarding a path needs a separate function as it’s not quite
the same.

1634 \cs_new_protected:Npn __draw_backend_closepath:
1635 { __draw_backend_add_to_path:n { Z } }
1636 \cs_new_protected:Npn __draw_backend_path:n #1
1637 {
1638 \bool_if:NTF \g__draw_draw_clip_bool
1639 {
1640 \int_gincr:N \g__kernel_clip_path_int
1641 __draw_backend_literal:e
1642 {
1643 < clipPath~id = " l3cp \int_use:N \g__kernel_clip_path_int " >
1644 { ?nl }
1645 <path~d=" \g__draw_backend_path_tl "/> { ?nl }
1646 < /clipPath > { ? nl }
1647 <
1648 use~xlink:href =
1649 "\c_hash_str l3path \int_use:N \g__draw_backend_path_int " ~
1650 #1
1651 />
1652 }
1653 __kernel_backend_scope:e
1654 {
1655 clip-path =
1656 "url(\c_hash_str l3cp \int_use:N \g__kernel_clip_path_int)"
1657 }
1658 }
1659 {
1660 __draw_backend_literal:e
1661 { <path ~ d=" \g__draw_backend_path_tl " ~ #1 /> }
1662 }
1663 \tl_gclear:N \g__draw_backend_path_tl
1664 \bool_gset_false:N \g__draw_draw_clip_bool
1665 }
1666 \int_new:N \g__draw_backend_path_int
1667 \cs_new_protected:Npn __draw_backend_stroke:
1668 { __draw_backend_path:n { style="fill:none" } }

44

1669 \cs_new_protected:Npn __draw_backend_closestroke:
1670 {
1671 __draw_backend_closepath:
1672 __draw_backend_stroke:
1673 }
1674 \cs_new_protected:Npn __draw_backend_fill:
1675 { __draw_backend_path:n { style="stroke:none" } }
1676 \cs_new_protected:Npn __draw_backend_fillstroke:
1677 { __draw_backend_path:n { } }
1678 \cs_new_protected:Npn __draw_backend_clip:
1679 { \bool_gset_true:N \g__draw_draw_clip_bool }
1680 \bool_new:N \g__draw_draw_clip_bool
1681 \cs_new_protected:Npn __draw_backend_discardpath:
1682 {
1683 \bool_if:NT \g__draw_draw_clip_bool
1684 {
1685 \int_gincr:N \g__kernel_clip_path_int
1686 __draw_backend_literal:e
1687 {
1688 < clipPath~id = " l3cp \int_use:N \g__kernel_clip_path_int " >
1689 { ?nl }
1690 <path~d=" \g__draw_backend_path_tl "/> { ?nl }
1691 < /clipPath >
1692 }
1693 __kernel_backend_scope:e
1694 {
1695 clip-path =
1696 "url(\c_hash_str l3cp \int_use:N \g__kernel_clip_path_int)"
1697 }
1698 }
1699 \tl_gclear:N \g__draw_backend_path_tl
1700 \bool_gset_false:N \g__draw_draw_clip_bool
1701 }

(End of definition for __draw_backend_path:n and others.)

__draw_backend_dash_pattern:nn
__draw_backend_dash:n

__draw_backend_dash_aux:nn
__draw_backend_linewidth:n

__draw_backend_miterlimit:n
__draw_backend_cap_butt:

__draw_backend_cap_round:
__draw_backend_cap_rectangle:

__draw_backend_join_miter:
__draw_backend_join_round:
__draw_backend_join_bevel:

All of these ideas are properties of scopes in SVG. The only slight complexity is converting
the dash array properly (doing any required maths).

1702 \cs_new_protected:Npn __draw_backend_dash_pattern:nn #1#2
1703 {
1704 \use:e
1705 {
1706 __draw_backend_dash_aux:nn
1707 { \clist_map_function:nN {#1} __draw_backend_dash:n }
1708 { \dim_to_decimal:n {#2} }
1709 }
1710 }
1711 \cs_new:Npn __draw_backend_dash:n #1
1712 { , \dim_to_decimal_in_bp:n {#1} }
1713 \cs_new_protected:Npn __draw_backend_dash_aux:nn #1#2
1714 {
1715 __kernel_backend_scope:e
1716 {
1717 stroke-dasharray =

45

1718 "
1719 \tl_if_empty:nTF {#1}
1720 { none }
1721 { \use_none:n #1 }
1722 " ~
1723 stroke-offset=" #2 "
1724 }
1725 }
1726 \cs_new_protected:Npn __draw_backend_linewidth:n #1
1727 { __kernel_backend_scope:e { stroke-width=" \dim_to_decimal:n {#1} " } }
1728 \cs_new_protected:Npn __draw_backend_miterlimit:n #1
1729 { __kernel_backend_scope:e { stroke-miterlimit=" #1 " } }
1730 \cs_new_protected:Npn __draw_backend_cap_butt:
1731 { __kernel_backend_scope:n { stroke-linecap="butt" } }
1732 \cs_new_protected:Npn __draw_backend_cap_round:
1733 { __kernel_backend_scope:n { stroke-linecap="round" } }
1734 \cs_new_protected:Npn __draw_backend_cap_rectangle:
1735 { __kernel_backend_scope:n { stroke-linecap="square" } }
1736 \cs_new_protected:Npn __draw_backend_join_miter:
1737 { __kernel_backend_scope:n { stroke-linejoin="miter" } }
1738 \cs_new_protected:Npn __draw_backend_join_round:
1739 { __kernel_backend_scope:n { stroke-linejoin="round" } }
1740 \cs_new_protected:Npn __draw_backend_join_bevel:
1741 { __kernel_backend_scope:n { stroke-linejoin="bevel" } }

(End of definition for __draw_backend_dash_pattern:nn and others.)

__draw_backend_transform:nnnn
__draw_backend_shift:nn

The four arguments here are floats (the affine matrix), the last two are a displacement
vector.

1742 \cs_new_protected:Npn __draw_backend_transform:nnnn #1#2#3#4
1743 {
1744 __kernel_backend_scope:n
1745 {
1746 transform =
1747 " matrix (#1 , #2 , #3 , #4 , 0pt , 0pt) "
1748 }
1749 }
1750 \cs_new_protected:Npn __draw_backend_shift:nn #1#2
1751 {
1752 __kernel_backend_scope:n
1753 {
1754 transform =
1755 " matrix (1 , 0 , 0 , 1 , #1pt , #2pt) "
1756 }
1757 }

(End of definition for __draw_backend_transform:nnnn and __draw_backend_shift:nn.)

__draw_backend_box_use:Nnnnn No special savings can be made here: simply displace the box inside a scope. As there is
nothing to re-box, just make the box passed of zero size.

1758 \cs_new_protected:Npn __draw_backend_box_use:Nnnnn #1#2#3#4#5
1759 {
1760 __kernel_backend_scope_begin:
1761 __draw_backend_transform:nnnn {#2} {#3} {#4} {#5}

46

1762 __kernel_backend_literal_svg:n
1763 {
1764 < g~
1765 stroke="none"~
1766 transform="scale(-1,1)~translate({?x},{?y})~scale(-1,-1)"
1767 >
1768 }
1769 \box_set_wd:Nn #1 { 0pt }
1770 \box_set_ht:Nn #1 { 0pt }
1771 \box_set_dp:Nn #1 { 0pt }
1772 \box_use:N #1
1773 __kernel_backend_literal_svg:n { </g> }
1774 __kernel_backend_scope_end:
1775 }

(End of definition for __draw_backend_box_use:Nnnnn.)

1776 ⟨/dvisvgm⟩

1777 ⟨/package⟩

5 l3backend-graphics implementation
1778 ⟨∗package⟩
1779 ⟨@@=graphics⟩

5.1 dvips backend
1780 ⟨∗dvips⟩

\l_graphics_search_ext_seq

1781 \seq_set_from_clist:Nn \l_graphics_search_ext_seq { .eps , .ps }

(End of definition for \l_graphics_search_ext_seq.)

__graphics_backend_getbb_eps:n
__graphics_backend_getbb_ps:n

Simply use the generic function.
1782 \cs_new_eq:NN __graphics_backend_getbb_eps:n __graphics_read_bb:n
1783 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_read_bb:n

(End of definition for __graphics_backend_getbb_eps:n and __graphics_backend_getbb_ps:n.)

__graphics_backend_include_eps:n
__graphics_backend_include_ps:n

The special syntax is relatively clear here: remember we need PostScript sizes here.
1784 \cs_new_protected:Npn __graphics_backend_include_eps:n #1
1785 {
1786 __kernel_backend_literal:e
1787 {
1788 PSfile = #1 \c_space_tl
1789 llx = \dim_to_decimal_in_bp:n \l__graphics_llx_dim \c_space_tl
1790 lly = \dim_to_decimal_in_bp:n \l__graphics_lly_dim \c_space_tl
1791 urx = \dim_to_decimal_in_bp:n \l__graphics_urx_dim \c_space_tl
1792 ury = \dim_to_decimal_in_bp:n \l__graphics_ury_dim
1793 }
1794 }
1795 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n

(End of definition for __graphics_backend_include_eps:n and __graphics_backend_include_ps:n.)

47

__graphics_backend_get_pagecount:n
1796 \cs_new_eq:NN __graphics_backend_get_pagecount:n __graphics_get_pagecount:n

(End of definition for __graphics_backend_get_pagecount:n.)

1797 ⟨/dvips⟩

5.2 LuaTEX and pdfTEX backends
1798 ⟨∗luatex | pdftex⟩

\l_graphics_search_ext_seq

1799 \seq_set_from_clist:Nn \l_graphics_search_ext_seq
1800 { .pdf , .eps , .ps , .png , .jpg , .jpeg }

(End of definition for \l_graphics_search_ext_seq.)

\l__graphics_attr_tl In PDF mode, additional attributes of an graphic (such as page number) are needed both
to obtain the bounding box and when inserting the graphic: this occurs as the graphic
dictionary approach means they are read as part of the bounding box operation. As such,
it is easier to track additional attributes using a dedicated tl rather than build up the
same data twice.

1801 \tl_new:N \l__graphics_attr_tl

(End of definition for \l__graphics_attr_tl.)

\l__graphics_transgroup_bool Needed to indicate that a transparency group should be applied: only currently for PDF
images, but could be extended.

1802 \bool_new:N \l__graphics_transgroup_bool

(End of definition for \l__graphics_transgroup_bool.)

__graphics_backend_getbb_jpg:n
__graphics_backend_getbb_jpeg:n
__graphics_backend_getbb_pdf:n
__graphics_backend_getbb_png:n

__graphics_backend_getbb_auxi:n
__graphics_backend_getbb_auxii:n

__graphics_backend_getbb_auxiii:n
__graphics_backend_dequote:w

Getting the bounding box here requires us to box up the graphic and measure it. To
deal with the difference in feature support in bitmap and vector graphics but keeping
the common parts, there is a little work to do in terms of auxiliaries. The key here is to
notice that we need two forms of the attributes: a “short” set to allow us to track for
caching, and the full form to pass to the primitive.

1803 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1
1804 {
1805 \int_zero:N \l__graphics_page_int
1806 \tl_clear:N \l__graphics_pagebox_tl
1807 \bool_set_false:N\l__graphics_transgroup_bool
1808 \tl_set:Ne \l__graphics_attr_tl
1809 {
1810 \tl_if_empty:NF \l__graphics_decodearray_str
1811 { :D \l__graphics_decodearray_str }
1812 \bool_if:NT \l__graphics_interpolate_bool
1813 { :I }
1814 \str_if_empty:NF \l__graphics_pdf_str
1815 { :X \l__graphics_pdf_str }
1816 }
1817 __graphics_backend_getbb_auxi:n {#1}
1818 }
1819 \cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
1820 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n

48

1821 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1
1822 {
1823 \tl_clear:N \l__graphics_decodearray_str
1824 \bool_set_true:N \l__graphics_transgroup_bool
1825 \bool_set_false:N \l__graphics_interpolate_bool
1826 \tl_set:Ne \l__graphics_attr_tl
1827 {
1828 : \l__graphics_pagebox_tl
1829 \int_compare:nNnT \l__graphics_page_int > 1
1830 { :P \int_use:N \l__graphics_page_int }
1831 \str_if_empty:NF \l__graphics_pdf_str
1832 { :X \l__graphics_pdf_str }
1833 }
1834 __graphics_backend_getbb_auxi:n {#1}
1835 }
1836 \cs_new_protected:Npn __graphics_backend_getbb_auxi:n #1
1837 {
1838 __graphics_bb_restore:eF { #1 \l__graphics_attr_tl }
1839 { __graphics_backend_getbb_auxii:n {#1} }
1840 }

Measuring the graphic is done by boxing up: for PDF graphics we could use \tex_pdfximagebbox:D,
but if doesn’t work for other types. As the box always starts at (0, 0) there is no need
to worry about the lower-left position. Quotes need to be removed as LuaTEX does not
like them here. We always apply a transparency group attribute here as included PDFs
otherwise may have non-obvious behavior.

1841 \cs_new_protected:Npn __graphics_backend_getbb_auxii:n #1
1842 {
1843 \exp_args:Ne __graphics_backend_getbb_auxiii:n
1844 { __graphics_backend_dequote:w #1 " #1 " \s__graphics_stop }
1845 \int_const:cn { c__graphics_ #1 \l__graphics_attr_tl _int }
1846 { \tex_the:D \tex_pdflastximage:D }
1847 __graphics_bb_save:e { #1 \l__graphics_attr_tl }
1848 }
1849 \cs_new_protected:Npn __graphics_backend_getbb_auxiii:n #1
1850 {
1851 \tex_immediate:D \tex_pdfximage:D
1852 \bool_lazy_any:nT
1853 {
1854 { \l__graphics_interpolate_bool }
1855 { \l__graphics_transgroup_bool }
1856 { ! \tl_if_empty_p:N \l__graphics_decodearray_str }
1857 { ! \str_if_empty_p:N \l__graphics_pdf_str }
1858 }
1859 {
1860 attr ~
1861 {
1862 \tl_if_empty:NF \l__graphics_decodearray_str
1863 { /Decode~[\l__graphics_decodearray_str] }
1864 \bool_if:NT \l__graphics_transgroup_bool
1865 { /Group << /S /Transparency /K ~ false /I ~ false >> }
1866 \bool_if:NT \l__graphics_interpolate_bool
1867 { /Interpolate~true }
1868 \l__graphics_pdf_str

49

1869 }
1870 }
1871 \int_compare:nNnT \l__graphics_page_int > 0
1872 { page ~ \int_use:N \l__graphics_page_int }
1873 \tl_if_empty:NF \l__graphics_pagebox_tl
1874 { \l__graphics_pagebox_tl }
1875 {#1}
1876 \hbox_set:Nn \l__graphics_tmp_box
1877 { \tex_pdfrefximage:D \tex_pdflastximage:D }
1878 \dim_set:Nn \l__graphics_urx_dim { \box_wd:N \l__graphics_tmp_box }
1879 \dim_set:Nn \l__graphics_ury_dim { \box_ht:N \l__graphics_tmp_box }
1880 }
1881 \cs_new:Npn __graphics_backend_dequote:w #1 " #2 " #3 \s__graphics_stop {#2}

(End of definition for __graphics_backend_getbb_jpg:n and others.)

__graphics_backend_include_jpg:n
__graphics_backend_include_jpeg:n
__graphics_backend_include_pdf:n
__graphics_backend_include_png:n

Images are already loaded for the measurement part of the code, so inclusion is straight-
forward, with only any attributes to worry about. The latter carry through from deter-
mination of the bounding box.

1882 \cs_new_protected:Npn __graphics_backend_include_jpg:n #1
1883 {
1884 \tex_pdfrefximage:D
1885 \int_use:c { c__graphics_ #1 \l__graphics_attr_tl _int }
1886 }
1887 \cs_new_eq:NN __graphics_backend_include_jpeg:n __graphics_backend_include_jpg:n
1888 \cs_new_eq:NN __graphics_backend_include_pdf:n __graphics_backend_include_jpg:n
1889 \cs_new_eq:NN __graphics_backend_include_png:n __graphics_backend_include_jpg:n

(End of definition for __graphics_backend_include_jpg:n and others.)

__graphics_backend_getbb_eps:n
__graphics_backend_getbb_ps:n

__graphics_backend_getbb_eps:nm
__graphics_backend_include_eps:n
__graphics_backend_include_ps:n

\l__graphics_backend_dir_str
\l__graphics_backend_name_str

\l__graphics_backend_ext_str

EPS graphics may be included in LuaTEX/pdfTeX by conversion to PDF: this requires
restricted shell escape. Modeled on the epstopdf LATEX 2ε package, but simplified, con-
version takes place here if we have shell access.

1890 \sys_if_shell:T
1891 {
1892 \str_new:N \l__graphics_backend_dir_str
1893 \str_new:N \l__graphics_backend_name_str
1894 \str_new:N \l__graphics_backend_ext_str
1895 \cs_new_protected:Npn __graphics_backend_getbb_eps:n #1
1896 {
1897 \file_parse_full_name:nNNN {#1}
1898 \l__graphics_backend_dir_str
1899 \l__graphics_backend_name_str
1900 \l__graphics_backend_ext_str
1901 \exp_args:Ne __graphics_backend_getbb_eps:nn
1902 {
1903 \exp_args:Ne __kernel_file_name_quote:n
1904 {
1905 \l__graphics_backend_name_str
1906 - \str_tail:N \l__graphics_backend_ext_str
1907 -converted-to.pdf
1908 }
1909 }
1910 {#1}

50

1911 }
1912 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_backend_getbb_eps:n
1913 \cs_new_protected:Npn __graphics_backend_getbb_eps:nn #1#2
1914 {
1915 \file_compare_timestamp:nNnT {#2} > {#1}
1916 {
1917 \sys_shell_now:n
1918 { repstopdf ~ #2 ~ #1 }
1919 }
1920 \tl_set:Nn \l__graphics_final_name_str {#1}
1921 __graphics_backend_getbb_pdf:n {#1}
1922 }
1923 \cs_new_protected:Npn __graphics_backend_include_eps:n #1
1924 {
1925 \file_parse_full_name:nNNN {#1}
1926 \l__graphics_backend_dir_str \l__graphics_backend_name_str \l__graphics_backend_ext_str
1927 \exp_args:Ne __graphics_backend_include_pdf:n
1928 {
1929 \exp_args:Ne __kernel_file_name_quote:n
1930 {
1931 \l__graphics_backend_name_str
1932 - \str_tail:N \l__graphics_backend_ext_str
1933 -converted-to.pdf
1934 }
1935 }
1936 }
1937 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n
1938 }

(End of definition for __graphics_backend_getbb_eps:n and others.)

__graphics_backend_get_pagecount:n Simply load and store.
1939 \cs_new_protected:Npn __graphics_backend_get_pagecount:n #1
1940 {
1941 \tex_pdfximage:D {#1}
1942 \int_const:cn { c__graphics_ #1 _pages_int }
1943 { \int_use:N \tex_pdflastximagepages:D }
1944 }

(End of definition for __graphics_backend_get_pagecount:n.)

1945 ⟨/luatex | pdftex⟩

5.3 dvipdfmx backend
1946 ⟨∗dvipdfmx | xetex⟩

\l_graphics_search_ext_seq

1947 \seq_set_from_clist:Nn \l_graphics_search_ext_seq
1948 { .pdf , .eps , .ps , .png , .jpg , .jpeg , .bmp }

(End of definition for \l_graphics_search_ext_seq.)

51

__graphics_backend_getbb_eps:n
__graphics_backend_getbb_ps:n

__graphics_backend_getbb_jpg:n
__graphics_backend_getbb_jpeg:n
__graphics_backend_getbb_pdf:n
__graphics_backend_getbb_png:n
__graphics_backend_getbb_bmp:n

Simply use the generic functions: only for dvipdfmx in the extraction cases.
1949 \cs_new_eq:NN __graphics_backend_getbb_eps:n __graphics_read_bb:n
1950 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_read_bb:n
1951 ⟨∗dvipdfmx⟩
1952 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1
1953 {
1954 \int_zero:N \l__graphics_page_int
1955 \tl_clear:N \l__graphics_pagebox_tl
1956 __graphics_extract_bb:n {#1}
1957 }
1958 \cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
1959 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n
1960 \cs_new_eq:NN __graphics_backend_getbb_bmp:n __graphics_backend_getbb_jpg:n
1961 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1
1962 {
1963 \tl_clear:N \l__graphics_decodearray_str
1964 \bool_set_false:N \l__graphics_interpolate_bool
1965 __graphics_extract_bb:n {#1}
1966 }
1967 ⟨/dvipdfmx⟩

(End of definition for __graphics_backend_getbb_eps:n and others.)

\l__graphics_transgroup_bool Needed to indicate that a transparency group should be applied: only currently for PDF
images, but could be extended.

1968 \bool_new:N \l__graphics_transgroup_bool

(End of definition for \l__graphics_transgroup_bool.)

\g__graphics_track_int Used to track the object number associated with each graphic.
1969 \int_new:N \g__graphics_track_int

(End of definition for \g__graphics_track_int.)

__graphics_backend_include_eps:n
__graphics_backend_include_ps:n

__graphics_backend_include_jpg:n
__graphics_backend_include_jpseg:n

__graphics_backend_include_pdf:n
__graphics_backend_include_png:n
__graphics_backend_include_bmp:n

__graphics_backend_include_auxi:n
__graphics_backend_include_auxii:nn
__graphics_backend_include_auxii:en

__graphics_backend_include_auxiii:nn

The special syntax depends on the file type. There is a difference in how PDF graphics
are best handled between dvipdfmx and X ETEX: for the latter it is better to use the
primitive route. The relevant code for that is included later in this file.

1970 \cs_new_protected:Npn __graphics_backend_include_eps:n #1
1971 {
1972 __kernel_backend_literal:e
1973 {
1974 PSfile = #1 \c_space_tl
1975 llx = \dim_to_decimal_in_bp:n \l__graphics_llx_dim \c_space_tl
1976 lly = \dim_to_decimal_in_bp:n \l__graphics_lly_dim \c_space_tl
1977 urx = \dim_to_decimal_in_bp:n \l__graphics_urx_dim \c_space_tl
1978 ury = \dim_to_decimal_in_bp:n \l__graphics_ury_dim
1979 }
1980 }
1981 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n

Graphic inclusion is set up to use the fact that each image is stored in the PDF as an
XObject. This means that we can include repeated images only once and refer to them.
To allow that, track the nature of each image: much the same as for the direct PDF
mode case.

52

1982 \cs_new_protected:Npn __graphics_backend_include_jpg:n #1
1983 {
1984 \bool_set_false:N \l__graphics_transgroup_bool
1985 __graphics_backend_include_auxi:n {#1}
1986 }
1987 \cs_new_eq:NN __graphics_backend_include_jpeg:n __graphics_backend_include_jpg:n
1988 \cs_new_eq:NN __graphics_backend_include_bmp:n __graphics_backend_include_jpg:n
1989 \cs_new_eq:NN __graphics_backend_include_png:n __graphics_backend_include_jpg:n
1990 \cs_new_protected:Npn __graphics_backend_include_pdf:n #1
1991 {
1992 \bool_set_true:N \l__graphics_transgroup_bool
1993 __graphics_backend_include_auxi:n {#1}
1994 }
1995 \cs_new_protected:Npn __graphics_backend_include_auxi:n #1
1996 {
1997 __graphics_backend_include_auxii:en
1998 {
1999 \tl_if_empty:NF \l__graphics_pagebox_tl
2000 { : \l__graphics_pagebox_tl }
2001 \int_compare:nNnT \l__graphics_page_int > 1
2002 { :P \int_use:N \l__graphics_page_int }
2003 \tl_if_empty:NF \l__graphics_decodearray_str
2004 { :D \l__graphics_decodearray_str }
2005 \bool_if:NT \l__graphics_interpolate_bool
2006 { :I }
2007 }
2008 {#1}
2009 }
2010 \cs_new_protected:Npn __graphics_backend_include_auxii:nn #1#2
2011 {
2012 \int_if_exist:cTF { c__graphics_ #2#1 _int }
2013 {
2014 __kernel_backend_literal:e
2015 { pdf:usexobj~@graphic \int_use:c { c__graphics_ #2#1 _int } }
2016 }
2017 { __graphics_backend_include_auxiii:nn {#2} {#1} }
2018 }
2019 \cs_generate_variant:Nn __graphics_backend_include_auxii:nn { e }

Inclusion using the specials is relatively straight-forward, but there is one wrinkle. To get
the pagebox correct for PDF graphics in all cases, it is necessary to provide both that
information and the bbox argument: odd things happen otherwise! We use the dvipdfmx
special in all cases as it allows attributes to be added to the XObject.

2020 \cs_new_protected:Npn __graphics_backend_include_auxiii:nn #1#2
2021 {
2022 \int_gincr:N \g__graphics_track_int
2023 \int_const:cn { c__graphics_ #1#2 _int } { \g__graphics_track_int }
2024 __kernel_backend_literal:e
2025 {
2026 pdf:image ~
2027 @graphic \int_use:c { c__graphics_ #1#2 _int } ~
2028 \int_compare:nNnT \l__graphics_page_int > 1
2029 { page ~ \int_use:N \l__graphics_page_int \c_space_tl }
2030 \tl_if_empty:NF \l__graphics_pagebox_tl

53

2031 {
2032 pagebox ~ \l__graphics_pagebox_tl \c_space_tl
2033 bbox ~
2034 \dim_to_decimal_in_bp:n \l__graphics_llx_dim \c_space_tl
2035 \dim_to_decimal_in_bp:n \l__graphics_lly_dim \c_space_tl
2036 \dim_to_decimal_in_bp:n \l__graphics_urx_dim \c_space_tl
2037 \dim_to_decimal_in_bp:n \l__graphics_ury_dim \c_space_tl
2038 }
2039 (#1)
2040 \bool_lazy_any:nT
2041 {
2042 { \l__graphics_interpolate_bool }
2043 { \l__graphics_transgroup_bool }
2044 { ! \tl_if_empty_p:N \l__graphics_decodearray_str }
2045 }
2046 {
2047 <<
2048 \tl_if_empty:NF \l__graphics_decodearray_str
2049 { /Decode~[\l__graphics_decodearray_str] }
2050 \bool_if:NT \l__graphics_transgroup_bool
2051 { /Group << /S /Transparency /K ~ false /I ~ false >> }
2052 \bool_if:NT \l__graphics_interpolate_bool
2053 { /Interpolate~true }
2054 >>
2055 }
2056 }
2057 }

(End of definition for __graphics_backend_include_eps:n and others.)

__graphics_backend_get_pagecount:n

2058 ⟨∗dvipdfmx⟩
2059 \cs_new_eq:NN __graphics_backend_get_pagecount:n __graphics_get_pagecount:n
2060 ⟨/dvipdfmx⟩

(End of definition for __graphics_backend_get_pagecount:n.)

2061 ⟨/dvipdfmx | xetex⟩

5.4 X ETEX backend
2062 ⟨∗xetex⟩

__graphics_backend_getbb_jpg:n
__graphics_backend_getbb_jpeg:n
__graphics_backend_getbb_pdf:n
__graphics_backend_getbb_png:n
__graphics_backend_getbb_bmp:n

__graphics_backend_getbb_auxi:nN
__graphics_backend_getbb_auxii:nnN
__graphics_backend_getbb_auxii:VnN

__graphics_backend_getbb_auxiii:nNnn
__graphics_backend_getbb_auxiv:nnNnn
__graphics_backend_getbb_auxiv:VnNnn

__graphics_backend_getbb_auxv:nNnn
__graphics_backend_getbb_auxv:nNnn
__graphics_backend_getbb_pagebox:w

For X ETEX, there are two primitives that allow us to obtain the bounding box without
needing extractbb. The only complexity is passing the various minor variations to
a common core process. The X ETEX primitive omits the text box from the page box
specification, so there is also some “trimming” to do here.

2063 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1
2064 {
2065 \int_zero:N \l__graphics_page_int
2066 \tl_clear:N \l__graphics_pagebox_tl
2067 __graphics_backend_getbb_auxi:nN {#1} \tex_XeTeXpicfile:D
2068 }
2069 \cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
2070 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n

54

2071 \cs_new_eq:NN __graphics_backend_getbb_bmp:n __graphics_backend_getbb_jpg:n
2072 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1
2073 {
2074 \tl_clear:N \l__graphics_decodearray_str
2075 \bool_set_false:N \l__graphics_interpolate_bool
2076 __graphics_backend_getbb_auxi:nN {#1} \tex_XeTeXpdffile:D
2077 }
2078 \cs_new_protected:Npn __graphics_backend_getbb_auxi:nN #1#2
2079 {
2080 \int_compare:nNnTF \l__graphics_page_int > 1
2081 { __graphics_backend_getbb_auxii:VnN \l__graphics_page_int {#1} #2 }
2082 { __graphics_backend_getbb_auxiii:nNnn {#1} #2 { :P 1 } { page 1 } }
2083 }
2084 \cs_new_protected:Npn __graphics_backend_getbb_auxii:nnN #1#2#3
2085 { __graphics_backend_getbb_auxiii:nNnn {#2} #3 { :P #1 } { page #1 } }
2086 \cs_generate_variant:Nn __graphics_backend_getbb_auxii:nnN { V }
2087 \cs_new_protected:Npn __graphics_backend_getbb_auxiii:nNnn #1#2#3#4
2088 {
2089 \tl_if_empty:NTF \l__graphics_pagebox_tl
2090 { __graphics_backend_getbb_auxiv:VnNnn \l__graphics_pagebox_tl }
2091 { __graphics_backend_getbb_auxv:nNnn }
2092 {#1} #2 {#3} {#4}
2093 }
2094 \cs_new_protected:Npn __graphics_backend_getbb_auxiv:nnNnn #1#2#3#4#5
2095 {
2096 \use:e
2097 {
2098 __graphics_backend_getbb_auxv:nNnn {#2} #3 { : #1 #4 }
2099 {
2100 #5
2101 \tl_if_blank:nF {#1}
2102 { \c_space_tl __graphics_backend_getbb_pagebox:w #1 }
2103 }
2104 }
2105 }
2106 \cs_generate_variant:Nn __graphics_backend_getbb_auxiv:nnNnn { V }
2107 \cs_new_protected:Npn __graphics_backend_getbb_auxv:nNnn #1#2#3#4
2108 {
2109 __graphics_bb_restore:nF {#1#3}
2110 { __graphics_backend_getbb_auxvi:nNnn {#1} #2 {#3} {#4} }
2111 }
2112 \cs_new_protected:Npn __graphics_backend_getbb_auxvi:nNnn #1#2#3#4
2113 {
2114 \hbox_set:Nn \l__graphics_tmp_box { #2 #1 ~ #4 }
2115 \dim_set:Nn \l__graphics_urx_dim { \box_wd:N \l__graphics_tmp_box }
2116 \dim_set:Nn \l__graphics_ury_dim { \box_ht:N \l__graphics_tmp_box }
2117 __graphics_bb_save:n {#1#3}
2118 }
2119 \cs_new:Npn __graphics_backend_getbb_pagebox:w #1 box {#1}

(End of definition for __graphics_backend_getbb_jpg:n and others.)

__graphics_backend_get_pagecount:n Very little to do here other than cover the case of a non-PDF file.
2120 \cs_new_protected:Npn __graphics_backend_get_pagecount:n #1

55

2121 {
2122 \int_const:cn { c__graphics_ #1 _pages_int }
2123 {
2124 \int_max:nn
2125 { \int_use:N \tex_XeTeXpdfpagecount:D #1 ~ }
2126 { 1 }
2127 }
2128 }

(End of definition for __graphics_backend_get_pagecount:n.)

2129 ⟨/xetex⟩

5.5 dvisvgm backend
2130 ⟨∗dvisvgm⟩

\l_graphics_search_ext_seq

2131 \seq_set_from_clist:Nn \l_graphics_search_ext_seq
2132 { .svg , .pdf , .eps , .ps , .png , .jpg , .jpeg }

(End of definition for \l_graphics_search_ext_seq.)

__graphics_backend_getbb_svg:n
__graphics_backend_getbb_svg_auxi:nNn
__graphics_backend_getbb_svg_auxii:w

__graphics_backend_getbb_svg_auxiii:Nw
__graphics_backend_getbb_svg_auxiv:Nw
__graphics_backend_getbb_svg_auxv:Nw

__graphics_backend_getbb_svg_auxvi:Nn
__graphics_backend_getbb_svg_auxvii:w

This is relatively similar to reading bounding boxes for .eps files. Life is though made
more tricky as we cannot pick a single line for the data. So we have to loop until we
collect up both height and width. To do that, we can use a marker value. We also have
to allow for the default units of the lengths: they are big points and may be omitted.

2133 \cs_new_protected:Npn __graphics_backend_getbb_svg:n #1
2134 {
2135 __graphics_bb_restore:nF {#1}
2136 {
2137 \ior_open:Nn \l__graphics_tmp_ior {#1}
2138 \ior_if_eof:NTF \l__graphics_tmp_ior
2139 { \msg_error:nnn { graphics } { graphic-not-found } {#1} }
2140 {
2141 \dim_zero:N \l__graphics_llx_dim
2142 \dim_zero:N \l__graphics_lly_dim
2143 \dim_set:Nn \l__graphics_urx_dim { -\c_max_dim }
2144 \dim_set:Nn \l__graphics_ury_dim { -\c_max_dim }
2145 \ior_str_map_inline:Nn \l__graphics_tmp_ior
2146 {
2147 \dim_compare:nNnT \l__graphics_urx_dim = { -\c_max_dim }
2148 {
2149 __graphics_backend_getbb_svg_auxi:nNn
2150 { width } \l__graphics_urx_dim {##1}
2151 }
2152 \dim_compare:nNnT \l__graphics_ury_dim = { -\c_max_dim }
2153 {
2154 __graphics_backend_getbb_svg_auxi:nNn
2155 { height } \l__graphics_ury_dim {##1}
2156 }
2157 \bool_lazy_and:nnF
2158 { \dim_compare_p:nNn \l__graphics_urx_dim = { -\c_max_dim } }
2159 { \dim_compare_p:nNn \l__graphics_ury_dim = { -\c_max_dim } }
2160 { \ior_map_break: }

56

2161 }
2162 __graphics_bb_save:n {#1}
2163 }
2164 \ior_close:N \l__graphics_tmp_ior
2165 }
2166 }
2167 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxi:nNn #1#2#3
2168 {
2169 \use:e
2170 {
2171 \cs_set_protected:Npn __graphics_backend_getbb_svg_auxii:w
2172 ##1 \tl_to_str:n {#1} = ##2 \tl_to_str:n {#1} = ##3
2173 \s__graphics_stop
2174 }
2175 {
2176 \tl_if_blank:nF {##2}
2177 {
2178 \peek_remove_spaces:n
2179 {
2180 \peek_meaning:NTF ’ % ’
2181 { __graphics_backend_getbb_svg_auxiii:Nw #2 }
2182 {
2183 \peek_meaning:NTF " % "
2184 { __graphics_backend_getbb_svg_auxiv:Nw #2 }
2185 { __graphics_backend_getbb_svg_auxv:Nw #2 }
2186 }
2187 }
2188 ##2 \s__graphics_stop
2189 }
2190 }
2191 \use:e
2192 {
2193 __graphics_backend_getbb_svg_auxii:w #3
2194 \tl_to_str:n {#1} = \tl_to_str:n {#1} =
2195 \s__graphics_stop
2196 }
2197 }
2198 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxii:w { }
2199 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxiii:Nw #1 ’ #2 ’ #3 \s__graphics_stop
2200 { __graphics_backend_getbb_svg_auxvi:Nn #1 {#2} }
2201 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxiv:Nw #1 " #2 " #3 \s__graphics_stop
2202 { __graphics_backend_getbb_svg_auxvi:Nn #1 {#2} }
2203 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxv:Nw #1 #2 ~ #3 \s__graphics_stop
2204 { __graphics_backend_getbb_svg_auxvi:Nn #1 {#2} }
2205 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxvi:Nn #1#2
2206 {
2207 \tex_afterassignment:D __graphics_backend_getbb_svg_auxvii:w
2208 \l__graphics_tmp_dim #2 bp \scan_stop:
2209 \dim_set_eq:NN #1 \l__graphics_tmp_dim
2210 }
2211 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxvii:w #1 \scan_stop: { }

(End of definition for __graphics_backend_getbb_svg:n and others.)

57

__graphics_backend_getbb_eps:n
__graphics_backend_getbb_ps:n

Simply use the generic function.
2212 \cs_new_eq:NN __graphics_backend_getbb_eps:n __graphics_read_bb:n
2213 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_read_bb:n

(End of definition for __graphics_backend_getbb_eps:n and __graphics_backend_getbb_ps:n.)

__graphics_backend_getbb_png:n
__graphics_backend_getbb_jpg:n

__graphics_backend_getbb_jpeg:n

These can be included by extracting the bounding box data.
2214 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1
2215 {
2216 \int_zero:N \l__graphics_page_int
2217 \tl_clear:N \l__graphics_pagebox_tl
2218 __graphics_extract_bb:n {#1}
2219 }
2220 \cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
2221 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n

(End of definition for __graphics_backend_getbb_png:n , __graphics_backend_getbb_jpg:n , and _-
_graphics_backend_getbb_jpeg:n.)

__graphics_backend_getbb_pdf:n Same as for dvipdfmx: use the generic function
2222 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1
2223 {
2224 \tl_clear:N \l__graphics_decodearray_str
2225 \bool_set_false:N \l__graphics_interpolate_bool
2226 __graphics_extract_bb:n {#1}
2227 }

(End of definition for __graphics_backend_getbb_pdf:n.)

__graphics_backend_include_eps:n
__graphics_backend_include_ps:n

__graphics_backend_include_pdf:n
__graphics_backend_include:nn

The special syntax is relatively clear here: remember we need PostScript sizes here. (This
is the same as the dvips code.)

2228 \cs_new_protected:Npn __graphics_backend_include_eps:n #1
2229 { __graphics_backend_include:nn { PSfile } {#1} }
2230 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n
2231 \cs_new_protected:Npn __graphics_backend_include_pdf:n #1
2232 { __graphics_backend_include:nn { pdffile } {#1} }
2233 \cs_new_protected:Npn __graphics_backend_include:nn #1#2
2234 {
2235 __kernel_backend_literal:e
2236 {
2237 #1 = #2 \c_space_tl
2238 llx = \dim_to_decimal_in_bp:n \l__graphics_llx_dim \c_space_tl
2239 lly = \dim_to_decimal_in_bp:n \l__graphics_lly_dim \c_space_tl
2240 urx = \dim_to_decimal_in_bp:n \l__graphics_urx_dim \c_space_tl
2241 ury = \dim_to_decimal_in_bp:n \l__graphics_ury_dim
2242 }
2243 }

(End of definition for __graphics_backend_include_eps:n and others.)

__graphics_backend_include_svg:n
__graphics_backend_include_png:n
__graphics_backend_include_jpg:n

__graphics_backend_include_jpeg:n
__graphics_backend_include_dequote:w

The backend here has built-in support for basic graphic inclusion (see dvisvgm.def for a
more complex approach, needed if clipping, etc., is covered at the graphic backend level).
We have to deal with the fact that the image reference point is at the top, so there is a
need for a vertical shift to put it in the right place. The other issue is that #1 must be

58

quote-corrected. The dvisvgm:img operation quotes the file name, but if it is already
quoted (contains spaces) then we have an issue: we simply strip off any quotes as a result.

2244 \cs_new_protected:Npn __graphics_backend_include_svg:n #1
2245 {
2246 \box_move_up:nn { \l__graphics_ury_dim }
2247 {
2248 \hbox:n
2249 {
2250 __kernel_backend_literal:e
2251 {
2252 dvisvgm:img~
2253 \dim_to_decimal:n { \l__graphics_urx_dim } ~
2254 \dim_to_decimal:n { \l__graphics_ury_dim } ~
2255 __graphics_backend_include_dequote:w #1 " #1 " \s__graphics_stop
2256 }
2257 }
2258 }
2259 }
2260 \cs_new_eq:NN __graphics_backend_include_png:n __graphics_backend_include_svg:n
2261 \cs_new_eq:NN __graphics_backend_include_jpeg:n __graphics_backend_include_svg:n
2262 \cs_new_eq:NN __graphics_backend_include_jpg:n __graphics_backend_include_svg:n
2263 \cs_new:Npn __graphics_backend_include_dequote:w #1 " #2 " #3 \s__graphics_stop
2264 {#2}

(End of definition for __graphics_backend_include_svg:n and others.)

__graphics_backend_get_pagecount:n

2265 \cs_new_eq:NN __graphics_backend_get_pagecount:n __graphics_get_pagecount:n

(End of definition for __graphics_backend_get_pagecount:n.)

2266 ⟨/dvisvgm⟩

2267 ⟨/package⟩

6 l3backend-pdf implementation
2268 ⟨∗package⟩
2269 ⟨@@=pdf⟩

Setting up PDF resources is a complex area with only limited documentation in
the engine manuals. The following code builds heavily on existing ideas from hyperref
work by Sebastian Rahtz and Heiko Oberdiek, and significant contributions by Alexander
Grahn, in addition to the specific code referenced a various points.
6.1 dvips backend

2270 ⟨∗dvips⟩

__pdf_backend_pdfmark:n
__pdf_backend_pdfmark:e

Used often enough it should be a separate function.
2271 \cs_new_protected:Npn __pdf_backend_pdfmark:n #1
2272 { __kernel_backend_postscript:n { mark #1 ~ pdfmark } }
2273 \cs_generate_variant:Nn __pdf_backend_pdfmark:n { e }

(End of definition for __pdf_backend_pdfmark:n.)

59

6.1.1 Catalogue entries

__pdf_backend_catalog_gput:nn
__pdf_backend_info_gput:nn 2274 \cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2

2275 { __pdf_backend_pdfmark:n { { Catalog } << /#1 ~ #2 >> /PUT } }
2276 \cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2
2277 { __pdf_backend_pdfmark:n { /#1 ~ #2 /DOCINFO } }

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

6.1.2 Objects

__pdf_backend_object_new:
__pdf_backend_object_ref:n
__pdf_backend_object_id:n

2278 \cs_new_protected:Npn __pdf_backend_object_new:
2279 { \int_gincr:N \g__pdf_backend_object_int }
2280 \cs_new:Npn __pdf_backend_object_ref:n #1 { { pdf.obj #1 } }
2281 \cs_new_eq:NN __pdf_backend_object_id:n __pdf_backend_object_ref:n

(End of definition for __pdf_backend_object_new: , __pdf_backend_object_ref:n , and __pdf_-
backend_object_id:n.)

__pdf_backend_object_write:nnn
__pdf_backend_object_write:nne

__pdf_backend_object_write_aux:nnn
__pdf_backend_object_write_array:nn
__pdf_backend_object_write_dict:nn

__pdf_backend_object_write_fstream:nn
__pdf_backend_object_write_stream:nn

__pdf_backend_object_write_stream:nnn

This is where we choose the actual type: some work to get things right. To allow code
sharing with the anonymous version, we use an auxiliary.

2282 \cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3
2283 {
2284 __pdf_backend_object_write_aux:nnn
2285 { __pdf_backend_object_ref:n {#1} }
2286 {#2} {#3}
2287 }
2288 \cs_generate_variant:Nn __pdf_backend_object_write:nnn { nne }
2289 \cs_new_protected:Npn __pdf_backend_object_write_aux:nnn #1#2#3
2290 {
2291 __pdf_backend_pdfmark:e
2292 {
2293 /_objdef ~ #1
2294 /type
2295 \str_case:nn {#2}
2296 {
2297 { array } { /array }
2298 { dict } { /dict }
2299 { fstream } { /stream }
2300 { stream } { /stream }
2301 }
2302 /OBJ
2303 }
2304 \use:c { __pdf_backend_object_write_ #2 :nn } {#1} {#3}
2305 }
2306 \cs_new_protected:Npn __pdf_backend_object_write_array:nn #1#2
2307 {
2308 __pdf_backend_pdfmark:e
2309 { #1 ~0~ [~ \exp_not:n {#2} ~] ~ /PUTINTERVAL }
2310 }
2311 \cs_new_protected:Npn __pdf_backend_object_write_dict:nn #1#2
2312 {

60

2313 __pdf_backend_pdfmark:e
2314 { #1 << \exp_not:n {#2} >> /PUT }
2315 }
2316 \cs_new_protected:Npn __pdf_backend_object_write_fstream:nn #1#2
2317 {
2318 \exp_args:Ne
2319 __pdf_backend_object_write_fstream:nnn {#1} #2
2320 }
2321 \cs_new_protected:Npn __pdf_backend_object_write_fstream:nnn #1#2#3
2322 {
2323 __kernel_backend_postscript:n
2324 {
2325 SDict ~ begin ~
2326 mark ~ #1 ~ << #2 >> /PUT ~ pdfmark ~
2327 mark ~ #1 ~ (#3)~ (r)~ file ~ /PUT ~ pdfmark ~
2328 end
2329 }
2330 }
2331 \cs_new_protected:Npn __pdf_backend_object_write_stream:nn #1#2
2332 {
2333 \exp_args:Ne
2334 __pdf_backend_object_write_stream:nnn {#1} #2
2335 }
2336 \cs_new_protected:Npn __pdf_backend_object_write_stream:nnn #1#2#3
2337 {
2338 __kernel_backend_postscript:n
2339 {
2340 mark ~ #1 ~ (#3) /PUT ~ pdfmark ~
2341 mark ~ #1 ~ << #2 >> /PUT ~ pdfmark
2342 }
2343 }

(End of definition for __pdf_backend_object_write:nnn and others.)

__pdf_backend_object_now:nn
__pdf_backend_object_now:ne

No anonymous objects, so things are done manually.
2344 \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2
2345 {
2346 \int_gincr:N \g__pdf_backend_object_int
2347 __pdf_backend_object_write_aux:nnn
2348 { { pdf.obj \int_use:N \g__pdf_backend_object_int } }
2349 {#1} {#2}
2350 }
2351 \cs_generate_variant:Nn __pdf_backend_object_now:nn { ne }

(End of definition for __pdf_backend_object_now:nn.)

__pdf_backend_object_last: Much like the annotation version.
2352 \cs_new:Npn __pdf_backend_object_last:
2353 { { pdf.obj \int_use:N \g__pdf_backend_object_int } }

(End of definition for __pdf_backend_object_last:.)

__pdf_backend_pageobject_ref:n Page references are easy in dvips.
2354 \cs_new:Npn __pdf_backend_pageobject_ref:n #1
2355 { { Page #1 } }

(End of definition for __pdf_backend_pageobject_ref:n.)

61

6.1.3 Destinations

__pdf_backend_destination:nn
__pdf_backend_destination:nnnn

__pdf_backend_destination_aux:nnnn

Here, we need to turn the zoom into a scale. We also need to know where the current
anchor point actually is: worked out in PostScript. For the rectangle version, we have a
bit more PostScript: we need two points. fitr without rule spec doesn’t work, so it falls
back to /Fit here.

2356 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2
2357 {
2358 __kernel_backend_postscript:n { pdf.dest.anchor }
2359 __pdf_backend_pdfmark:e
2360 {
2361 /View
2362 [
2363 \str_case:nnF {#2}
2364 {
2365 { xyz } { /XYZ ~ pdf.dest.point ~ null }
2366 { fit } { /Fit }
2367 { fitb } { /FitB }
2368 { fitbh } { /FitBH ~ pdf.dest.y }
2369 { fitbv } { /FitBV ~ pdf.dest.x }
2370 { fith } { /FitH ~ pdf.dest.y }
2371 { fitv } { /FitV ~ pdf.dest.x }
2372 { fitr } { /Fit }
2373 }
2374 {
2375 /XYZ ~ pdf.dest.point ~ \fp_eval:n { (#2) / 100 }
2376 }
2377]
2378 /Dest (\exp_not:n {#1}) cvn
2379 /DEST
2380 }
2381 }
2382 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4
2383 {
2384 \exp_args:Ne __pdf_backend_destination_aux:nnnn
2385 { \dim_eval:n {#2} } {#1} {#3} {#4}
2386 }
2387 \cs_new_protected:Npn __pdf_backend_destination_aux:nnnn #1#2#3#4
2388 {
2389 \vbox_to_zero:n
2390 {
2391 \dim_vertical:n {#4}
2392 \hbox:n { __kernel_backend_postscript:n { pdf.save.ll } }
2393 \tex_vss:D
2394 }
2395 \dim_horizontal:n {#1}
2396 \vbox_to_zero:n
2397 {
2398 \dim_vertical:n { -#3 }
2399 \hbox:n { __kernel_backend_postscript:n { pdf.save.ur } }
2400 \tex_vss:D
2401 }
2402 \dim_horizontal:n { -#1 }
2403 __pdf_backend_pdfmark:n

62

2404 {
2405 /View
2406 [
2407 /FitR ~
2408 pdf.llx ~ pdf.lly ~ pdf.dest2device ~
2409 pdf.urx ~ pdf.ury ~ pdf.dest2device
2410]
2411 /Dest (#2) cvn
2412 /DEST
2413 }
2414 }

(End of definition for __pdf_backend_destination:nn , __pdf_backend_destination:nnnn , and __-
pdf_backend_destination_aux:nnnn.)

6.1.4 Structure

__pdf_backend_compresslevel:n
__pdf_backend_compress_objects:n

Doable for the usual ps2pdf method.
2415 \cs_new_protected:Npn __pdf_backend_compresslevel:n #1
2416 {
2417 \int_compare:nNnT {#1} = 0
2418 {
2419 __kernel_backend_literal_postscript:n
2420 {
2421 /setdistillerparams ~ where
2422 { pop << /CompressPages ~ false >> setdistillerparams }
2423 if
2424 }
2425 }
2426 }
2427 \cs_new_protected:Npn __pdf_backend_compress_objects:n #1
2428 {
2429 \bool_if:nF {#1}
2430 {
2431 __kernel_backend_literal_postscript:n
2432 {
2433 /setdistillerparams ~ where
2434 { pop << /CompressStreams ~ false >> setdistillerparams }
2435 if
2436 }
2437 }
2438 }

(End of definition for __pdf_backend_compresslevel:n and __pdf_backend_compress_objects:n.)

__pdf_backend_version_major_gset:n
__pdf_backend_version_minor_gset:n 2439 \cs_new_protected:Npn __pdf_backend_version_major_gset:n #1

2440 {
2441 \cs_gset:Npe __pdf_backend_version_major: { \int_eval:n {#1} }
2442 }
2443 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1
2444 {
2445 \cs_gset:Npe __pdf_backend_version_minor: { \int_eval:n {#1} }
2446 }

63

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

__pdf_backend_version_major:
__pdf_backend_version_minor:

Data not available!
2447 \cs_new:Npn __pdf_backend_version_major: { -1 }
2448 \cs_new:Npn __pdf_backend_version_minor: { -1 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

6.1.5 Marked content

__pdf_backend_bdc:nn
__pdf_backend_emc:

Simple wrappers.
2449 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2
2450 { __pdf_backend_pdfmark:n { /#1 ~ #2 /BDC } }
2451 \cs_new_protected:Npn __pdf_backend_emc:
2452 { __pdf_backend_pdfmark:n { /EMC } }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)

2453 ⟨/dvips⟩

6.2 LuaTEX and pdfTEX backend
2454 ⟨∗luatex | pdftex⟩

6.2.1 Destinations

__pdf_backend_destination:nn
__pdf_backend_destination:nnnn

A simple task: pass the data to the primitive. The \scan_stop: deals with the danger
of an unterminated keyword. The zoom given here is a percentage, but we need to pass
it as per mille. The rectangle version is also easy as everything is build in.

2455 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2
2456 {
2457 ⟨∗luatex⟩
2458 \tex_pdfextension:D dest ~
2459 ⟨/luatex⟩
2460 ⟨∗pdftex⟩
2461 \tex_pdfdest:D
2462 ⟨/pdftex⟩
2463 name {#1}
2464 \str_case:nnF {#2}
2465 {
2466 { xyz } { xyz }
2467 { fit } { fit }
2468 { fitb } { fitb }
2469 { fitbh } { fitbh }
2470 { fitbv } { fitbv }
2471 { fith } { fith }
2472 { fitv } { fitv }
2473 { fitr } { fitr }
2474 }
2475 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
2476 \scan_stop:
2477 }
2478 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4
2479 {

64

2480 ⟨∗luatex⟩
2481 \tex_pdfextension:D dest ~
2482 ⟨/luatex⟩
2483 ⟨∗pdftex⟩
2484 \tex_pdfdest:D
2485 ⟨/pdftex⟩
2486 name {#1}
2487 fitr ~
2488 width \dim_eval:n {#2} ~
2489 height \dim_eval:n {#3} ~
2490 depth \dim_eval:n {#4} \scan_stop:
2491 }

(End of definition for __pdf_backend_destination:nn and __pdf_backend_destination:nnnn.)

6.2.2 Catalogue entries

__pdf_backend_catalog_gput:nn
__pdf_backend_info_gput:nn 2492 \cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2

2493 {
2494 ⟨∗luatex⟩
2495 \tex_pdfextension:D catalog
2496 ⟨/luatex⟩
2497 ⟨∗pdftex⟩
2498 \tex_pdfcatalog:D
2499 ⟨/pdftex⟩
2500 { / #1 ~ #2 }
2501 }
2502 \cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2
2503 {
2504 ⟨∗luatex⟩
2505 \tex_pdfextension:D info
2506 ⟨/luatex⟩
2507 ⟨∗pdftex⟩
2508 \tex_pdfinfo:D
2509 ⟨/pdftex⟩
2510 { / #1 ~ #2 }
2511 }

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

6.2.3 Objects

\g__pdf_backend_object_prop For tracking objects to allow finalization.
2512 \prop_new:N \g__pdf_backend_object_prop

(End of definition for \g__pdf_backend_object_prop.)

__pdf_backend_object_new:
__pdf_backend_object_ref:n
__pdf_backend_object_id:n

Declaring objects means reserving at the PDF level plus starting tracking.
2513 \cs_new_protected:Npn __pdf_backend_object_new:
2514 {
2515 ⟨∗luatex⟩
2516 \tex_pdfextension:D obj ~
2517 ⟨/luatex⟩

65

2518 ⟨∗pdftex⟩
2519 \tex_pdfobj:D
2520 ⟨/pdftex⟩
2521 reserveobjnum ~
2522 \int_gset:Nn \g__pdf_backend_object_int
2523 ⟨∗luatex⟩
2524 { \tex_pdffeedback:D lastobj }
2525 ⟨/luatex⟩
2526 ⟨∗pdftex⟩
2527 { \tex_pdflastobj:D }
2528 ⟨/pdftex⟩
2529 }
2530 \cs_new:Npn __pdf_backend_object_ref:n #1 { #1 ~ 0 ~ R }
2531 \cs_new:Npn __pdf_backend_object_id:n #1 {#1}

(End of definition for __pdf_backend_object_new: , __pdf_backend_object_ref:n , and __pdf_-
backend_object_id:n.)

__pdf_backend_object_write:nnn
__pdf_backend_object_write:nne
__pdf_backend_object_write:nn
__pdf_exp_not_i:nn

__pdf_exp_not_ii:nn

Writing the data needs a little information about the structure of the object.
2532 \cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3
2533 {
2534 ⟨∗luatex⟩
2535 \tex_immediate:D \tex_pdfextension:D obj ~
2536 ⟨/luatex⟩
2537 ⟨∗pdftex⟩
2538 \tex_immediate:D \tex_pdfobj:D
2539 ⟨/pdftex⟩
2540 useobjnum ~ #1
2541 __pdf_backend_object_write:nn {#2} {#3}
2542 }
2543 \cs_new:Npn __pdf_backend_object_write:nn #1#2
2544 {
2545 \str_case:nn {#1}
2546 {
2547 { array } { { [~ \exp_not:n {#2} ~] } }
2548 { dict } { { << ~ \exp_not:n {#2} ~ >> } }
2549 { fstream }
2550 {
2551 stream ~ attr ~ { __pdf_exp_not_i:nn #2 } ~
2552 file ~ { __pdf_exp_not_ii:nn #2 }
2553 }
2554 { stream }
2555 {
2556 stream ~ attr ~ { __pdf_exp_not_i:nn #2 } ~
2557 { __pdf_exp_not_ii:nn #2 }
2558 }
2559 }
2560 }
2561 \cs_generate_variant:Nn __pdf_backend_object_write:nnn { nne }
2562 \cs_new:Npn __pdf_exp_not_i:nn #1#2 { \exp_not:n {#1} }
2563 \cs_new:Npn __pdf_exp_not_ii:nn #1#2 { \exp_not:n {#2} }

(End of definition for __pdf_backend_object_write:nnn and others.)

__pdf_backend_object_now:nn
__pdf_backend_object_now:ne

Much like writing, but direct creation.

66

2564 \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2
2565 {
2566 ⟨∗luatex⟩
2567 \tex_immediate:D \tex_pdfextension:D obj ~
2568 ⟨/luatex⟩
2569 ⟨∗pdftex⟩
2570 \tex_immediate:D \tex_pdfobj:D
2571 ⟨/pdftex⟩
2572 __pdf_backend_object_write:nn {#1} {#2}
2573 }
2574 \cs_generate_variant:Nn __pdf_backend_object_now:nn { ne }

(End of definition for __pdf_backend_object_now:nn.)

__pdf_backend_object_last: Much like annotation.
2575 \cs_new:Npe __pdf_backend_object_last:
2576 {
2577 \exp_not:N \int_value:w
2578 ⟨∗luatex⟩
2579 \exp_not:N \tex_pdffeedback:D lastobj ~
2580 ⟨/luatex⟩
2581 ⟨∗pdftex⟩
2582 \exp_not:N \tex_pdflastobj:D
2583 ⟨/pdftex⟩
2584 \c_space_tl 0 ~ R
2585 }

(End of definition for __pdf_backend_object_last:.)

__pdf_backend_pageobject_ref:n The usual wrapper situation; the three spaces here are essential.
2586 \cs_new:Npe __pdf_backend_pageobject_ref:n #1
2587 {
2588 \exp_not:N \int_value:w
2589 ⟨∗luatex⟩
2590 \exp_not:N \tex_pdffeedback:D pageref
2591 ⟨/luatex⟩
2592 ⟨∗pdftex⟩
2593 \exp_not:N \tex_pdfpageref:D
2594 ⟨/pdftex⟩
2595 \c_space_tl #1 \c_space_tl \c_space_tl \c_space_tl 0 ~ R
2596 }

(End of definition for __pdf_backend_pageobject_ref:n.)

6.2.4 Structure

__pdf_backend_compresslevel:n
__pdf_backend_compress_objects:n
__pdf_backend_objcompresslevel:n

Simply pass data to the engine.
2597 \cs_new_protected:Npn __pdf_backend_compresslevel:n #1
2598 {
2599 \tex_global:D
2600 ⟨∗luatex⟩
2601 \tex_pdfvariable:D compresslevel
2602 ⟨/luatex⟩
2603 ⟨∗pdftex⟩
2604 \tex_pdfcompresslevel:D

67

2605 ⟨/pdftex⟩
2606 \int_value:w \int_eval:n {#1} \scan_stop:
2607 }
2608 \cs_new_protected:Npn __pdf_backend_compress_objects:n #1
2609 {
2610 \bool_if:nTF {#1}
2611 { __pdf_backend_objcompresslevel:n { 2 } }
2612 { __pdf_backend_objcompresslevel:n { 0 } }
2613 }
2614 \cs_new_protected:Npn __pdf_backend_objcompresslevel:n #1
2615 {
2616 \tex_global:D
2617 ⟨∗luatex⟩
2618 \tex_pdfvariable:D objcompresslevel
2619 ⟨/luatex⟩
2620 ⟨∗pdftex⟩
2621 \tex_pdfobjcompresslevel:D
2622 ⟨/pdftex⟩
2623 #1 \scan_stop:
2624 }

(End of definition for __pdf_backend_compresslevel:n , __pdf_backend_compress_objects:n , and
__pdf_backend_objcompresslevel:n.)

__pdf_backend_version_major_gset:n
__pdf_backend_version_minor_gset:n

The availability of the primitive is not universal, so we have to test at load time.
2625 \cs_new_protected:Npe __pdf_backend_version_major_gset:n #1
2626 {
2627 ⟨∗luatex⟩
2628 \int_compare:nNnT \tex_luatexversion:D > { 106 }
2629 {
2630 \exp_not:N \tex_global:D \tex_pdfvariable:D majorversion
2631 \exp_not:N \int_eval:n {#1} \scan_stop:
2632 }
2633 ⟨/luatex⟩
2634 ⟨∗pdftex⟩
2635 \cs_if_exist:NT \tex_pdfmajorversion:D
2636 {
2637 \exp_not:N \tex_global:D \tex_pdfmajorversion:D
2638 \exp_not:N \int_eval:n {#1} \scan_stop:
2639 }
2640 ⟨/pdftex⟩
2641 }
2642 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1
2643 {
2644 \tex_global:D
2645 ⟨∗luatex⟩
2646 \tex_pdfvariable:D minorversion
2647 ⟨/luatex⟩
2648 ⟨∗pdftex⟩
2649 \tex_pdfminorversion:D
2650 ⟨/pdftex⟩
2651 \int_eval:n {#1} \scan_stop:
2652 }

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

68

__pdf_backend_version_major:
__pdf_backend_version_minor:

As above.
2653 \cs_new:Npe __pdf_backend_version_major:
2654 {
2655 ⟨∗luatex⟩
2656 \int_compare:nNnTF \tex_luatexversion:D > { 106 }
2657 { \exp_not:N \tex_the:D \tex_pdfvariable:D majorversion }
2658 { 1 }
2659 ⟨/luatex⟩
2660 ⟨∗pdftex⟩
2661 \cs_if_exist:NTF \tex_pdfmajorversion:D
2662 { \exp_not:N \tex_the:D \tex_pdfmajorversion:D }
2663 { 1 }
2664 ⟨/pdftex⟩
2665 }
2666 \cs_new:Npn __pdf_backend_version_minor:
2667 {
2668 \tex_the:D
2669 ⟨∗luatex⟩
2670 \tex_pdfvariable:D minorversion
2671 ⟨/luatex⟩
2672 ⟨∗pdftex⟩
2673 \tex_pdfminorversion:D
2674 ⟨/pdftex⟩
2675 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

6.2.5 Marked content

__pdf_backend_bdc:nn
__pdf_backend_emc:

Simple wrappers. May need refinement: see https://chat.stackexchange.com/
transcript/message/49970158#49970158.

2676 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2
2677 { __kernel_backend_literal_page:n { /#1 ~ #2 ~ BDC } }
2678 \cs_new_protected:Npn __pdf_backend_emc:
2679 { __kernel_backend_literal_page:n { EMC } }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)

2680 ⟨/luatex | pdftex⟩

6.3 dvipdfmx backend
2681 ⟨∗dvipdfmx | xetex⟩

__pdf_backend:n
__pdf_backend:e

A generic function for the backend PDF specials: used where we can.
2682 \cs_new_protected:Npe __pdf_backend:n #1
2683 { __kernel_backend_literal:n { pdf: #1 } }
2684 \cs_generate_variant:Nn __pdf_backend:n { e }

(End of definition for __pdf_backend:n.)

69

https://chat.stackexchange.com/transcript/message/49970158#49970158
https://chat.stackexchange.com/transcript/message/49970158#49970158

6.3.1 Catalogue entries

__pdf_backend_catalog_gput:nn
__pdf_backend_info_gput:nn 2685 \cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2

2686 { __pdf_backend:n { put ~ @catalog << /#1 ~ #2 >> } }
2687 \cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2
2688 { __pdf_backend:n { docinfo << /#1 ~ #2 >> } }

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

6.3.2 Objects

\g__pdf_backend_object_prop For tracking objects to allow finalization.
2689 \prop_new:N \g__pdf_backend_object_prop

(End of definition for \g__pdf_backend_object_prop.)

__pdf_backend_object_new:
__pdf_backend_object_ref:n
__pdf_backend_object_id:n

Objects are tracked at the macro level, but we don’t have to do anything at this stage.
2690 \cs_new_protected:Npn __pdf_backend_object_new:
2691 { \int_gincr:N \g__pdf_backend_object_int }
2692 \cs_new:Npn __pdf_backend_object_ref:n #1 { @pdf.obj #1 }
2693 \cs_new_eq:NN __pdf_backend_object_id:n __pdf_backend_object_ref:n

(End of definition for __pdf_backend_object_new: , __pdf_backend_object_ref:n , and __pdf_-
backend_object_id:n.)

__pdf_backend_object_write:nnn
__pdf_backend_object_write:nne

__pdf_backend_object_write_array:nn
__pdf_backend_object_write_dict:nn

__pdf_backend_object_write_fstream:nn
__pdf_backend_object_write_stream:nn

__pdf_backend_object_write_stream:nnnn

This is where we choose the actual type.
2694 \cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3
2695 {
2696 \use:c { __pdf_backend_object_write_ #2 :nn }
2697 { __pdf_backend_object_ref:n {#1} } {#3}
2698 }
2699 \cs_generate_variant:Nn __pdf_backend_object_write:nnn { nne }
2700 \cs_new_protected:Npn __pdf_backend_object_write_array:nn #1#2
2701 {
2702 __pdf_backend:e
2703 { obj ~ #1 ~ [~ \exp_not:n {#2} ~] }
2704 }
2705 \cs_new_protected:Npn __pdf_backend_object_write_dict:nn #1#2
2706 {
2707 __pdf_backend:e
2708 { obj ~ #1 ~ << ~ \exp_not:n {#2} ~ >> }
2709 }
2710 \cs_new_protected:Npn __pdf_backend_object_write_fstream:nn #1#2
2711 { __pdf_backend_object_write_stream:nnnn { f } {#1} #2 }
2712 \cs_new_protected:Npn __pdf_backend_object_write_stream:nn #1#2
2713 { __pdf_backend_object_write_stream:nnnn { } {#1} #2 }
2714 \cs_new_protected:Npn __pdf_backend_object_write_stream:nnnn #1#2#3#4
2715 {
2716 __pdf_backend:e
2717 {
2718 #1 stream ~ #2 ~
2719 (\exp_not:n {#4}) ~ << \exp_not:n {#3} >>
2720 }
2721 }

70

(End of definition for __pdf_backend_object_write:nnn and others.)

__pdf_backend_object_now:nn
__pdf_backend_object_now:ne

No anonymous objects with dvipdfmx so we have to give an object name.
2722 \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2
2723 {
2724 \int_gincr:N \g__pdf_backend_object_int
2725 \exp_args:Nne \use:c { __pdf_backend_object_write_ #1 :nn }
2726 { @pdf.obj \int_use:N \g__pdf_backend_object_int }
2727 {#2}
2728 }
2729 \cs_generate_variant:Nn __pdf_backend_object_now:nn { ne }

(End of definition for __pdf_backend_object_now:nn.)

__pdf_backend_object_last:

2730 \cs_new:Npn __pdf_backend_object_last:
2731 { @pdf.obj \int_use:N \g__pdf_backend_object_int }

(End of definition for __pdf_backend_object_last:.)

__pdf_backend_pageobject_ref:n Page references are easy in dvipdfmx/X ETEX.
2732 \cs_new:Npn __pdf_backend_pageobject_ref:n #1
2733 { @page #1 }

(End of definition for __pdf_backend_pageobject_ref:n.)

6.3.3 Destinations

__pdf_backend_destination:nn
__pdf_backend_destination:nnnn

__pdf_backend_destination_aux:nnnn

Here, we need to turn the zoom into a scale. The method for FitR is from Alexander
Grahn: the idea is to avoid needing to do any calculations in TEX by using the backend
data for @xpos and @ypos. /FitR without rule spec doesn’t work, so it falls back to /Fit
here.

2734 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2
2735 {
2736 __pdf_backend:e
2737 {
2738 dest ~ (\exp_not:n {#1})
2739 [
2740 @thispage
2741 \str_case:nnF {#2}
2742 {
2743 { xyz } { /XYZ ~ @xpos ~ @ypos ~ null }
2744 { fit } { /Fit }
2745 { fitb } { /FitB }
2746 { fitbh } { /FitBH }
2747 { fitbv } { /FitBV ~ @xpos }
2748 { fith } { /FitH ~ @ypos }
2749 { fitv } { /FitV ~ @xpos }
2750 { fitr } { /Fit }
2751 }
2752 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
2753]
2754 }
2755 }

71

2756 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4
2757 {
2758 \exp_args:Ne __pdf_backend_destination_aux:nnnn
2759 { \dim_eval:n {#2} } {#1} {#3} {#4}
2760 }
2761 \cs_new_protected:Npn __pdf_backend_destination_aux:nnnn #1#2#3#4
2762 {
2763 \vbox_to_zero:n
2764 {
2765 \dim_vertical:n {#4}
2766 \hbox:n
2767 {
2768 __pdf_backend:n { obj ~ @pdf_ #2 _llx ~ @xpos }
2769 __pdf_backend:n { obj ~ @pdf_ #2 _lly ~ @ypos }
2770 }
2771 \tex_vss:D
2772 }
2773 \dim_horizontal:n {#1}
2774 \vbox_to_zero:n
2775 {
2776 \dim_vertical:n { -#3 }
2777 \hbox:n
2778 {
2779 __pdf_backend:n
2780 {
2781 dest ~ (#2)
2782 [
2783 @thispage
2784 /FitR ~
2785 @pdf_ #2 _llx ~ @pdf_ #2 _lly ~
2786 @xpos ~ @ypos
2787]
2788 }
2789 }
2790 \tex_vss:D
2791 }
2792 \dim_horizontal:n { -#1 }
2793 }

(End of definition for __pdf_backend_destination:nn , __pdf_backend_destination:nnnn , and __-
pdf_backend_destination_aux:nnnn.)

6.3.4 Structure

__pdf_backend_compresslevel:n
__pdf_backend_compress_objects:n

Pass data to the backend: these are a one-shot.
2794 \cs_new_protected:Npn __pdf_backend_compresslevel:n #1
2795 { __kernel_backend_literal:e { dvipdfmx:config~z~ \int_eval:n {#1} } }
2796 \cs_new_protected:Npn __pdf_backend_compress_objects:n #1
2797 {
2798 \bool_if:nF {#1}
2799 { __kernel_backend_literal:n { dvipdfmx:config~C~0x40 } }
2800 }

(End of definition for __pdf_backend_compresslevel:n and __pdf_backend_compress_objects:n.)

72

__pdf_backend_version_major_gset:n
__pdf_backend_version_minor_gset:n

We start with the assumption that the default is active.
2801 \cs_new_protected:Npn __pdf_backend_version_major_gset:n #1
2802 {
2803 \cs_gset:Npe __pdf_backend_version_major: { \int_eval:n {#1} }
2804 __kernel_backend_literal:e { pdf:majorversion~ __pdf_backend_version_major: }
2805 }
2806 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1
2807 {
2808 \cs_gset:Npe __pdf_backend_version_minor: { \int_eval:n {#1} }
2809 __kernel_backend_literal:e { pdf:minorversion~ __pdf_backend_version_minor: }
2810 }

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

__pdf_backend_version_major:
__pdf_backend_version_minor:

We start with the assumption that the default is active.
2811 \cs_new:Npn __pdf_backend_version_major: { 1 }
2812 \cs_new:Npn __pdf_backend_version_minor: { 7 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

6.3.5 Marked content

__pdf_backend_bdc:nn
__pdf_backend_emc:

Simple wrappers. May need refinement: see https://chat.stackexchange.com/
transcript/message/49970158#49970158.

2813 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2
2814 { __kernel_backend_literal_page:n { /#1 ~ #2 ~ BDC } }
2815 \cs_new_protected:Npn __pdf_backend_emc:
2816 { __kernel_backend_literal_page:n { EMC } }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)

2817 ⟨/dvipdfmx | xetex⟩

6.4 dvisvgm backend
2818 ⟨∗dvisvgm⟩

6.4.1 Destinations

__pdf_backend_destination:nn
__pdf_backend_destination:nnnn 2819 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2 { }

2820 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4 { }

(End of definition for __pdf_backend_destination:nn and __pdf_backend_destination:nnnn.)

6.4.2 Catalogue entries

__pdf_backend_catalog_gput:nn
__pdf_backend_info_gput:nn

No-op.
2821 \cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2 { }
2822 \cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2 { }

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

73

https://chat.stackexchange.com/transcript/message/49970158#49970158
https://chat.stackexchange.com/transcript/message/49970158#49970158

6.4.3 Objects

__pdf_backend_object_new:
__pdf_backend_object_ref:n
__pdf_backend_object_id:n

__pdf_backend_object_write:nnn
__pdf_backend_object_write:ne

__pdf_backend_object_now:nn
__pdf_backend_object_now:ne
__pdf_backend_object_last:

__pdf_backend_pageobject_ref:n

All no-ops here.
2823 \cs_new_protected:Npn __pdf_backend_object_new: { }
2824 \cs_new:Npn __pdf_backend_object_ref:n #1 { }
2825 \cs_new:Npn __pdf_backend_object_id:n #1 { }
2826 \cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3 { }
2827 \cs_new_protected:Npn __pdf_backend_object_write:nne #1#2#3 { }
2828 \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2 { }
2829 \cs_new_protected:Npn __pdf_backend_object_now:ne #1#2 { }
2830 \cs_new:Npn __pdf_backend_object_last: { }
2831 \cs_new:Npn __pdf_backend_pageobject_ref:n #1 { }

(End of definition for __pdf_backend_object_new: and others.)

6.4.4 Structure

__pdf_backend_compresslevel:n
__pdf_backend_compress_objects:n

These are all no-ops.
2832 \cs_new_protected:Npn __pdf_backend_compresslevel:n #1 { }
2833 \cs_new_protected:Npn __pdf_backend_compress_objects:n #1 { }

(End of definition for __pdf_backend_compresslevel:n and __pdf_backend_compress_objects:n.)

__pdf_backend_version_major_gset:n
__pdf_backend_version_minor_gset:n

Data not available!
2834 \cs_new_protected:Npn __pdf_backend_version_major_gset:n #1 { }
2835 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1 { }

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

__pdf_backend_version_major:
__pdf_backend_version_minor:

Data not available!
2836 \cs_new:Npn __pdf_backend_version_major: { -1 }
2837 \cs_new:Npn __pdf_backend_version_minor: { -1 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

__pdf_backend_bdc:nn
__pdf_backend_emc:

More no-ops.
2838 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2 { }
2839 \cs_new_protected:Npn __pdf_backend_emc: { }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)

2840 ⟨/dvisvgm⟩

6.5 PDF Page size (media box)
For setting the media box, the split between backends is somewhat different to other
areas, thus we approach this separately. The code here assumes a recent LATEX 2ε: that
is ensured at the level above.

2841 ⟨∗dvipdfmx | dvips⟩

74

__pdf_backend_pagesize_gset:nn This is done as a backend literal, so we deal with it using the shipout hook.
2842 \cs_new_protected:Npn __pdf_backend_pagesize_gset:nn #1#2
2843 {
2844 __kernel_backend_first_shipout:n
2845 {
2846 __kernel_backend_literal:e
2847 {
2848 ⟨∗dvipdfmx⟩
2849 pdf:pagesize ~
2850 width ~ \dim_eval:n {#1} ~
2851 height ~ \dim_eval:n {#2}
2852 ⟨/dvipdfmx⟩
2853 ⟨∗dvips⟩
2854 papersize = \dim_eval:n {#1} , \dim_eval:n {#2}
2855 ⟨/dvips⟩
2856 }
2857 }
2858 }

(End of definition for __pdf_backend_pagesize_gset:nn.)

2859 ⟨/dvipdfmx | dvips⟩

2860 ⟨∗luatex | pdftex | xetex⟩

__pdf_backend_pagesize_gset:nn Pass to the primitives.
2861 \cs_new_protected:Npn __pdf_backend_pagesize_gset:nn #1#2
2862 {
2863 \dim_gset:Nn \tex_pagewidth:D {#1}
2864 \dim_gset:Nn \tex_pageheight:D {#2}
2865 }

(End of definition for __pdf_backend_pagesize_gset:nn.)

2866 ⟨/luatex | pdftex | xetex⟩

2867 ⟨∗dvisvgm⟩

__pdf_backend_pagesize_gset:nn A no-op.
2868 \cs_new_protected:Npn __pdf_backend_pagesize_gset:nn #1#2 { }

(End of definition for __pdf_backend_pagesize_gset:nn.)

2869 ⟨/dvisvgm⟩

2870 ⟨/package⟩

7 l3backend-pdfannot implementation
2871 ⟨∗package⟩
2872 ⟨@@=pdfannot⟩

7.1 dvips backend
2873 ⟨∗dvips⟩

In dvips, annotations have to be constructed manually. As such, we need the object
code above for some definitions. Here, the PostScript uses the pdf namespace: unlike for

75

expl3, we do not really control the namespacing and also have to cut across PDF-related
areas.

\l__pdfannot_backend_content_box The content of an annotation.
2874 \box_new:N \l__pdfannot_backend_content_box

(End of definition for \l__pdfannot_backend_content_box.)

\l__pdfannot_backend_model_box For creating model sizing for links.
2875 \box_new:N \l__pdfannot_backend_model_box

(End of definition for \l__pdfannot_backend_model_box.)

\g__pdfannot_backend_int Needed to track annotations.
2876 \int_new:N \g__pdfannot_backend_int

(End of definition for \g__pdfannot_backend_int.)

__pdfannot_backend_generic:nnnn
__pdfannot_backend_generic_aux:nnnn

Annotations are objects but they are not in the object data lists. Here, to get the
coordinates of the annotation, we need to have the data collected at the PostScript level.
That requires a bit of box trickery (effectively a LATEX 2ε picture of zero size). Once
the data is collected, use it to set up the annotation border.

2877 \cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4
2878 {
2879 \exp_args:Nf __pdfannot_backend_generic_aux:nnnn
2880 { \dim_eval:n {#1} } {#2} {#3} {#4}
2881 }
2882 \cs_new_protected:Npn __pdfannot_backend_generic_aux:nnnn #1#2#3#4
2883 {
2884 \box_move_down:nn {#3}
2885 { \hbox:n { __kernel_backend_postscript:n { pdf.save.ll } } }
2886 \box_move_up:nn {#2}
2887 {
2888 \hbox:n
2889 {
2890 \dim_horizontal:n {#1}
2891 __kernel_backend_postscript:n { pdf.save.ur }
2892 \dim_horizontal:n { -#1 }
2893 }
2894 }
2895 \int_gincr:N \g__pdfannot_backend_int
2896 __kernel_backend_postscript:e
2897 {
2898 mark
2899 /_objdef { pdf.annot \int_use:N \g__pdfannot_backend_int }
2900 pdf.rect
2901 #4 ~
2902 /ANN ~
2903 pdfmark
2904 }
2905 }

(End of definition for __pdfannot_backend_generic:nnnn and __pdfannot_backend_generic_aux:nnnn.)

76

__pdfannot_backend_last: Provide the last annotation we created: could get tricky of course if other packages are
loaded.

2906 \cs_new:Npn __pdfannot_backend_last:
2907 { { pdf.annot \int_use:N \g__pdfannot_backend_int } }

(End of definition for __pdfannot_backend_last:.)

\g__pdfannot_backend_link_int To track annotations which are links.
2908 \int_new:N \g__pdfannot_backend_link_int

(End of definition for \g__pdfannot_backend_link_int.)

\g__pdfannot_backend_link_dict_tl To pass information to the end-of-link function.
2909 \tl_new:N \g__pdfannot_backend_link_dict_tl

(End of definition for \g__pdfannot_backend_link_dict_tl.)

\g__pdfannot_backend_link_sf_int Needed to save/restore space factor, which is needed to deal with the face we need a box.
2910 \int_new:N \g__pdfannot_backend_link_sf_int

(End of definition for \g__pdfannot_backend_link_sf_int.)

\g__pdfannot_backend_link_math_bool Needed to save/restore math mode.
2911 \bool_new:N \g__pdfannot_backend_link_math_bool

(End of definition for \g__pdfannot_backend_link_math_bool.)

\g__pdfannot_backend_link_bool Track link formation: we cannot nest at all.
2912 \bool_new:N \g__pdfannot_backend_link_bool

(End of definition for \g__pdfannot_backend_link_bool.)

\l__pdfannot_backend_breaklink_pdfmark_tl Swappable content for link breaking.
2913 \tl_new:N \l__pdfannot_backend_breaklink_pdfmark_tl
2914 \tl_set:Nn \l__pdfannot_backend_breaklink_pdfmark_tl { pdfmark }

(End of definition for \l__pdfannot_backend_breaklink_pdfmark_tl.)

__pdfannot_backend_breaklink_postscript:n To allow dropping material unless link breaking is active.
2915 \cs_new_protected:Npn __pdfannot_backend_breaklink_postscript:n #1 { }

(End of definition for __pdfannot_backend_breaklink_postscript:n.)

__pdfannot_backend_breaklink_usebox:N Swappable box unpacking or use.
2916 \cs_new_eq:NN __pdfannot_backend_breaklink_usebox:N \box_use:N

(End of definition for __pdfannot_backend_breaklink_usebox:N.)

77

__pdfannot_backend_link_begin_goto:nnw
__pdfannot_backend_link_begin_user:nnw

__pdfannot_backend_link:nw
__pdfannot_backend_link_aux:nw

__pdfannot_backend_link_end:
__pdfannot_backend_link_end_aux:
__pdfannot_backend_link_minima:

__pdfannot_backend_link_outerbox:n
__pdfannot_backend_link_sf_save:

__pdfannot_backend_link_sf_restore:

Links are created like annotations but with dedicated code to allow for adjusting the size
of the rectangle. In contrast to hyperref, we grab the link content as a box which can
then unbox: this allows the same interface as for pdfTEX.

Notice that the link setup here uses /Action not /A. That is because Distiller requires
this trigger word, rather than a “raw” PDF dictionary key (Ghostscript can handle either
form).

Taking the idea of evenboxes from hypdvips, we implement a minimum box height
and depth for link placement. This means that “underlining” with a hyperlink will
generally give an even appearance. However, to ensure that the full content is always
above the link border, we do not allow this to be negative (contrast hypdvips approach).
The result should be similar to pdfTEX in the vast majority of foreseeable cases.

The object number for a link is saved separately from the rest of the dictionary as
this allows us to insert it just once, at either an unbroken link or only in the first line of
a broken one. That makes the code clearer but also avoids a low-level PostScript error
with the code as taken from hypdvips.

Getting the outer dimensions of the text area may be better using a two-pass ap-
proach and \tex_savepos:D. That plus generic mode are still to re-examine.

2917 \cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2
2918 {
2919 __pdfannot_backend_link_begin:nw
2920 { #1 /Subtype /Link /Action << /S /GoTo /D (#2) >> }
2921 }
2922 \cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2
2923 { __pdfannot_backend_link_begin:nw {#1#2} }
2924 \cs_new_protected:Npn __pdfannot_backend_link_begin:nw #1
2925 {
2926 \bool_if:NF \g__pdfannot_backend_link_bool
2927 { __pdfannot_backend_link_begin_aux:nw {#1} }
2928 }

The definition of pdf.link.dict here is needed as there is code in the PostScript headers
for breaking links, and that can only work with this available.

2929 \cs_new_protected:Npn __pdfannot_backend_link_begin_aux:nw #1
2930 {
2931 \bool_gset_true:N \g__pdfannot_backend_link_bool
2932 __kernel_backend_postscript:n
2933 { /pdf.link.dict (#1) def }
2934 \tl_gset:Nn \g__pdfannot_backend_link_dict_tl {#1}
2935 __pdfannot_backend_link_sf_save:
2936 \mode_if_math:TF
2937 { \bool_gset_true:N \g__pdfannot_backend_link_math_bool }
2938 { \bool_gset_false:N \g__pdfannot_backend_link_math_bool }
2939 \hbox_set:Nw \l__pdfannot_backend_content_box
2940 __pdfannot_backend_link_sf_restore:
2941 \bool_if:NT \g__pdfannot_backend_link_math_bool
2942 { \c_math_toggle_token }
2943 }
2944 \cs_new_protected:Npn __pdfannot_backend_link_end:
2945 {
2946 \bool_if:NT \g__pdfannot_backend_link_bool
2947 { __pdfannot_backend_link_end_aux: }
2948 }
2949 \cs_new_protected:Npn __pdfannot_backend_link_end_aux:

78

2950 {
2951 \bool_if:NT \g__pdfannot_backend_link_math_bool
2952 { \c_math_toggle_token }
2953 __pdfannot_backend_link_sf_save:
2954 \hbox_set_end:
2955 __pdfannot_backend_link_minima:
2956 \hbox_set:Nn \l__pdfannot_backend_model_box { Gg }
2957 \exp_args:Ne __pdfannot_backend_link_outerbox:n
2958 {
2959 \int_if_odd:nTF { \value { page } }
2960 { \oddsidemargin }
2961 { \evensidemargin }
2962 }
2963 \box_move_down:nn { \box_dp:N \l__pdfannot_backend_content_box }
2964 { \hbox:n { __kernel_backend_postscript:n { pdf.save.linkll } } }
2965 __pdfannot_backend_breaklink_postscript:n { pdf.bordertracking.begin }
2966 __pdfannot_backend_breaklink_usebox:N \l__pdfannot_backend_content_box
2967 __pdfannot_backend_breaklink_postscript:n { pdf.bordertracking.end }
2968 \box_move_up:nn { \box_ht:N \l__pdfannot_backend_content_box }
2969 {
2970 \hbox:n
2971 { __kernel_backend_postscript:n { pdf.save.linkur } }
2972 }
2973 \int_gincr:N \g__pdfannot_backend_int
2974 \int_gset_eq:NN \g__pdfannot_backend_link_int \g__pdfannot_backend_int
2975 __kernel_backend_postscript:e
2976 {
2977 mark
2978 /_objdef { pdf.annot \int_use:N \g__pdfannot_backend_link_int }
2979 \g__pdfannot_backend_link_dict_tl \c_space_tl
2980 pdf.rect
2981 /ANN ~ \l__pdfannot_backend_breaklink_pdfmark_tl
2982 }
2983 __pdfannot_backend_link_sf_restore:
2984 \bool_gset_false:N \g__pdfannot_backend_link_bool
2985 }
2986 \cs_new_protected:Npn __pdfannot_backend_link_minima:
2987 {
2988 \hbox_set:Nn \l__pdfannot_backend_model_box { Gg }
2989 __kernel_backend_postscript:e
2990 {
2991 /pdf.linkdp.pad ~
2992 \dim_to_decimal:n
2993 {
2994 \dim_max:nn
2995 {
2996 \box_dp:N \l__pdfannot_backend_model_box
2997 - \box_dp:N \l__pdfannot_backend_content_box
2998 }
2999 { 0pt }
3000 } ~
3001 pdf.pt.dvi ~ def
3002 /pdf.linkht.pad ~
3003 \dim_to_decimal:n

79

3004 {
3005 \dim_max:nn
3006 {
3007 \box_ht:N \l__pdfannot_backend_model_box
3008 - \box_ht:N \l__pdfannot_backend_content_box
3009 }
3010 { 0pt }
3011 } ~
3012 pdf.pt.dvi ~ def
3013 }
3014 }
3015 \cs_new_protected:Npn __pdfannot_backend_link_outerbox:n #1
3016 {
3017 __kernel_backend_postscript:e
3018 {
3019 /pdf.outerbox
3020 [
3021 \dim_to_decimal:n {#1} ~
3022 \dim_to_decimal:n { -\box_dp:N \l__pdfannot_backend_model_box } ~
3023 \dim_to_decimal:n { #1 + \textwidth } ~
3024 \dim_to_decimal:n { \box_ht:N \l__pdfannot_backend_model_box }
3025]
3026 [exch { pdf.pt.dvi } forall] def
3027 /pdf.baselineskip ~
3028 \dim_to_decimal:n { \tex_baselineskip:D } ~ dup ~ 0 ~ gt
3029 { pdf.pt.dvi ~ def }
3030 { pop ~ pop }
3031 ifelse
3032 }
3033 }
3034 \cs_new_protected:Npn __pdfannot_backend_link_sf_save:
3035 {
3036 \int_gset:Nn \g__pdfannot_backend_link_sf_int
3037 {
3038 \mode_if_horizontal:TF
3039 { \tex_spacefactor:D }
3040 { 0 }
3041 }
3042 }
3043 \cs_new_protected:Npn __pdfannot_backend_link_sf_restore:
3044 {
3045 \mode_if_horizontal:T
3046 {
3047 \int_compare:nNnT \g__pdfannot_backend_link_sf_int > { 0 }
3048 { \int_set:Nn \tex_spacefactor:D \g__pdfannot_backend_link_sf_int }
3049 }
3050 }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)
Hooks to allow link breaking: something will be needed in format mode at some

stage. At present this code is disabled, pending a decision to activate.
3051 \use_none:nnn
3052 \cs_if_exist:NT \hook_gput_code:nnn
3053 {

80

3054 \hook_gput_code:nnn { build/column/after } { backend }
3055 {
3056 \box_if_empty:NF \l_shipout_box
3057 {
3058 \vbox_set:Nn \l_shipout_box
3059 {
3060 __kernel_backend_postscript:n
3061 {
3062 pdf.globaldict /pdf.brokenlink.rect ~ known
3063 { pdf.bordertracking.continue }
3064 if
3065 }
3066 \vbox_unpack_drop:N \l_shipout_box
3067 __kernel_backend_postscript:n
3068 { pdf.bordertracking.endpage }
3069 }
3070 }
3071 }
3072 \tl_set:Nn \l__pdfannot_backend_breaklink_pdfmark_tl { pdf.pdfmark }
3073 \cs_set_eq:NN __pdfannot_backend_breaklink_postscript:n
3074 __kernel_backend_postscript:n
3075 \cs_set_eq:NN __pdfannot_backend_breaklink_usebox:N \hbox_unpack:N
3076 }

__pdfannot_backend_link_last: The same as annotations, but with a custom integer.
3077 \cs_new:Npn __pdfannot_backend_link_last:
3078 { { pdf.annot \int_use:N \g__pdfannot_backend_link_int } }

(End of definition for __pdfannot_backend_link_last:.)

__pdfannot_backend_link_margin:n Convert to big points and pass to PostScript.
3079 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1
3080 {
3081 __kernel_backend_postscript:e
3082 {
3083 /pdf.linkmargin { \dim_to_decimal:n {#1} ~ pdf.pt.dvi } def
3084 }
3085 }

(End of definition for __pdfannot_backend_link_margin:n.)

__pdfannot_backend_link_on:
__pdfannot_backend_link_off: 3086 \cs_new_protected:Npn __pdfannot_backend_link_on: { }

3087 \cs_new_protected:Npn __pdfannot_backend_link_off: { }

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)

3088 ⟨/dvips⟩

81

7.2 LuaTEX and pdfTEX backend
3089 ⟨∗luatex | pdftex⟩

__pdfannot_backend_generic:nnnn Simply pass the raw data through, just dealing with evaluation of dimensions.
3090 \cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4
3091 {
3092 ⟨∗luatex⟩
3093 \tex_pdfextension:D annot ~
3094 ⟨/luatex⟩
3095 ⟨∗pdftex⟩
3096 \tex_pdfannot:D
3097 ⟨/pdftex⟩
3098 width ~ \dim_eval:n {#1} ~
3099 height ~ \dim_eval:n {#2} ~
3100 depth ~ \dim_eval:n {#3} ~
3101 {#4}
3102 }

(End of definition for __pdfannot_backend_generic:nnnn.)

__pdfannot_backend_last: A tiny amount of extra data gets added here; we use e-type expansion to get the space
in the right place and form. The “extra” space in the LuaTEX version is required as it is
consumed in finding the end of the keyword.

3103 \cs_new:Npe __pdfannot_backend_last:
3104 {
3105 \exp_not:N \int_value:w
3106 ⟨∗luatex⟩
3107 \exp_not:N \tex_pdffeedback:D lastannot ~
3108 ⟨/luatex⟩
3109 ⟨∗pdftex⟩
3110 \exp_not:N \tex_pdflastannot:D
3111 ⟨/pdftex⟩
3112 \c_space_tl 0 ~ R
3113 }

(End of definition for __pdfannot_backend_last:.)

__pdfannot_backend_link_begin_goto:nnw
__pdfannot_backend_link_begin_user:nnw

__pdfannot_backend_link_begin:nnnw
__pdfannot_backend_link_end:

Links are all created using the same internals.
3114 \cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2
3115 { __pdfannot_backend_link_begin:nnnw {#1} { goto~name } {#2} }
3116 \cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2
3117 { __pdfannot_backend_link_begin:nnnw {#1} { user } {#2} }
3118 \cs_new_protected:Npn __pdfannot_backend_link_begin:nnnw #1#2#3
3119 {
3120 ⟨∗luatex⟩
3121 \tex_pdfextension:D startlink ~
3122 ⟨/luatex⟩
3123 ⟨∗pdftex⟩
3124 \tex_pdfstartlink:D
3125 ⟨/pdftex⟩
3126 attr {#1}
3127 #2 {#3}
3128 }
3129 \cs_new_protected:Npn __pdfannot_backend_link_end:

82

3130 {
3131 ⟨∗luatex⟩
3132 \tex_pdfextension:D endlink \scan_stop:
3133 ⟨/luatex⟩
3134 ⟨∗pdftex⟩
3135 \tex_pdfendlink:D
3136 ⟨/pdftex⟩
3137 }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)

__pdfannot_backend_link_last: Formatted for direct use.
3138 \cs_new:Npe __pdfannot_backend_link_last:
3139 {
3140 \exp_not:N \int_value:w
3141 ⟨∗luatex⟩
3142 \exp_not:N \tex_pdffeedback:D lastlink ~
3143 ⟨/luatex⟩
3144 ⟨∗pdftex⟩
3145 \exp_not:N \tex_pdflastlink:D
3146 ⟨/pdftex⟩
3147 \c_space_tl 0 ~ R
3148 }

(End of definition for __pdfannot_backend_link_last:.)

__pdfannot_backend_link_margin:n A simple task: pass the data to the primitive.
3149 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1
3150 {
3151 ⟨∗luatex⟩
3152 \tex_pdfvariable:D linkmargin
3153 ⟨/luatex⟩
3154 ⟨∗pdftex⟩
3155 \tex_pdflinkmargin:D
3156 ⟨/pdftex⟩
3157 \dim_eval:n {#1} \scan_stop:
3158 }

(End of definition for __pdfannot_backend_link_margin:n.)

__pdfannot_backend_link_on:
__pdfannot_backend_link_off:

Separate definitions for the two engines.
3159 \cs_new_protected:Npn __pdfannot_backend_link_on:
3160 ⟨∗luatex⟩
3161 { \tex_pdfextension:D linkstate 0 ~ }
3162 ⟨/luatex⟩
3163 ⟨∗pdftex⟩
3164 { \tex_pdfrunninglinkon:D }
3165 ⟨/pdftex⟩
3166 \cs_new_protected:Npn __pdfannot_backend_link_off:
3167 ⟨∗luatex⟩
3168 { \tex_pdfextension:D linkstate 1 ~ }
3169 ⟨/luatex⟩
3170 ⟨∗pdftex⟩
3171 { \tex_pdfrunninglinkoff:D }
3172 ⟨/pdftex⟩

83

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)

3173 ⟨/luatex | pdftex⟩

7.3 dvipdfmx backend
3174 ⟨∗dvipdfmx | xetex⟩

__pdfannot_backend:n
__pdfannot_backend:e

A generic function for the backend PDF specials
3175 \cs_new_protected:Npe __pdfannot_backend:n #1
3176 { __kernel_backend_literal:n { pdf: #1 } }
3177 \cs_generate_variant:Nn __pdfannot_backend:n { e }

(End of definition for __pdfannot_backend:n.)

\g__pdfannot_backend_int Annotations are objects: but made with a separate tracker integer.
3178 \int_new:N \g__pdfannot_backend_int

(End of definition for \g__pdfannot_backend_int.)

__pdfannot_backend_generic:nnnn Simply pass the raw data through, just dealing with evaluation of dimensions.
3179 \cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4
3180 {
3181 \int_gincr:N \g__pdfannot_backend_int
3182 __pdfannot_backend:e
3183 {
3184 ann ~ @pdfannot \int_use:N \g__pdfannot_backend_int \c_space_tl
3185 width ~ \dim_eval:n {#1} ~
3186 height ~ \dim_eval:n {#2} ~
3187 depth ~ \dim_eval:n {#3} ~
3188 << /Type /Annot #4 >>
3189 }
3190 }

(End of definition for __pdfannot_backend_generic:nnnn.)

__pdfannot_backend_last:

3191 \cs_new:Npn __pdfannot_backend_last:
3192 { @pdfannot \int_use:N \g__pdfannot_backend_int }

(End of definition for __pdfannot_backend_last:.)

\g__pdfannot_backend_link_int To track annotations which are links.
3193 \int_new:N \g__pdfannot_backend_link_int

(End of definition for \g__pdfannot_backend_link_int.)

__pdfannot_backend_link_begin_goto:nnw
__pdfannot_backend_link_begin_user:nnw

__pdfannot_backend_link_begin:n
__pdfannot_backend_link_end:

All created using the same internals.
3194 \cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2
3195 {
3196 __pdfannot_backend_link_begin:n
3197 { #1 /Subtype /Link /A << /S /GoTo /D (#2) >> }
3198 }
3199 \cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2
3200 { __pdfannot_backend_link_begin:n {#1#2} }
3201 \cs_new_protected:Npe __pdfannot_backend_link_begin:n #1

84

3202 {
3203 \int_gincr:N \exp_not:N \g__pdfannot_backend_int
3204 \int_gset_eq:NN \exp_not:N \g__pdfannot_backend_link_int
3205 \exp_not:N \g__pdfannot_backend_int
3206 __pdfannot_backend:e
3207 {
3208 bann ~
3209 @pdfannot
3210 \exp_not:N \int_use:N \exp_not:N \g__pdfannot_backend_link_int
3211 \c_space_tl
3212 <<
3213 /Type /Annot
3214 #1
3215 >>
3216 }
3217 }
3218 \cs_new_protected:Npn __pdfannot_backend_link_end:
3219 { __pdfannot_backend:n { eann } }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)

__pdfannot_backend_link_last: Available using the backend mechanism with a suitably-recent version.
3220 \cs_new:Npn __pdfannot_backend_link_last:
3221 { @pdfannot \int_use:N \g__pdfannot_backend_link_int }

(End of definition for __pdfannot_backend_link_last:.)

__pdfannot_backend_link_margin:n Pass to dvipdfmx.
3222 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1
3223 { __kernel_backend_literal:e { dvipdfmx:config~g~ \dim_eval:n {#1} } }

(End of definition for __pdfannot_backend_link_margin:n.)

__pdfannot_backend_link_on:
__pdfannot_backend_link_off: 3224 \cs_new_protected:Npn __pdfannot_backend_link_on: { __pdfannot_backend:n { link } }

3225 \cs_new_protected:Npn __pdfannot_backend_link_off: { __pdfannot_backend:n { nolink } }

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)

3226 ⟨/dvipdfmx | xetex⟩

7.4 dvisvgm backend
3227 ⟨∗dvisvgm⟩

__pdfannot_backend_generic:nnnn

3228 \cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4 { }

(End of definition for __pdfannot_backend_generic:nnnn.)

__pdfannot_backend_last:

3229 \cs_new:Npn __pdfannot_backend_last: { }

(End of definition for __pdfannot_backend_last:.)

85

__pdfannot_backend_link_begin_goto:nnw
__pdfannot_backend_link_begin_user:nnw

__pdfannot_backend_link_begin:nnnw
__pdfannot_backend_link_end:

3230 \cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2 { }
3231 \cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2 { }
3232 \cs_new_protected:Npn __pdfannot_backend_link_begin:nnnw #1#2#3 { }
3233 \cs_new_protected:Npn __pdfannot_backend_link_end: { }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)

__pdfannot_backend_link_last:

3234 \cs_new:Npe __pdfannot_backend_link_last: { }

(End of definition for __pdfannot_backend_link_last:.)

__pdfannot_backend_link_margin:n

3235 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1 { }

(End of definition for __pdfannot_backend_link_margin:n.)

__pdfannot_backend_link_on:
__pdfannot_backend_link_off:

For handling places like headers.
3236 \cs_new_protected:Npn __pdfannot_backend_link_on: { }
3237 \cs_new_protected:Npn __pdfannot_backend_link_off: { }

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)

3238 ⟨/dvisvgm⟩

7.5 Transitional code
This block is temporary: we have moved the backend functions here to a dedicated prefix.
To facilitate that, we turn off DocStrip substitution and handle things manually.

3239 ⟨@@=⟩

3240 \cs_new_eq:NN __pdf_backend_annotation:nnnn __pdfannot_backend_generic:nnnn
3241 \cs_new_eq:NN __pdf_backend_annotation_last: __pdfannot_backend_last:
3242 \clist_map_inline:nn
3243 {
3244 begin_goto:nnw ,
3245 begin_user:nnw ,
3246 begin:nnnw ,
3247 end: ,
3248 last: ,
3249 margin:n
3250 }
3251 { \cs_new_eq:cc { __pdf_backend_link_ #1 } { __pdfannot_backend_link_ #1 } }

3252 ⟨/package⟩

86

8 l3backend-opacity implementation
3253 ⟨∗package⟩
3254 ⟨@@=opacity⟩

Although opacity is not color, it needs to be managed in a somewhat similar way:
using a dedicated stack if possible. Depending on the backend, that may not be possible.
There is also the need to cover fill/stroke setting as well as more general running opacity.
It is easiest to describe the value used in terms of opacity, although commonly this is
referred to as transparency.

3255 ⟨∗dvips⟩

__opacity_backend_select:n
__opacity_backend_fill:n

__opacity_backend_stroke:n
__opacity_backend:nnn

__opacity_backend_reset:
__opacity_backend_reset_fill:

__opacity_backend_reset_stroke:

No stack so set values directly. The need to deal with Distiller and Ghostscript separately
means we use a common auxiliary: the two systems require different PostScript for
transparency. This is of course not quite as efficient as doing one test for setting all
transparency, but it keeps things clearer here. Thanks to Alex Grahn for the detail on
testing for GhostScript.

3256 \cs_new_protected:Npn __opacity_backend_select:n #1
3257 {
3258 __opacity_backend:nnn {#1} { fill } { ca }
3259 __opacity_backend:nnn {#1} { stroke } { CA }
3260 }
3261 \cs_new_protected:Npn __opacity_backend_fill:n #1
3262 {
3263 __opacity_backend:nnn
3264 { #1 }
3265 { fill }
3266 { ca }
3267 }
3268 \cs_new_protected:Npn __opacity_backend_stroke:n #1
3269 {
3270 __opacity_backend:nnn
3271 { #1 }
3272 { stroke }
3273 { CA }
3274 }
3275 \cs_new_protected:Npn __opacity_backend:nnn #1#2#3
3276 {
3277 __kernel_backend_postscript:n
3278 {
3279 product ~ (Ghostscript) ~ search
3280 {
3281 pop ~ pop ~ pop ~
3282 #1 ~ .set #2 constantalpha
3283 }
3284 {
3285 pop ~
3286 mark ~
3287 /#3 ~ #1
3288 /SetTransparency ~
3289 pdfmark
3290 }
3291 ifelse
3292 }

87

3293 }
3294 \cs_new_protected:Npn __opacity_backend_reset:
3295 {
3296 __opacity_backend_reset_fill:
3297 __opacity_backend_reset_stroke:
3298 }
3299 \cs_new_protected:Npn __opacity_backend_reset_fill:
3300 {
3301 __opacity_backend:nnn
3302 { 1 }
3303 { fill }
3304 { ca }
3305 }
3306 \cs_new_protected:Npn __opacity_backend_reset_stroke:
3307 {
3308 __opacity_backend:nnn
3309 { 1 }
3310 { stroke }
3311 { CA }
3312 }

(End of definition for __opacity_backend_select:n and others.)

3313 ⟨/dvips⟩

3314 ⟨∗dvipdfmx | luatex | pdftex | xetex⟩

\c__opacity_backend_stack_int Set up a stack, where that is applicable.
3315 \bool_lazy_and:nnT
3316 { \cs_if_exist_p:N \pdfmanagement_if_active_p: }
3317 { \pdfmanagement_if_active_p: }
3318 {
3319 ⟨∗luatex | pdftex⟩
3320 __kernel_color_backend_stack_init:Nnn \c__opacity_backend_stack_int
3321 { page ~ direct } { /opacity 1 ~ gs }
3322 ⟨/luatex | pdftex⟩
3323 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
3324 { opacity 1 } { << /ca ~ 1 /CA ~ 1 >> }
3325 }

(End of definition for \c__opacity_backend_stack_int.)

\l__opacity_backend_fill_tl
\l__opacity_backend_stroke_tl

We use tl here for speed: at the backend, this should be reasonable. Both need to start
off fully opaque.

3326 \tl_new:N \l__opacity_backend_fill_tl
3327 \tl_new:N \l__opacity_backend_stroke_tl
3328 \tl_set:Nn \l__opacity_backend_fill_tl { 1 }
3329 \tl_set:Nn \l__opacity_backend_stroke_tl { 1 }

(End of definition for \l__opacity_backend_fill_tl and \l__opacity_backend_stroke_tl.)

__opacity_backend_select:n
__opacity_backend_reset:

__opacity_backend_reset_fill:
__opacity_backend_reset_stroke:

Much the same as color.
3330 \cs_new_protected:Npn __opacity_backend_select:n #1
3331 {
3332 \tl_set:Nn \l__opacity_backend_fill_tl {#1}
3333 \tl_set:Nn \l__opacity_backend_stroke_tl {#1}

88

3334 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
3335 { opacity #1 }
3336 { << /ca ~ #1 /CA ~ #1 >> }
3337 ⟨∗dvipdfmx | xetex⟩
3338 __kernel_backend_literal_pdf:n
3339 ⟨/dvipdfmx | xetex⟩
3340 ⟨∗luatex | pdftex⟩
3341 __kernel_color_backend_stack_push:nn \c__opacity_backend_stack_int
3342 ⟨/luatex | pdftex⟩
3343 { /opacity #1 ~ gs }
3344 }
3345 \cs_new_protected:Npn __opacity_backend_reset:
3346 {
3347 ⟨∗dvipdfmx | xetex⟩
3348 __kernel_backend_literal_pdf:n
3349 { /opacity1 ~ gs }
3350 ⟨/dvipdfmx | xetex⟩
3351 ⟨∗luatex | pdftex⟩
3352 __kernel_color_backend_stack_pop:n \c__opacity_backend_stack_int
3353 ⟨/luatex | pdftex⟩
3354 }
3355 \cs_new_eq:NN __opacity_backend_reset_fill: __opacity_backend_reset:
3356 \cs_new_eq:NN __opacity_backend_reset_stroke: __opacity_backend_reset:

(End of definition for __opacity_backend_select:n and others.)

__opacity_backend_fill:n
__opacity_backend_stroke:n

__opacity_backend_fill_stroke:nn

For separate fill and stroke, we need to work out if we need to do more work or if we can
stick to a single setting.

3357 \cs_new_protected:Npn __opacity_backend_fill:n #1
3358 {
3359 \exp_args:Nno __opacity_backend_fill_stroke:nn
3360 { #1 }
3361 { \l__opacity_backend_stroke_tl }
3362 }
3363 \cs_new_protected:Npn __opacity_backend_stroke:n #1
3364 {
3365 \exp_args:No __opacity_backend_fill_stroke:nn
3366 { \l__opacity_backend_fill_tl }
3367 { #1 }
3368 }
3369 \cs_new_protected:Npn __opacity_backend_fill_stroke:nn #1#2
3370 {
3371 \str_if_eq:nnTF {#1} {#2}
3372 { __opacity_backend_select:n {#1} }
3373 {
3374 \tl_set:Nn \l__opacity_backend_fill_tl {#1}
3375 \tl_set:Nn \l__opacity_backend_stroke_tl {#2}
3376 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
3377 { opacity.fill #1 }
3378 { << /ca ~ #1 >> }
3379 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
3380 { opacity.stroke #2 }
3381 { << /CA ~ #2 >> }
3382 ⟨∗dvipdfmx | xetex⟩

89

3383 __kernel_backend_literal_pdf:n
3384 ⟨/dvipdfmx | xetex⟩
3385 ⟨∗luatex | pdftex⟩
3386 __kernel_color_backend_stack_push:nn \c__opacity_backend_stack_int
3387 ⟨/luatex | pdftex⟩
3388 { /opacity.fill #1 ~ gs /opacity.stroke #2 ~ gs }
3389 }
3390 }

(End of definition for __opacity_backend_fill:n , __opacity_backend_stroke:n , and __opacity_-
backend_fill_stroke:nn.)

__opacity_backend_select:n
__opacity_backend_fill_stroke:nn

__opacity_backend_reset:
__opacity_backend_reset_fill:

__opacity_backend_reset_stroke:

Redefine them to stubs if pdfmanagement is either not loaded or deactivated.
3391 \bool_lazy_and:nnF
3392 { \cs_if_exist_p:N \pdfmanagement_if_active_p: }
3393 { \pdfmanagement_if_active_p: }
3394 {
3395 \cs_gset_protected:Npn __opacity_backend_select:n #1 { }
3396 \cs_gset_protected:Npn __opacity_backend_fill_stroke:nn #1#2 { }
3397 \cs_gset_protected:Npn __opacity_backend_reset: { }
3398 \cs_gset_eq:NN __opacity_backend_reset_fill: __opacity_backend_reset:
3399 \cs_gset_eq:NN __opacity_backend_reset_stroke: __opacity_backend_reset:
3400 }

(End of definition for __opacity_backend_select:n and others.)

3401 ⟨/dvipdfmx | luatex | pdftex | xetex⟩

3402 ⟨∗dvisvgm⟩

__opacity_backend_select:n
__opacity_backend_fill:n

__opacity_backend_stroke:n
__opacity_backend:nn

__opacity_backend_reset:
__opacity_backend_reset_fill:

__opacity_backend_reset_stroke:

Once again, we use a scope here. There is a general opacity function for SVG, but that
is of course not set up using the stack.

3403 \cs_new_protected:Npn __opacity_backend_select:n #1
3404 { __opacity_backend:nn {#1} { } }
3405 \cs_new_protected:Npn __opacity_backend_fill:n #1
3406 { __opacity_backend:nn {#1} { fill- } }
3407 \cs_new_protected:Npn __opacity_backend_stroke:n #1
3408 { __opacity_backend:nn {#1} { stroke- } }
3409 \cs_new_protected:Npn __opacity_backend:nn #1#2
3410 { __kernel_backend_scope:e { #2 opacity = " #1 " } }
3411 \cs_new_protected:Npn __opacity_backend_reset: { }
3412 \cs_new_eq:NN __opacity_backend_reset_fill: __opacity_backend_reset:
3413 \cs_new_eq:NN __opacity_backend_reset_stroke: __opacity_backend_reset:

(End of definition for __opacity_backend_select:n and others.)

3414 ⟨/dvisvgm⟩

3415 ⟨/package⟩

8.1 Font handling integration
In LuaTEX we want to use these functions also for transparent fonts to avoid interference
between both uses of transparency.

3416 ⟨∗lua⟩

90

First we need to check if pdfmanagement is active from Lua.
3417 local pdfmanagement_active do
3418 local pdfmanagement_if_active_p = token.create’pdfmanagement_if_active_p:’
3419 local cmd = pdfmanagement_if_active_p.cmdname
3420 if cmd == ’undefined_cs’ then
3421 pdfmanagement_active = false
3422 else
3423 token.put_next(pdfmanagement_if_active_p)
3424 pdfmanagement_active = token.scan_int() ~= 0
3425 end
3426 end
3427

3428 if pdfmanagement_active and luaotfload and luaotfload.set_transparent_colorstack then
3429 luaotfload.set_transparent_colorstack(function() return token.create’c__opacity_backend_stack_int’.index end)
3430

3431 local transparent_register = {
3432 token.create’pdfmanagement_add:nnn’,
3433 token.new(0, 1),
3434 ’Page/Resources/ExtGState’,
3435 token.new(0, 2),
3436 token.new(0, 1),
3437 ’’,
3438 token.new(0, 2),
3439 token.new(0, 1),
3440 ’<</ca ’,
3441 ’’,
3442 ’/CA ’,
3443 ’’,
3444 ’>>’,
3445 token.new(0, 2),
3446 }
3447 luatexbase.add_to_callback(’luaotfload.parse_transparent’, function(value)
3448 value = (octet * -1):match(value)
3449 if not value then
3450 tex.error’Invalid transparency value’
3451 return
3452 end
3453 value = value:sub(1, -2)
3454 local result = ’opacity’ .. value
3455 tex.runtoks(function()
3456 transparent_register[6], transparent_register[10], transparent_register[12] = result, value, value
3457 tex.sprint(-2, transparent_register)
3458 end)
3459 return ’/’ .. result .. ’ gs’
3460 end, ’l3opacity’)
3461 end

3462 ⟨/lua⟩

9 l3backend-header implementation
3463 ⟨∗dvips & header⟩

color.sc Empty definition for color at the top level.

91

3464 /color.sc { } def

(End of definition for color.sc.)

TeXcolorseparation
separation

Support for separation/spot colors: this strange naming is so things work with the color
stack.

3465 TeXDict begin
3466 /TeXcolorseparation { setcolor } def
3467 end

(End of definition for TeXcolorseparation and separation.)

pdf.globaldict A small global dictionary for backend use.
3468 true setglobal
3469 /pdf.globaldict 4 dict def
3470 false setglobal

(End of definition for pdf.globaldict.)

pdf.cvs
pdf.dvi.pt
pdf.pt.dvi

pdf.rect.ht

Small utilities for PostScript manipulations. Conversion to DVI dimensions is done here
to allow for Resolution. The total height of a rectangle (an array) needs a little maths,
in contrast to simply extracting a value.

3471 /pdf.cvs { 65534 string cvs } def
3472 /pdf.dvi.pt { 72.27 mul Resolution div } def
3473 /pdf.pt.dvi { 72.27 div Resolution mul } def
3474 /pdf.rect.ht { dup 1 get neg exch 3 get add } def

(End of definition for pdf.cvs and others.)

pdf.linkmargin
pdf.linkdp.pad
pdf.linkht.pad

Settings which are defined up-front in SDict.
3475 /pdf.linkmargin { 1 pdf.pt.dvi } def
3476 /pdf.linkdp.pad { 0 } def
3477 /pdf.linkht.pad { 0 } def

(End of definition for pdf.linkmargin , pdf.linkdp.pad , and pdf.linkht.pad.)

pdf.rect
pdf.save.ll
pdf.save.ur

pdf.save.linkll
pdf.save.linkur

pdf.llx
pdf.lly
pdf.urx
pdf.ury

Functions for marking the limits of an annotation/link, plus drawing the border. We
separate links for generic annotations to support adding a margin and setting a minimal
size.

3478 /pdf.rect
3479 { /Rect [pdf.llx pdf.lly pdf.urx pdf.ury] } def
3480 /pdf.save.ll
3481 {
3482 currentpoint
3483 /pdf.lly exch def
3484 /pdf.llx exch def
3485 }
3486 def
3487 /pdf.save.ur
3488 {
3489 currentpoint
3490 /pdf.ury exch def
3491 /pdf.urx exch def
3492 }
3493 def

92

3494 /pdf.save.linkll
3495 {
3496 currentpoint
3497 pdf.linkmargin add
3498 pdf.linkdp.pad add
3499 /pdf.lly exch def
3500 pdf.linkmargin sub
3501 /pdf.llx exch def
3502 }
3503 def
3504 /pdf.save.linkur
3505 {
3506 currentpoint
3507 pdf.linkmargin sub
3508 pdf.linkht.pad sub
3509 /pdf.ury exch def
3510 pdf.linkmargin add
3511 /pdf.urx exch def
3512 }
3513 def

(End of definition for pdf.rect and others.)

pdf.dest.anchor
pdf.dest.x
pdf.dest.y

pdf.dest.point
pdf.dest2device

pdf.dev.x
pdf.dev.y
pdf.tmpa
pdf.tmpb
pdf.tmpc
pdf.tmpd

For finding the anchor point of a destination link. We make the use case a separate
function as it comes up a lot, and as this makes it easier to adjust if we need additional
effects. We also need a more complex approach to convert a coordinate pair correctly
when defining a rectangle: this can otherwise be out when using a landscape page.
(Thanks to Alexander Grahn for the approach here.)

3514 /pdf.dest.anchor
3515 {
3516 currentpoint exch
3517 pdf.dvi.pt 72 add
3518 /pdf.dest.x exch def
3519 pdf.dvi.pt
3520 vsize 72 sub exch sub
3521 /pdf.dest.y exch def
3522 }
3523 def
3524 /pdf.dest.point
3525 { pdf.dest.x pdf.dest.y } def
3526 /pdf.dest2device
3527 {
3528 /pdf.dest.y exch def
3529 /pdf.dest.x exch def
3530 matrix currentmatrix
3531 matrix defaultmatrix
3532 matrix invertmatrix
3533 matrix concatmatrix
3534 cvx exec
3535 /pdf.dev.y exch def
3536 /pdf.dev.x exch def
3537 /pdf.tmpd exch def
3538 /pdf.tmpc exch def
3539 /pdf.tmpb exch def

93

3540 /pdf.tmpa exch def
3541 pdf.dest.x pdf.tmpa mul
3542 pdf.dest.y pdf.tmpc mul add
3543 pdf.dev.x add
3544 pdf.dest.x pdf.tmpb mul
3545 pdf.dest.y pdf.tmpd mul add
3546 pdf.dev.y add
3547 }
3548 def

(End of definition for pdf.dest.anchor and others.)

pdf.bordertracking
pdf.bordertracking.begin

pdf.bordertracking.end
pdf.leftboundary

pdf.rightboundary
pdf.brokenlink.rect
pdf.brokenlink.skip
pdf.brokenlink.dict

pdf.bordertracking.endpage
pdf.bordertracking.continue

pdf.originx
pdf.originy

To know where a breakable link can go, we need to track the boundary rectangle. That
can be done by hooking into a and x operations: those names have to be retained. The
boundary is stored at the end of the operation. Special effort is needed at the start and
end of pages (or rather galleys), such that everything works properly.

3549 /pdf.bordertracking false def
3550 /pdf.bordertracking.begin
3551 {
3552 SDict /pdf.bordertracking true put
3553 SDict /pdf.leftboundary undef
3554 SDict /pdf.rightboundary undef
3555 /a where
3556 {
3557 /a
3558 {
3559 currentpoint pop
3560 SDict /pdf.rightboundary known dup
3561 {
3562 SDict /pdf.rightboundary get 2 index lt
3563 { not }
3564 if
3565 }
3566 if
3567 { pop }
3568 { SDict exch /pdf.rightboundary exch put }
3569 ifelse
3570 moveto
3571 currentpoint pop
3572 SDict /pdf.leftboundary known dup
3573 {
3574 SDict /pdf.leftboundary get 2 index gt
3575 { not }
3576 if
3577 }
3578 if
3579 { pop }
3580 { SDict exch /pdf.leftboundary exch put }
3581 ifelse
3582 }
3583 put
3584 }
3585 if
3586 }

94

3587 def
3588 /pdf.bordertracking.end
3589 {
3590 /a where { /a { moveto } put } if
3591 /x where { /x { 0 exch rmoveto } put } if
3592 SDict /pdf.leftboundary known
3593 { pdf.outerbox 0 pdf.leftboundary put }
3594 if
3595 SDict /pdf.rightboundary known
3596 { pdf.outerbox 2 pdf.rightboundary put }
3597 if
3598 SDict /pdf.bordertracking false put
3599 }
3600 def
3601 /pdf.bordertracking.endpage
3602 {
3603 pdf.bordertracking
3604 {
3605 pdf.bordertracking.end
3606 true setglobal
3607 pdf.globaldict
3608 /pdf.brokenlink.rect [pdf.outerbox aload pop] put
3609 pdf.globaldict
3610 /pdf.brokenlink.skip pdf.baselineskip put
3611 pdf.globaldict
3612 /pdf.brokenlink.dict
3613 pdf.link.dict pdf.cvs put
3614 false setglobal
3615 mark pdf.link.dict cvx exec /Rect
3616 [
3617 pdf.llx
3618 pdf.lly
3619 pdf.outerbox 2 get pdf.linkmargin add
3620 currentpoint exch pop
3621 pdf.outerbox pdf.rect.ht sub pdf.linkmargin sub
3622]
3623 /ANN pdf.pdfmark
3624 }
3625 if
3626 }
3627 def
3628 /pdf.bordertracking.continue
3629 {
3630 /pdf.link.dict pdf.globaldict
3631 /pdf.brokenlink.dict get def
3632 /pdf.outerbox pdf.globaldict
3633 /pdf.brokenlink.rect get def
3634 /pdf.baselineskip pdf.globaldict
3635 /pdf.brokenlink.skip get def
3636 pdf.globaldict dup dup
3637 /pdf.brokenlink.dict undef
3638 /pdf.brokenlink.skip undef
3639 /pdf.brokenlink.rect undef
3640 currentpoint

95

3641 /pdf.originy exch def
3642 /pdf.originx exch def
3643 /a where
3644 {
3645 /a
3646 {
3647 moveto
3648 SDict
3649 begin
3650 currentpoint pdf.originy ne exch
3651 pdf.originx ne or
3652 {
3653 pdf.save.linkll
3654 /pdf.lly
3655 pdf.lly pdf.outerbox 1 get sub def
3656 pdf.bordertracking.begin
3657 }
3658 if
3659 end
3660 }
3661 put
3662 }
3663 if
3664 /x where
3665 {
3666 /x
3667 {
3668 0 exch rmoveto
3669 SDict
3670 begin
3671 currentpoint
3672 pdf.originy ne exch pdf.originx ne or
3673 {
3674 pdf.save.linkll
3675 /pdf.lly
3676 pdf.lly pdf.outerbox 1 get sub def
3677 pdf.bordertracking.begin
3678 }
3679 if
3680 end
3681 }
3682 put
3683 }
3684 if
3685 }
3686 def

(End of definition for pdf.bordertracking and others.)

pdf.breaklink
pdf.breaklink.write

pdf.count
pdf.currentrect

Dealing with link breaking itself has multiple stage. The first step is to find the Rect entry
in the dictionary, looping over key–value pairs. The first line is handled first, adjusting
the rectangle to stay inside the text area. The second phase is a loop over the height of
the bulk of the link area, done on the basis of a number of baselines. Finally, the end of
the link area is tidied up, again from the boundary of the text area.

96

3687 /pdf.breaklink
3688 {
3689 pop
3690 counttomark 2 mod 0 eq
3691 {
3692 counttomark /pdf.count exch def
3693 {
3694 pdf.count 0 eq { exit } if
3695 counttomark 2 roll
3696 1 index /Rect eq
3697 {
3698 dup 4 array copy
3699 dup dup
3700 1 get
3701 pdf.outerbox pdf.rect.ht
3702 pdf.linkmargin 2 mul add sub
3703 3 exch put
3704 dup
3705 pdf.outerbox 2 get
3706 pdf.linkmargin add
3707 2 exch put
3708 dup dup
3709 3 get
3710 pdf.outerbox pdf.rect.ht
3711 pdf.linkmargin 2 mul add add
3712 1 exch put
3713 /pdf.currentrect exch def
3714 pdf.breaklink.write
3715 {
3716 pdf.currentrect
3717 dup
3718 pdf.outerbox 0 get
3719 pdf.linkmargin sub
3720 0 exch put
3721 dup
3722 pdf.outerbox 2 get
3723 pdf.linkmargin add
3724 2 exch put
3725 dup dup
3726 1 get
3727 pdf.baselineskip add
3728 1 exch put
3729 dup dup
3730 3 get
3731 pdf.baselineskip add
3732 3 exch put
3733 /pdf.currentrect exch def
3734 pdf.breaklink.write
3735 }
3736 1 index 3 get
3737 pdf.linkmargin 2 mul add
3738 pdf.outerbox pdf.rect.ht add
3739 2 index 1 get sub
3740 pdf.baselineskip div round cvi 1 sub

97

3741 exch
3742 repeat
3743 pdf.currentrect
3744 dup
3745 pdf.outerbox 0 get
3746 pdf.linkmargin sub
3747 0 exch put
3748 dup dup
3749 1 get
3750 pdf.baselineskip add
3751 1 exch put
3752 dup dup
3753 3 get
3754 pdf.baselineskip add
3755 3 exch put
3756 dup 2 index 2 get 2 exch put
3757 /pdf.currentrect exch def
3758 pdf.breaklink.write
3759 SDict /pdf.pdfmark.good false put
3760 exit
3761 }
3762 { pdf.count 2 sub /pdf.count exch def }
3763 ifelse
3764 }
3765 loop
3766 }
3767 if
3768 /ANN
3769 }
3770 def
3771 /pdf.breaklink.write
3772 {
3773 counttomark 1 sub
3774 index /_objdef eq
3775 {
3776 counttomark -2 roll
3777 dup wcheck
3778 {
3779 readonly
3780 counttomark 2 roll
3781 }
3782 { pop pop }
3783 ifelse
3784 }
3785 if
3786 counttomark 1 add copy
3787 pop pdf.currentrect
3788 /ANN pdfmark
3789 }
3790 def

(End of definition for pdf.breaklink and others.)

pdf.pdfmark
pdf.pdfmark.good

pdf.outerbox
pdf.baselineskip
pdf.pdfmark.dict

The business end of breaking links starts by hooking into pdfmarks. Unlike hypdvips,
we avoid altering any links we have not created by using a copy of the core pdfmarks

98

function. Only mark types which are known are altered. At present, this is purely ANN
marks, which are measured relative to the size of the baseline skip. If they are more than
one apparent line high, breaking is applied.

3791 /pdf.pdfmark
3792 {
3793 SDict /pdf.pdfmark.good true put
3794 dup /ANN eq
3795 {
3796 pdf.pdfmark.store
3797 pdf.pdfmark.dict
3798 begin
3799 Subtype /Link eq
3800 currentdict /Rect known and
3801 SDict /pdf.outerbox known and
3802 SDict /pdf.baselineskip known and
3803 {
3804 Rect 3 get
3805 pdf.linkmargin 2 mul add
3806 pdf.outerbox pdf.rect.ht add
3807 Rect 1 get sub
3808 pdf.baselineskip div round cvi 0 gt
3809 { pdf.breaklink }
3810 if
3811 }
3812 if
3813 end
3814 SDict /pdf.outerbox undef
3815 SDict /pdf.baselineskip undef
3816 currentdict /pdf.pdfmark.dict undef
3817 }
3818 if
3819 pdf.pdfmark.good
3820 { pdfmark }
3821 { cleartomark }
3822 ifelse
3823 }
3824 def
3825 /pdf.pdfmark.store
3826 {
3827 /pdf.pdfmark.dict 65534 dict def
3828 counttomark 1 add copy
3829 pop
3830 {
3831 dup mark eq
3832 {
3833 pop
3834 exit
3835 }
3836 {
3837 pdf.pdfmark.dict
3838 begin def end
3839 }
3840 ifelse
3841 }

99

3842 loop
3843 }
3844 def

(End of definition for pdf.pdfmark and others.)

3845 ⟨/dvips & header⟩

100

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\\ . 1137

A
\AtBeginDvi . 56

B
bool commands:

\bool_gset_false:N
. 1223, 1242, 1265, 1287,
1303, 1412, 1664, 1700, 2938, 2984

\bool_gset_true:N
. . 1221, 1290, 1410, 1679, 2931, 2937

\bool_if:NTF 66, 596, 1233,
1237, 1253, 1256, 1260, 1271, 1278,
1282, 1294, 1298, 1423, 1428, 1433,
1638, 1683, 1812, 1864, 1866, 2005,
2050, 2052, 2926, 2941, 2946, 2951

\bool_if:nTF 2429, 2610, 2798
\bool_lazy_and:nnTF

. 809, 2157, 3315, 3391
\bool_lazy_any:nTF 1852, 2040
\bool_new:N 1224, 1291,

1413, 1680, 1802, 1968, 2911, 2912
\bool_set_false:N

. . 1807, 1825, 1964, 1984, 2075, 2225
\bool_set_true:N 1824, 1992

box commands:
\box_dp:N .

. 235, 237, 285, 287, 342, 344, 391,
393, 395, 397, 2963, 2996, 2997, 3022

\box_ht:N 237, 287, 344, 395,
397, 1879, 2116, 2968, 3007, 3008, 3024

\box_if_empty:NTF 3056
\box_move_down:nn 2884, 2963
\box_move_up:nn 2246, 2886, 2968
\box_new:N 2874, 2875
\box_set_dp:Nn 1771
\box_set_ht:Nn 1770
\box_set_wd:Nn 299, 1769
\box_use:N 242, 260,

274, 290, 317, 331, 347, 363, 375,
426, 440, 459, 1363, 1571, 1772, 2916

\box_wd:N 236, 244,
286, 292, 343, 349, 392, 394, 1878, 2115

box internal commands:
__box_backend_clip:N

224, 224, 279, 279, 336, 336, 380, 380

\l__box_backend_cos_fp 294
__box_backend_rotate:Nn

246, 246, 294, 294, 351, 351, 430, 430
__box_backend_rotate_aux:Nn 246,

247, 248, 294, 295, 296, 351, 352, 353
__box_backend_scale:Nnn

263, 263, 322, 322, 366, 366, 443, 443
\l__box_backend_sin_fp 294

C
clist commands:

\clist_map_function:nN
. 1311, 1443, 1707

\clist_map_inline:nn 3242
color internal commands:

__color_backend:nnn
. 1045, 1060, 1068, 1074

\g__color_backend_colorant_prop .
. 562, 581, 584, 604, 845

__color_backend_devicen_-
colorants:n 563, 563, 765, 903

__color_backend_devicen_-
colorants:w 563, 571, 578, 586

__color_backend_devicen_-
init:nnn
. 752, 752, 870, 870, 1095, 1095

__color_backend_devicen_init:w .
. 870, 879, 908, 912

__color_backend_fill:n
. 949, 949, 951,
952, 953, 975, 976, 978, 980, 981,
1000, 1009, 1010, 1012, 1014, 1015,
1026, 1035, 1036, 1038, 1040, 1041

__color_backend_fill_cmyk:n . . .
. 949, 951,
975, 975, 1009, 1009, 1035, 1035, 1047

__color_backend_fill_devicen:nn
. 959,
969, 999, 1003, 1025, 1029, 1089, 1091

__color_backend_fill_gray:n 949,
952, 975, 977, 1009, 1011, 1035, 1037

__color_backend_fill_reset: 971,
971, 1005, 1005, 1031, 1031, 1093, 1093

__color_backend_fill_rgb:n 949,
953, 975, 979, 1009, 1013, 1035, 1039

__color_backend_fill_separation:nn
. . . 959, 959, 969, 999, 999, 1003,
1025, 1025, 1029, 1089, 1089, 1091

101

\l__color_backend_fill_tl
. 525, 537, 983, 997

__color_backend_iccbased_-
device:nnn 932, 932

__color_backend_iccbased_-
init:nnn
. 771, 771, 914, 914, 1095, 1096

__color_backend_init_resource:n
. 806, 806, 835, 906, 930, 945

__color_backend_reset:
. . . . 506, 521, 529, 541, 545, 550,
971, 972, 1005, 1006, 1031, 1049, 1093

__color_backend_rgb:w 1062
__color_backend_select:n

. 506, 507, 509, 511,
513, 514, 545, 545, 547, 548, 549, 591

__color_backend_select:nn
. 529, 530, 532, 534, 535, 802

__color_backend_select_cmyk:n . .
. 506, 506, 529, 529, 545, 547

__color_backend_select_devicen:nn
. 590, 592, 774, 775, 796, 804

__color_backend_select_gray:n . .
. . . . 506, 508, 529, 531, 545, 548, 555

__color_backend_select_iccbased:nn
. 593, 593, 778, 778, 796, 805

__color_backend_select_named:n .
. 506, 510, 552, 552

__color_backend_select_rgb:n . . .
. 506, 512, 529, 533, 545, 549

__color_backend_select_separation:nn
. 590, 590, 592,
774, 774, 775, 796, 797, 801, 804, 805

__color_backend_separation_-
init:n 594, 675, 688

__color_backend_separation_-
init:nn 823, 833, 837

__color_backend_separation_-
init:nnn 594, 629, 650

__color_backend_separation_-
init:nnnn 594, 652, 664

__color_backend_separation_-
init:nnnnn 594,
594, 615, 708, 776, 776, 823, 823, 863

__color_backend_separation_-
init:nw 594, 679, 690, 704

__color_backend_separation_-
init:w 594, 666, 681, 686

__color_backend_separation_-
init_/DeviceCMYK:nnn 594

__color_backend_separation_-
init_/DeviceGray:nnn 594

__color_backend_separation_-
init_/DeviceRGB:nnn 594

__color_backend_separation_-
init_aux:nnnnnn 594, 600, 616

__color_backend_separation_-
init_CIELAB:nnn
. 594, 706, 776, 823, 848

__color_backend_separation_-
init_CIELAB:nnnnnn 777

__color_backend_separation_-
init_count:n 594, 653, 656

__color_backend_separation_-
init_count:w . . . 594, 657, 658, 662

__color_backend_separation_-
init_Device:Nn
. 594, 638, 640, 642, 643

\l__color_backend_stack_int
. 467, 539, 542, 984, 996

__color_backend_stroke:n
. 949, 954, 956,
957, 958, 975, 988, 990, 992, 993, 1002

__color_backend_stroke_cmyk:n . .
. 949,
956, 975, 987, 1009, 1019, 1045, 1045

__color_backend_stroke_devicen:nn
. 959,
970, 999, 1004, 1025, 1030, 1089, 1092

__color_backend_stroke_gray:n . .
. 949,
957, 975, 989, 1009, 1021, 1045, 1051

__color_backend_stroke_gray_-
aux:n 1045, 1055, 1059

__color_backend_stroke_reset: . .
. 971,
972, 1005, 1006, 1031, 1032, 1093, 1094

__color_backend_stroke_rgb:n . . .
. 949,
958, 975, 991, 1009, 1023, 1045, 1061

__color_backend_stroke_rgb:w . . .
. 1045, 1063

__color_backend_stroke_separation:nn
. . 959, 964, 970, 999, 1001, 1004,
1025, 1027, 1030, 1089, 1090, 1092

\l__color_backend_stroke_tl
. 525, 538, 985, 995

\g__color_model_int 601, 610, 758,
786, 835, 841, 842, 896, 897, 906, 930

\c__color_model_range_CIELAB_tl .
. 713, 748, 859, 866

color.sc . 3464
cs commands:

\cs_generate_variant:Nn . . 62, 65,
170, 181, 212, 218, 615, 1169, 1580,
2019, 2086, 2106, 2273, 2288, 2351,
2561, 2574, 2684, 2699, 2729, 3177

\cs_gset:Npe . . 2441, 2445, 2803, 2808

102

\cs_gset_eq:NN 3398, 3399
\cs_gset_protected:Npn

. 3395, 3396, 3397
\cs_if_exist:NTF

. 27, 49, 2635, 2661, 3052
\cs_if_exist_p:N 810, 3316, 3392
\cs_if_exist_use:NTF 38, 628
\cs_new:Npe

563, 2575, 2586, 2653, 3103, 3138, 3234
\cs_new:Npn 578, 637, 639,

641, 643, 650, 656, 658, 664, 681,
688, 690, 908, 1316, 1448, 1711,
1881, 2119, 2263, 2280, 2352, 2354,
2447, 2448, 2530, 2531, 2543, 2562,
2563, 2666, 2692, 2730, 2732, 2811,
2812, 2824, 2825, 2830, 2831, 2836,
2837, 2906, 3077, 3191, 3220, 3229

\cs_new_eq:NN 46,
56, 58, 547, 548, 549, 592, 775,
804, 805, 951, 952, 953, 956, 957,
958, 969, 970, 971, 972, 1003, 1004,
1005, 1006, 1029, 1030, 1031, 1091,
1092, 1093, 1168, 1372, 1373, 1378,
1379, 1579, 1581, 1582, 1588, 1782,
1783, 1795, 1796, 1819, 1820, 1887,
1888, 1889, 1912, 1937, 1949, 1950,
1958, 1959, 1960, 1981, 1987, 1988,
1989, 2059, 2069, 2070, 2071, 2212,
2213, 2220, 2221, 2230, 2260, 2261,
2262, 2265, 2281, 2693, 2916, 3240,
3241, 3251, 3355, 3356, 3412, 3413

\cs_new_protected:Npe
. . . 594, 1074, 2625, 2682, 3175, 3201

\cs_new_protected:Npn
. . . . 47, 53, 60, 63, 71, 77, 82, 84,
88, 98, 108, 118, 128, 137, 146, 156,
168, 171, 173, 175, 179, 184, 193,
203, 213, 224, 246, 248, 263, 279,
294, 296, 322, 336, 351, 353, 366,
380, 430, 443, 470, 484, 494, 506,
508, 510, 512, 514, 521, 529, 531,
533, 535, 541, 545, 550, 552, 590,
593, 616, 706, 752, 771, 774, 776,
777, 778, 797, 801, 806, 823, 837,
848, 870, 914, 932, 949, 954, 959,
964, 975, 977, 979, 981, 987, 989,
991, 993, 999, 1001, 1009, 1011,
1013, 1015, 1019, 1021, 1023, 1025,
1027, 1032, 1035, 1037, 1039, 1041,
1045, 1051, 1059, 1061, 1063, 1089,
1090, 1094, 1095, 1096, 1170, 1176,
1181, 1183, 1185, 1193, 1201, 1210,
1220, 1222, 1225, 1227, 1244, 1249,
1267, 1289, 1292, 1305, 1318, 1323,

1325, 1327, 1329, 1331, 1333, 1335,
1337, 1342, 1347, 1374, 1376, 1380,
1385, 1390, 1400, 1409, 1411, 1414,
1416, 1418, 1420, 1425, 1430, 1435,
1437, 1450, 1455, 1457, 1459, 1461,
1463, 1465, 1467, 1469, 1488, 1512,
1518, 1530, 1542, 1554, 1561, 1583,
1589, 1594, 1599, 1610, 1620, 1630,
1632, 1634, 1636, 1667, 1669, 1674,
1676, 1678, 1681, 1702, 1713, 1726,
1728, 1730, 1732, 1734, 1736, 1738,
1740, 1742, 1750, 1758, 1784, 1803,
1821, 1836, 1841, 1849, 1882, 1895,
1913, 1923, 1939, 1952, 1961, 1970,
1982, 1990, 1995, 2010, 2020, 2063,
2072, 2078, 2084, 2087, 2094, 2107,
2112, 2120, 2133, 2167, 2198, 2199,
2201, 2203, 2205, 2211, 2214, 2222,
2228, 2231, 2233, 2244, 2271, 2274,
2276, 2278, 2282, 2289, 2306, 2311,
2316, 2321, 2331, 2336, 2344, 2356,
2382, 2387, 2415, 2427, 2439, 2443,
2449, 2451, 2455, 2478, 2492, 2502,
2513, 2532, 2564, 2597, 2608, 2614,
2642, 2676, 2678, 2685, 2687, 2690,
2694, 2700, 2705, 2710, 2712, 2714,
2722, 2734, 2756, 2761, 2794, 2796,
2801, 2806, 2813, 2815, 2819, 2820,
2821, 2822, 2823, 2826, 2827, 2828,
2829, 2832, 2833, 2834, 2835, 2838,
2839, 2842, 2861, 2868, 2877, 2882,
2915, 2917, 2922, 2924, 2929, 2944,
2949, 2986, 3015, 3034, 3043, 3079,
3086, 3087, 3090, 3114, 3116, 3118,
3129, 3149, 3159, 3166, 3179, 3194,
3199, 3218, 3222, 3224, 3225, 3228,
3230, 3231, 3232, 3233, 3235, 3236,
3237, 3256, 3261, 3268, 3275, 3294,
3299, 3306, 3330, 3345, 3357, 3363,
3369, 3403, 3405, 3407, 3409, 3411

\cs_set_eq:NN 3073, 3075
\cs_set_protected:Npn 2171

D
dim commands:

\dim_compare:nNnTF 2147, 2152
\dim_compare_p:nNn 2158, 2159
\dim_eval:n

. . . 2385, 2488, 2489, 2490, 2759,
2850, 2851, 2854, 2880, 3098, 3099,
3100, 3157, 3185, 3186, 3187, 3223

\dim_gset:Nn 2863, 2864
\dim_horizontal:n

. . 2395, 2402, 2773, 2792, 2890, 2892

103

\dim_max:nn 2994, 3005
\dim_set:Nn

. . 1878, 1879, 2115, 2116, 2143, 2144
\dim_set_eq:NN 2209
\dim_to_decimal:n . . 391, 392, 393,

394, 395, 397, 1592, 1597, 1603,
1604, 1605, 1606, 1615, 1616, 1617,
1708, 1727, 2253, 2254, 2992, 3003,
3021, 3022, 3023, 3024, 3028, 3083

\dim_to_decimal_in_bp:n
. . . . 235, 236, 237, 285, 286, 287,
342, 343, 344, 1189, 1190, 1197,
1198, 1205, 1206, 1214, 1215, 1216,
1313, 1317, 1321, 1383, 1388, 1394,
1395, 1396, 1404, 1405, 1445, 1449,
1453, 1712, 1789, 1790, 1791, 1792,
1975, 1976, 1977, 1978, 2034, 2035,
2036, 2037, 2238, 2239, 2240, 2241

\dim_vertical:n 2391, 2398, 2765, 2776
\dim_zero:N 2141, 2142
\c_max_dim

. . 2143, 2144, 2147, 2152, 2158, 2159
draw internal commands:

__draw_backend_add_to_path:n . . .
. 1589,
1591, 1596, 1601, 1612, 1620, 1635

__draw_backend_begin:
. . 1170, 1170, 1374, 1374, 1583, 1583

__draw_backend_box_use:Nnnnn . . .
. . 1347, 1347, 1561, 1561, 1758, 1758

__draw_backend_cap_butt:
. . 1305, 1325, 1437, 1457, 1702, 1730

__draw_backend_cap_rectangle: . .
. . 1305, 1329, 1437, 1461, 1702, 1734

__draw_backend_cap_round:
. . 1305, 1327, 1437, 1459, 1702, 1732

__draw_backend_clip:
. . 1225, 1289, 1414, 1430, 1634, 1678

__draw_backend_closepath:
. 1225, 1225,
1246, 1414, 1414, 1634, 1634, 1671

__draw_backend_closestroke: . . .
. . 1225, 1244, 1414, 1418, 1634, 1669

__draw_backend_curveto:nnnnnn . .
. . 1185, 1210, 1380, 1390, 1589, 1610

__draw_backend_dash:n
. 1305, 1311, 1316,
1437, 1443, 1448, 1702, 1707, 1711

__draw_backend_dash_aux:nn
. 1702, 1706, 1713

__draw_backend_dash_pattern:nn .
. . 1305, 1305, 1437, 1437, 1702, 1702

__draw_backend_discardpath: . . .
. . 1225, 1292, 1414, 1435, 1634, 1681

__draw_backend_end:
. . 1170, 1176, 1374, 1376, 1583, 1588

__draw_backend_evenodd_rule: . . .
. . 1220, 1220, 1409, 1409, 1630, 1630

__draw_backend_fill:
. . 1225, 1249, 1414, 1420, 1634, 1674

__draw_backend_fillstroke:
. . 1225, 1267, 1414, 1425, 1634, 1676

__draw_backend_join_bevel:
. . 1305, 1335, 1437, 1467, 1702, 1740

__draw_backend_join_miter:
. . 1305, 1331, 1437, 1463, 1702, 1736

__draw_backend_join_round:
. . 1305, 1333, 1437, 1465, 1702, 1738

__draw_backend_lineto:nn
. . 1185, 1193, 1380, 1385, 1589, 1594

__draw_backend_linewidth:n
. . 1305, 1318, 1437, 1450, 1702, 1726

__draw_backend_literal:n
1168, 1168, 1169, 1172, 1173, 1174,

1178, 1179, 1182, 1184, 1187, 1195,
1203, 1212, 1226, 1229, 1230, 1231,
1232, 1235, 1241, 1251, 1258, 1264,
1269, 1274, 1275, 1276, 1277, 1280,
1286, 1296, 1302, 1307, 1320, 1324,
1326, 1328, 1330, 1332, 1334, 1336,
1339, 1344, 1349, 1350, 1351, 1352,
1353, 1354, 1355, 1356, 1357, 1361,
1362, 1364, 1365, 1366, 1367, 1368,
1372, 1372, 1373, 1382, 1387, 1392,
1402, 1415, 1417, 1419, 1422, 1427,
1432, 1436, 1439, 1452, 1456, 1458,
1460, 1462, 1464, 1466, 1468, 1514,
1579, 1579, 1580, 1641, 1660, 1686

__draw_backend_miterlimit:n . . .
. . 1305, 1323, 1437, 1455, 1702, 1728

__draw_backend_moveto:nn
. . 1185, 1185, 1380, 1380, 1589, 1589

__draw_backend_nonzero_rule: . . .
. . 1220, 1222, 1409, 1411, 1630, 1632

__draw_backend_path:n
. 1634, 1636, 1668, 1675, 1677

\g__draw_backend_path_int 1649, 1666
\g__draw_backend_path_tl

. . 1589, 1645, 1661, 1663, 1690, 1699
__draw_backend_rectangle:nnnn . .

. . 1185, 1201, 1380, 1400, 1589, 1599
__draw_backend_scope_begin: 1181,

1181, 1375, 1378, 1378, 1581, 1581
__draw_backend_scope_end: 1181,

1183, 1377, 1378, 1379, 1581, 1582
__draw_backend_shift:nn

. . 1337, 1342, 1469, 1512, 1742, 1750

104

__draw_backend_stroke: 1225, 1227,
1247, 1414, 1416, 1634, 1667, 1672

__draw_backend_transform:nnnn . .
. 1337, 1337, 1358, 1359,
1360, 1469, 1469, 1742, 1742, 1761

__draw_backend_transform_-
aux:nnnn 1469, 1483, 1488

__draw_backend_transform_-
decompose:nnnnN . 1482, 1517, 1518

__draw_backend_transform_-
decompose_auxi:nnnnN
. 1517, 1522, 1530

__draw_backend_transform_-
decompose_auxii:nnnnN
. 1517, 1534, 1542

__draw_backend_transform_-
decompose_auxiii:nnnnN
. 1517, 1546, 1554

\g__draw_draw_clip_bool . . 1225, 1634
\g__draw_draw_eor_bool

. . . 1220, 1237, 1253, 1260, 1271,
1282, 1298, 1409, 1423, 1428, 1433

\g__draw_draw_path_int 1634

E
\errmessage . 38
\evensidemargin 2961
exp commands:

\exp_args:Ne 598,
652, 833, 1843, 1901, 1903, 1927,
1929, 2318, 2333, 2384, 2758, 2957

\exp_args:Nf 1310, 1442, 2879
\exp_args:Nne 2725
\exp_args:NNf 247, 295, 352
\exp_args:Nno 3359
\exp_args:No 3365
\exp_not:N 565,

571, 572, 573, 598, 600, 601, 604,
605, 610, 2577, 2579, 2582, 2588,
2590, 2593, 2630, 2631, 2637, 2638,
2657, 2662, 3105, 3107, 3110, 3140,
3142, 3145, 3203, 3204, 3205, 3210

\exp_not:n 48, 96, 116, 154,
922, 2309, 2314, 2378, 2547, 2548,
2562, 2563, 2703, 2708, 2719, 2738

\ExplBackendFileDate 1

F
file commands:

\file_compare_timestamp:nNnTF . 1915
\file_parse_full_name:nNNN 1897, 1925

\fmtversion . 51
fp commands:

\fp_compare:nNnTF
. 254, 301, 307, 359, 1493, 1506, 1556

\fp_eval:n
. 247, 256, 269, 270, 295, 312, 327,
329, 352, 361, 372, 373, 437, 452,
453, 1056, 1069, 1070, 1071, 1495,
1500, 1501, 1508, 1523, 1524, 1525,
1526, 1535, 1536, 1537, 1538, 1547,
1548, 1549, 1550, 2375, 2475, 2752

\fp_new:N 320, 321
\fp_set:Nn 300, 303
\fp_use:N 306, 310, 315
\fp_zero:N 302
\c_zero_fp 254, 301, 307, 359, 1493, 1506

G
graphics commands:

\l_graphics_search_ext_seq
. 1781, 1799, 1947, 2131

graphics internal commands:
\l__graphics_attr_tl 1801,

1808, 1826, 1838, 1845, 1847, 1885
__graphics_backend_dequote:w . . .

. 1803, 1844, 1881
\l__graphics_backend_dir_str . 1890
\l__graphics_backend_ext_str . 1890
__graphics_backend_get_pagecount:n

. 1796, 1796, 1939, 1939,
2058, 2059, 2120, 2120, 2265, 2265

__graphics_backend_getbb_auxi:n
. 1803, 1817, 1834, 1836

__graphics_backend_getbb_-
auxi:nN 2063, 2067, 2076, 2078

__graphics_backend_getbb_-
auxii:n 1803, 1839, 1841

__graphics_backend_getbb_-
auxii:nnN . . 2063, 2081, 2084, 2086

__graphics_backend_getbb_-
auxiii:n 1803, 1843, 1849

__graphics_backend_getbb_-
auxiii:nNnn . 2063, 2082, 2085, 2087

__graphics_backend_getbb_-
auxiv:nnNnn . 2063, 2090, 2094, 2106

__graphics_backend_getbb_-
auxv:nNnn . . 2063, 2091, 2098, 2107

__graphics_backend_getbb_-
auxvi:nNnn 2110, 2112

__graphics_backend_getbb_bmp:n .
. 1949, 1960, 2063, 2071

__graphics_backend_getbb_eps:n .
. 1782, 1782, 1890,
1895, 1912, 1949, 1949, 2212, 2212

__graphics_backend_getbb_eps:nm
. 1890

__graphics_backend_getbb_eps:nn
. 1901, 1913

105

__graphics_backend_getbb_jpeg:n
. 1803, 1819,
1949, 1958, 2063, 2069, 2214, 2220

__graphics_backend_getbb_jpg:n .
1803, 1803, 1819, 1820, 1949, 1952,

1958, 1959, 1960, 2063, 2063, 2069,
2070, 2071, 2214, 2214, 2220, 2221

__graphics_backend_getbb_-
pagebox:w 2063, 2102, 2119

__graphics_backend_getbb_pdf:n .
. 1803, 1821, 1921,
1949, 1961, 2063, 2072, 2222, 2222

__graphics_backend_getbb_png:n .
. 1803, 1820,
1949, 1959, 2063, 2070, 2214, 2221

__graphics_backend_getbb_ps:n . .
. 1782, 1783,
1890, 1912, 1949, 1950, 2212, 2213

__graphics_backend_getbb_svg:n .
. 2133, 2133

__graphics_backend_getbb_svg_-
auxi:nNn . . . 2133, 2149, 2154, 2167

__graphics_backend_getbb_svg_-
auxii:w 2133, 2171, 2193, 2198

__graphics_backend_getbb_svg_-
auxiii:Nw 2133, 2181, 2199

__graphics_backend_getbb_svg_-
auxiv:Nw 2133, 2184, 2201

__graphics_backend_getbb_svg_-
auxv:Nw 2133, 2185, 2203

__graphics_backend_getbb_svg_-
auxvi:Nn 2133, 2200, 2202, 2204, 2205

__graphics_backend_getbb_svg_-
auxvii:w 2133, 2207, 2211

__graphics_backend_include:nn . .
. 2228, 2229, 2232, 2233

__graphics_backend_include_-
auxi:n 1970, 1985, 1993, 1995

__graphics_backend_include_-
auxii:nn . . . 1970, 1997, 2010, 2019

__graphics_backend_include_-
auxiii:nn 1970, 2017, 2020

__graphics_backend_include_-
bmp:n 1970, 1988

__graphics_backend_include_-
dequote:w 2244, 2255, 2263

__graphics_backend_include_-
eps:n 1784,
1784, 1795, 1890, 1923, 1937,
1970, 1970, 1981, 2228, 2228, 2230

__graphics_backend_include_-
jpeg:n . 1882, 1887, 1987, 2244, 2261

__graphics_backend_include_-
jpg:n 1882,

1882, 1887, 1888, 1889, 1970,
1982, 1987, 1988, 1989, 2244, 2262

__graphics_backend_include_-
jpseg:n 1970

__graphics_backend_include_-
pdf:n 1882,
1888, 1927, 1970, 1990, 2228, 2231

__graphics_backend_include_-
png:n .
. . 1882, 1889, 1970, 1989, 2244, 2260

__graphics_backend_include_ps:n
. 1784, 1795,
1890, 1937, 1970, 1981, 2228, 2230

__graphics_backend_include_-
svg:n . . 2244, 2244, 2260, 2261, 2262

\l__graphics_backend_name_str . 1890
__graphics_bb_restore:nTF

. 1838, 2109, 2135
__graphics_bb_save:n 1847, 2117, 2162
\l__graphics_decodearray_str . . .

. 1810, 1811,
1823, 1856, 1862, 1863, 1963, 2003,
2004, 2044, 2048, 2049, 2074, 2224

__graphics_extract_bb:n
. 1956, 1965, 2218, 2226

\l__graphics_final_name_str . . 1920
__graphics_get_pagecount:n

. 1796, 2059, 2265
\l__graphics_interpolate_bool . . .

. 1812, 1825, 1854, 1866,
1964, 2005, 2042, 2052, 2075, 2225

\l__graphics_llx_dim
. 1789, 1975, 2034, 2141, 2238

\l__graphics_lly_dim
. 1790, 1976, 2035, 2142, 2239

\l__graphics_page_int 1805, 1829,
1830, 1871, 1872, 1954, 2001, 2002,
2028, 2029, 2065, 2080, 2081, 2216

\l__graphics_pagebox_tl . . . 1806,
1828, 1873, 1874, 1955, 1999, 2000,
2030, 2032, 2066, 2089, 2090, 2217

\l__graphics_pdf_str
. . 1814, 1815, 1831, 1832, 1857, 1868

__graphics_read_bb:n
. . 1782, 1783, 1949, 1950, 2212, 2213

\l__graphics_tmp_box
. . 1876, 1878, 1879, 2114, 2115, 2116

\l__graphics_tmp_dim 2208, 2209
\l__graphics_tmp_ior

. 2137, 2138, 2145, 2164
\g__graphics_track_int

. 1969, 2022, 2023
\l__graphics_transgroup_bool . . .

. 1802, 1807, 1824, 1855,

106

1864, 1968, 1984, 1992, 2043, 2050
\l__graphics_urx_dim

. . . 1791, 1878, 1977, 2036, 2115,
2143, 2147, 2150, 2158, 2240, 2253

\l__graphics_ury_dim
1792, 1879, 1978, 2037, 2116, 2144,

2152, 2155, 2159, 2241, 2246, 2254
group commands:

\group_begin: 190, 209
\group_end: 198

H
hbox commands:

\hbox:n 2248, 2392, 2399,
2766, 2777, 2885, 2888, 2964, 2970

\hbox_overlap_right:n 242,
274, 290, 331, 347, 375, 459, 1363, 1571

\hbox_set:Nn . . 1876, 2114, 2956, 2988
\hbox_set:Nw 2939
\hbox_set_end: 2954
\hbox_unpack:N 3075

hook commands:
\hook_gput_code:nnn . . 54, 3052, 3054

I
int commands:

\int_compare:nNnTF 1829, 1871, 2001,
2028, 2080, 2417, 2628, 2656, 3047

\int_const:Nn
. 472, 1845, 1942, 2023, 2122

\int_eval:n 492, 502, 648, 657, 670,
672, 676, 689, 2441, 2445, 2606,
2631, 2638, 2651, 2795, 2803, 2808

\int_gincr:N 216,
382, 1640, 1685, 2022, 2279, 2346,
2691, 2724, 2895, 2973, 3181, 3203

\int_gset:Nn 191, 210, 2522, 3036
\int_gset_eq:NN 199, 2974, 3204
\int_if_exist:NTF 2012
\int_if_odd:nTF 2959
\int_max:nn 2124
\int_new:N 182, 183, 429, 467, 1666,

1969, 2876, 2908, 2910, 3178, 3193
\int_set:Nn 3048
\int_set_eq:NN 187, 206
\int_step_function:nnnN 674
\int_use:N 384,

415, 601, 610, 758, 786, 835, 841,
842, 896, 897, 906, 930, 1643, 1649,
1656, 1688, 1696, 1830, 1872, 1885,
1943, 2002, 2015, 2027, 2029, 2125,
2348, 2353, 2726, 2731, 2899, 2907,
2978, 3078, 3184, 3192, 3210, 3221

\int_value:w
. 2577, 2588, 2606, 3105, 3140

\int_zero:N . . . 1805, 1954, 2065, 2216
ior commands:

\ior_close:N 2164
\ior_if_eof:NTF 2138
\ior_map_break: 2160
\ior_open:Nn 2137
\ior_str_map_inline:Nn 2145

K
kernel internal commands:

__kernel_backend_align_begin: . .
. 71, 71, 227, 251, 266

__kernel_backend_align_end: . . .
. 71, 77, 241, 259, 273

__kernel_backend_first_shipout:n
. 49, 53, 56, 58, 68, 598, 2844

\g__kernel_backend_header_bool . .
. 66, 596

__kernel_backend_literal:n
. 46, 46, 47, 48, 61, 64, 69,
73, 80, 83, 85, 169, 172, 174, 176,
180, 356, 369, 516, 522, 546, 551,
618, 754, 798, 950, 955, 961, 966,
1017, 1043, 1477, 1478, 1479, 1490,
1497, 1503, 1568, 1573, 1786, 1972,
2014, 2024, 2235, 2250, 2683, 2795,
2799, 2804, 2809, 2846, 3176, 3223

__kernel_backend_literal_page:n
. 108, 108,
118, 171, 171, 2677, 2679, 2814, 2816

__kernel_backend_literal_pdf:n .
. 88, 88, 98, 168, 168, 170,
282, 339, 1372, 1373, 3338, 3348, 3383

__kernel_backend_literal_-
postscript:n 60,
60, 62, 74, 75, 79, 228, 229, 231,
232, 240, 252, 267, 1168, 2419, 2431

__kernel_backend_literal_svg:n .
. 179, 179, 181, 186, 197, 205, 215,
383, 385, 402, 780, 1579, 1762, 1773

__kernel_backend_matrix:n
. . 146, 146, 156, 304, 325, 1472, 1565

__kernel_backend_postscript:n . .
. 63, 63, 65, 518,
1020, 1022, 1024, 1028, 2272, 2323,
2338, 2358, 2392, 2399, 2885, 2891,
2896, 2932, 2964, 2971, 2975, 2989,
3017, 3060, 3067, 3074, 3081, 3277

__kernel_backend_scope:n
. . . 184, 213, 218, 412, 417, 1048,
1076, 1586, 1631, 1633, 1653, 1693,

107

1715, 1727, 1729, 1731, 1733, 1735,
1737, 1739, 1741, 1744, 1752, 3410

__kernel_backend_scope_begin: . .
82, 82, 128, 128, 173, 173, 184, 184,
226, 250, 265, 281, 298, 324, 338,
355, 368, 1378, 1563, 1581, 1585, 1760

__kernel_backend_scope_begin:n .
. 184, 203, 212, 404, 432, 445

__kernel_backend_scope_end: . . .
. 82, 84, 128, 137,
173, 175, 184, 193, 243, 261, 275,
291, 318, 332, 348, 364, 376, 427,
441, 460, 1379, 1575, 1582, 1588, 1774

\g__kernel_backend_scope_int . . .
182, 189, 191, 196, 200, 208, 210, 216

\l__kernel_backend_scope_int . . .
. 182, 188, 201, 207

\g__kernel_clip_path_int
380, 1640, 1643, 1656, 1685, 1688, 1696

__kernel_color_backend_stack_-
init:Nnn 470, 470, 3320

__kernel_color_backend_stack_-
pop:n 484, 494, 542, 3352

__kernel_color_backend_stack_-
push:nn
. . 484, 484, 539, 984, 996, 3341, 3386

__kernel_dependency_version_-
check:Nn 1

__kernel_dependency_version_-
check:nn 27, 29

__kernel_file_name_quote:n
. 1903, 1929

L
lua commands:

\lua_load_module:n 1162

M
\MessageBreak 40
mode commands:

\mode_if_horizontal:TF . . . 3038, 3045
\mode_if_math:TF 2936

msg commands:
\msg_error:nnn 556, 2139
\msg_new:nnn 558

O
\oddsidemargin 2960
opacity internal commands:

__opacity_backend:nn
. 3403, 3404, 3406, 3408, 3409

__opacity_backend:nnn 3256, 3258,
3259, 3263, 3270, 3275, 3301, 3308

__opacity_backend_fill:n
. . 3256, 3261, 3357, 3357, 3403, 3405

__opacity_backend_fill_stroke:nn
. . 3357, 3359, 3365, 3369, 3391, 3396

\l__opacity_backend_fill_tl
. 3326, 3332, 3366, 3374

__opacity_backend_reset:
. 3256, 3294,
3330, 3345, 3355, 3356, 3391, 3397,
3398, 3399, 3403, 3411, 3412, 3413

__opacity_backend_reset_fill: . .
. 3256, 3296, 3299,
3330, 3355, 3391, 3398, 3403, 3412

__opacity_backend_reset_stroke:
. 3256, 3297, 3306,
3330, 3356, 3391, 3399, 3403, 3413

__opacity_backend_select:n
. 3256, 3256, 3330,
3330, 3372, 3391, 3395, 3403, 3403

\c__opacity_backend_stack_int . . .
. 3315, 3341, 3352, 3386

__opacity_backend_stroke:n
. . 3256, 3268, 3357, 3363, 3403, 3407

\l__opacity_backend_stroke_tl . . .
. 3326, 3333, 3361, 3375

P
pdf commands:

\pdf_object_if_exist:nTF 850, 916, 934
\pdf_object_new:n

. 841, 852, 896, 918, 936
\pdf_object_ref:n

. 798, 865, 929, 944, 962, 967
\pdf_object_ref_last:

. 818, 843, 846, 902
\pdf_object_unnamed_write:nn . . .

. 825, 872, 928, 943
\pdf_object_write:nnn

. 842, 853, 897, 919, 937
pdf internal commands:

__pdf_backend:n
2682, 2682, 2684, 2686, 2688, 2702,

2707, 2716, 2736, 2768, 2769, 2779
__pdf_backend_annotation:nnnn 3240
__pdf_backend_annotation_last: 3241
__pdf_backend_bdc:nn 2449, 2449,

2676, 2676, 2813, 2813, 2838, 2838
__pdf_backend_catalog_gput:nn . .

. 2274, 2274,
2492, 2492, 2685, 2685, 2821, 2821

__pdf_backend_compress_objects:n
. 2415, 2427,
2597, 2608, 2794, 2796, 2832, 2833

__pdf_backend_compresslevel:n . .
. 2415, 2415,
2597, 2597, 2794, 2794, 2832, 2832

108

__pdf_backend_destination:nn . . .
. 2356, 2356,
2455, 2455, 2734, 2734, 2819, 2819

__pdf_backend_destination:nnnn .
. 2356, 2382,
2455, 2478, 2734, 2756, 2819, 2820

__pdf_backend_destination_-
aux:nnnn
. . 2356, 2384, 2387, 2734, 2758, 2761

__pdf_backend_emc: . . 2449, 2451,
2676, 2678, 2813, 2815, 2838, 2839

__pdf_backend_info_gput:nn
. 2274, 2276,
2492, 2502, 2685, 2687, 2821, 2822

__pdf_backend_objcompresslevel:n
. 2597, 2611, 2612, 2614

__pdf_backend_object_id:n
. 2278, 2281,
2513, 2531, 2690, 2693, 2823, 2825

\g__pdf_backend_object_int
. 2279, 2346, 2348,
2353, 2522, 2691, 2724, 2726, 2731

__pdf_backend_object_last:
. 2352, 2352,
2575, 2575, 2730, 2730, 2823, 2830

__pdf_backend_object_new:
. 2278, 2278,
2513, 2513, 2690, 2690, 2823, 2823

__pdf_backend_object_now:nn . . .
2344, 2344, 2351, 2564, 2564, 2574,

2722, 2722, 2729, 2823, 2828, 2829
\g__pdf_backend_object_prop

. 2512, 2689
__pdf_backend_object_ref:n

2278, 2280, 2281, 2285, 2513, 2530,
2690, 2692, 2693, 2697, 2823, 2824

__pdf_backend_object_write:nn . .
. 2532, 2541, 2543, 2572, 2823

__pdf_backend_object_write:nnn .
2282, 2282, 2288, 2532, 2532, 2561,

2694, 2694, 2699, 2823, 2826, 2827
__pdf_backend_object_write_-

array:nn . . . 2282, 2306, 2694, 2700
__pdf_backend_object_write_-

aux:nnn 2282, 2284, 2289, 2347
__pdf_backend_object_write_-

dict:nn 2282, 2311, 2694, 2705
__pdf_backend_object_write_-

fstream:nn . 2282, 2316, 2694, 2710
__pdf_backend_object_write_-

fstream:nnn 2319, 2321
__pdf_backend_object_write_-

stream:nn . . 2282, 2331, 2694, 2712

__pdf_backend_object_write_-
stream:nnn 2282, 2334, 2336

__pdf_backend_object_write_-
stream:nnnn . 2694, 2711, 2713, 2714

__pdf_backend_pageobject_ref:n .
. 2354, 2354,
2586, 2586, 2732, 2732, 2823, 2831

__pdf_backend_pagesize_gset:nn .
. . 2842, 2842, 2861, 2861, 2868, 2868

__pdf_backend_pdfmark:n
2271, 2271, 2273, 2275, 2277, 2291,

2308, 2313, 2359, 2403, 2450, 2452
__pdf_backend_version_major: . . .

. . . 2441, 2447, 2447, 2653, 2653,
2803, 2804, 2811, 2811, 2836, 2836

__pdf_backend_version_major_-
gset:n 2439, 2439,
2625, 2625, 2801, 2801, 2834, 2834

__pdf_backend_version_minor: . . .
. . . 2445, 2447, 2448, 2653, 2666,
2808, 2809, 2811, 2812, 2836, 2837

__pdf_backend_version_minor_-
gset:n 2439, 2443,
2625, 2642, 2801, 2806, 2834, 2835

__pdf_exp_not_i:nn
. 2532, 2551, 2556, 2562

__pdf_exp_not_ii:nn
. 2532, 2552, 2557, 2563

pdf.baselineskip 3791
pdf.bordertracking 3549
pdf.bordertracking.begin 3549
pdf.bordertracking.continue 3549
pdf.bordertracking.end 3549
pdf.bordertracking.endpage 3549
pdf.breaklink 3687
pdf.breaklink.write 3687
pdf.brokenlink.dict 3549
pdf.brokenlink.rect 3549
pdf.brokenlink.skip 3549
pdf.count . 3687
pdf.currentrect 3687
pdf.cvs . 3471
pdf.dest.anchor 3514
pdf.dest.point 3514
pdf.dest.x 3514
pdf.dest.y 3514
pdf.dest2device 3514
pdf.dev.x . 3514
pdf.dev.y . 3514
pdf.dvi.pt 3471
pdf.globaldict 3468
pdf.leftboundary 3549
pdf.linkdp.pad 3475
pdf.linkht.pad 3475

109

pdf.linkmargin 3475
pdf.llx . 3478
pdf.lly . 3478
pdf.originx 3549
pdf.originy 3549
pdf.outerbox 3791
pdf.pdfmark 3791
pdf.pdfmark.dict 3791
pdf.pdfmark.good 3791
pdf.pt.dvi 3471
pdf.rect . 3478
pdf.rect.ht 3471
pdf.rightboundary 3549
pdf.save.linkll 3478
pdf.save.linkur 3478
pdf.save.ll 3478
pdf.save.ur 3478
pdf.tmpa . 3514
pdf.tmpb . 3514
pdf.tmpc . 3514
pdf.tmpd . 3514
pdf.urx . 3478
pdf.ury . 3478
pdfannot internal commands:

__pdfannot_backend:n 3175, 3175,
3177, 3182, 3206, 3219, 3224, 3225

\l__pdfannot_backend_breaklink_-
pdfmark_tl 2913, 2981, 3072

__pdfannot_backend_breaklink_-
postscript:n
. 2915, 2915, 2965, 2967, 3073

__pdfannot_backend_breaklink_-
usebox:N . . . 2916, 2916, 2966, 3075

\l__pdfannot_backend_content_box
. 2874,
2939, 2963, 2966, 2968, 2997, 3008

__pdfannot_backend_generic:nnnn
. 2877, 2877, 3090,
3090, 3179, 3179, 3228, 3228, 3240

__pdfannot_backend_generic_-
aux:nnnn 2877, 2879, 2882

\g__pdfannot_backend_int
2876, 2895, 2899, 2907, 2973, 2974,

3178, 3181, 3184, 3192, 3203, 3205
__pdfannot_backend_last:

. 2906, 2906, 3103,
3103, 3191, 3191, 3229, 3229, 3241

__pdfannot_backend_link:nw . . 2917
__pdfannot_backend_link_aux:nw 2917
__pdfannot_backend_link_begin:n

. 3194, 3196, 3200, 3201
__pdfannot_backend_link_-

begin:nnnw
. . 3114, 3115, 3117, 3118, 3230, 3232

__pdfannot_backend_link_-
begin:nw 2919, 2923, 2924

__pdfannot_backend_link_begin_-
aux:nw 2927, 2929

__pdfannot_backend_link_begin_-
goto:nnw 2917, 2917,
3114, 3114, 3194, 3194, 3230, 3230

__pdfannot_backend_link_begin_-
user:nnw 2917, 2922,
3114, 3116, 3194, 3199, 3230, 3231

\g__pdfannot_backend_link_bool . .
. 2912, 2926, 2931, 2946, 2984

\g__pdfannot_backend_link_dict_-
tl 2909, 2934, 2979

__pdfannot_backend_link_end: . . .
. 2917, 2944,
3114, 3129, 3194, 3218, 3230, 3233

__pdfannot_backend_link_end_-
aux: 2917, 2947, 2949

\g__pdfannot_backend_link_int . . .
. 2908, 2974,
2978, 3078, 3193, 3204, 3210, 3221

__pdfannot_backend_link_last: . .
. 3077, 3077,
3138, 3138, 3220, 3220, 3234, 3234

__pdfannot_backend_link_-
margin:n 3079, 3079,
3149, 3149, 3222, 3222, 3235, 3235

\g__pdfannot_backend_link_math_-
bool . . . 2911, 2937, 2938, 2941, 2951

__pdfannot_backend_link_minima:
. 2917, 2955, 2986

__pdfannot_backend_link_off: . . .
. 3086, 3087,
3159, 3166, 3224, 3225, 3236, 3237

__pdfannot_backend_link_on: . . .
. 3086, 3086,
3159, 3159, 3224, 3224, 3236, 3236

__pdfannot_backend_link_-
outerbox:n 2917, 2957, 3015

\g__pdfannot_backend_link_sf_int
. 2910, 3036, 3047, 3048

__pdfannot_backend_link_sf_-
restore: . . . 2917, 2940, 2983, 3043

__pdfannot_backend_link_sf_-
save: 2917, 2935, 2953, 3034

\l__pdfannot_backend_model_box . .
. 2875,
2956, 2988, 2996, 3007, 3022, 3024

pdfmanagement commands:
\pdfmanagement_add:nnn

. 815, 3323, 3334, 3376, 3379
\pdfmanagement_if_active_p:

. . . . 810, 811, 3316, 3317, 3392, 3393

110

peek commands:
\peek_meaning:NTF 2180, 2183
\peek_remove_spaces:n 2178

prg commands:
\prg_replicate:nn

. 195, 646, 667, 677, 878
prop commands:

\prop_gput:Nnn 604, 845
\prop_if_in:NnTF 581
\prop_item:Nn 584
\prop_new:N 562, 2512, 2689

\ProvidesExplFile 2

Q
quark commands:

\quark_if_recursion_tail_stop:n 580
\q_recursion_stop 573
\q_recursion_tail 572

S
scan commands:

\scan_stop: 131, 140,
502, 2208, 2211, 2476, 2490, 2606,
2623, 2631, 2638, 2651, 3132, 3157

scan internal commands:
\s__color_stop

. . . . 657, 658, 662, 666, 679, 682,
686, 690, 704, 879, 908, 912, 1062, 1064

\s__graphics_stop
. 1844, 1881, 2173, 2188,
2195, 2199, 2201, 2203, 2255, 2263

separation 3465
seq commands:

\seq_set_from_clist:Nn
. 1781, 1799, 1947, 2131

shipout commands:
\l_shipout_box 3056, 3058, 3066

skip commands:
\skip_horizontal:n 244, 292, 349

str commands:
\c_hash_str 415, 1649, 1656, 1696
\c_percent_str 1082, 1083, 1084
\str_case:nn 884, 2295, 2545
\str_case:nnTF 2363, 2464, 2741
\str_convert_pdfname:n . 605, 625, 834
\str_if_empty:NTF 1814, 1831
\str_if_empty_p:N 1857
\str_if_eq:nnTF . 554, 784, 1475, 3371
\str_new:N 1892, 1893, 1894
\str_tail:N 1906, 1932

sys commands:
\sys_if_shell:TF 1890
\sys_shell_now:n 1917

T
TEX and LATEX 2ε commands:

\@ifl@t@r 49, 51
\special . 2

tex commands:
\tex_afterassignment:D 2207
\tex_baselineskip:D 3028
\tex_endinput:D 44
\tex_global:D

. 2599, 2616, 2630, 2637, 2644
\tex_immediate:D

. 1851, 2535, 2538, 2567, 2570
\tex_luatexversion:D 2628, 2656
\tex_pageheight:D 2864
\tex_pagewidth:D 2863
\tex_pdfannot:D 3096
\tex_pdfcatalog:D 2498
\tex_pdfcolorstack:D 490, 500
\tex_pdfcolorstackinit:D 478
\tex_pdfcompresslevel:D 2604
\tex_pdfdest:D 2461, 2484
\tex_pdfendlink:D 3135
\tex_pdfextension:D . 91, 101, 111,

121, 131, 140, 149, 159, 487, 497,
2458, 2481, 2495, 2505, 2516, 2535,
2567, 3093, 3121, 3132, 3161, 3168

\tex_pdffeedback:D
. . . 475, 2524, 2579, 2590, 3107, 3142

\tex_pdfinfo:D 2508
\tex_pdflastannot:D 3110
\tex_pdflastlink:D 3145
\tex_pdflastobj:D 2527, 2582
\tex_pdflastximage:D 1846, 1877
\tex_pdflastximagepages:D 1943
\tex_pdflinkmargin:D 3155
\tex_pdfliteral:D . . . 94, 104, 114, 124
\tex_pdfmajorversion:D

. 2635, 2637, 2661, 2662
\tex_pdfminorversion:D . . . 2649, 2673
\tex_pdfobj:D 2519, 2538, 2570
\tex_pdfobjcompresslevel:D . . . 2621
\tex_pdfpageref:D 2593
\tex_pdfrefximage:D 1877, 1884
\tex_pdfrestore:D 143
\tex_pdfrunninglinkoff:D 3171
\tex_pdfrunninglinkon:D 3164
\tex_pdfsave:D 134
\tex_pdfsetmatrix:D 152, 162
\tex_pdfstartlink:D 3124
\tex_pdfvariable:D 2601,

2618, 2630, 2646, 2657, 2670, 3152
\tex_pdfximage:D 1851, 1941
\tex_spacefactor:D 3039, 3048
\tex_special:D 46

111

\tex_the:D 1846, 2657, 2662, 2668
\tex_vss:D 2393, 2400, 2771, 2790
\tex_XeTeXpdffile:D 2076
\tex_XeTeXpdfpagecount:D 2125
\tex_XeTeXpicfile:D 2067

TeXcolorseparation 3465
\textwidth 3023
tl commands:

\c_space_tl
. . . . 306, 311, 314, 567, 572, 610,
713, 787, 997, 1625, 1788, 1789,
1790, 1791, 1974, 1975, 1976, 1977,
2029, 2032, 2034, 2035, 2036, 2037,
2102, 2237, 2238, 2239, 2240, 2584,
2595, 2979, 3112, 3147, 3184, 3211

\tl_clear:N 1806, 1823,
1955, 1963, 2066, 2074, 2217, 2224

\tl_gclear:N 1663, 1699
\tl_gset:Nn 1622, 2934
\tl_if_blank:nTF 480, 565,

661, 678, 685, 703, 829, 911, 2101, 2176
\tl_if_empty:NTF . 1625, 1810, 1862,

1873, 1999, 2003, 2030, 2048, 2089
\tl_if_empty:nTF 923, 1719
\tl_if_empty_p:N 1856, 2044

\tl_new:N 525,
526, 1629, 1801, 2909, 2913, 3326, 3327

\tl_set:Nn . 527, 528, 537, 538, 983,
995, 1808, 1826, 1920, 2914, 3072,
3328, 3329, 3332, 3333, 3374, 3375

\tl_to_str:n 2172, 2194
\tl_use:N 745, 858

token commands:
\c_math_toggle_token 2942, 2952

U
use commands:

\use:N 43, 2304, 2696, 2725
\use:n 58, 813, 839,

894, 1053, 1066, 1310, 1442, 1520,
1532, 1544, 1704, 2096, 2169, 2191

\use_none:n 1721
\use_none:nnn 3051

V
\value . 2959
vbox commands:

\vbox_set:Nn 3058
\vbox_to_zero:n 2389, 2396, 2763, 2774
\vbox_unpack_drop:N 3066

112

	I Implementation
	1 l3backend-basics implementation
	1.1 dvips backend
	1.2 LuaTeX and pdfTeX backends
	1.3 dvipdfmx backend
	1.4 dvisvgm backend

	2 l3backend-box implementation
	2.1 dvips backend
	2.2 LuaTeX and pdfTeX backends
	2.3 dvipdfmx/XeTeX backend
	2.4 dvisvgm backend

	3 l3backend-color implementation
	3.1 The color stack
	3.1.1 Common code
	3.1.2 LuaTeXand pdfTeX

	3.2 General color
	3.2.1 dvips-style
	3.2.2 LuaTeX and pdfTeX
	3.2.3 dvipmdfx/XeTeX

	3.3 Separations
	3.4 Fill and stroke color
	3.5 Font handling integration

	4 l3backend-draw implementation
	4.1 dvips backend
	4.2 LuaTeX, pdfTeX, dvipdfmx and XeTeX
	4.2.1 Drawing

	4.3 dvisvgm backend

	5 l3backend-graphics implementation
	5.1 dvips backend
	5.2 LuaTeX and pdfTeX backends
	5.3 dvipdfmx backend
	5.4 XeTeX backend
	5.5 dvisvgm backend

	6 l3backend-pdf implementation
	6.1 dvips backend
	6.1.1 Catalogue entries
	6.1.2 Objects
	6.1.3 Destinations
	6.1.4 Structure
	6.1.5 Marked content

	6.2 LuaTeX and pdfTeX backend
	6.2.1 Destinations
	6.2.2 Catalogue entries
	6.2.3 Objects
	6.2.4 Structure
	6.2.5 Marked content

	6.3 dvipdfmx backend
	6.3.1 Catalogue entries
	6.3.2 Objects
	6.3.3 Destinations
	6.3.4 Structure
	6.3.5 Marked content

	6.4 dvisvgm backend
	6.4.1 Destinations
	6.4.2 Catalogue entries
	6.4.3 Objects
	6.4.4 Structure

	6.5 PDF Page size (media box)

	7 l3backend-pdfannot implementation
	7.1 dvips backend
	7.2 LuaTeX and pdfTeX backend
	7.3 dvipdfmx backend
	7.4 dvisvgm backend
	7.5 Transitional code

	8 l3backend-opacity implementation
	8.1 Font handling integration

	9 l3backend-header implementation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	S
	T
	U
	V

