File I
Implementation

1 I3backend-basics implementation

1 (*package)

Whilst there is a reasonable amount of code overlap between backends, it is much
clearer to have the blocks more-or-less separated than run in together and DocStripped
out in parts. As such, most of the following is set up on a per-backend basis, though
there is some common code (again given in blocks not interspersed with other material).

All the file identifiers are up-front so that they come out in the right place in the
files.

> \ProvidesExplFile
s (*dvipdfmx)
s {13backend-dvipdfmx.def}{2026-02-18}{}
s {L3 backend support: dvipdfmx}
s (/dvipdfmx)
7 (xdvips)
s {13backend-dvips.def}{2026-02-18}{}
o {L3 backend support: dvips}
10 </dvips>
1 (xdvisvgm)
12 {13backend-dvisvgm.def}{2026-02-18}{}
13 {L3 backend support: dvisvgm}
14 {/dvisvgm)
15 (xluatex)
16 {13backend-luatex.def }{2026-02-18}{}
17 {L3 backend support: PDF output (LuaTeX)}
18 (/Iuatex)
19 <*pdftex)
0 {13backend-pdftex.def}{2026-02-18}{}
21 {L3 backend support: PDF output (pdfTeX)}
22 </pdfteX>
23 (*xetex)
22 {13backend-xetex.def}{2026-02-18}{}
25 {L3 backend support: XeTeX}
s (/xetex)

Check if the loaded kernel is at least enough to load this file. The kernel date has
to be at least equal to \ExplBackendFileDate or later. If __kernel_dependency_-
version_check:Nn doesn’t exist we're loading in an older kernel, so it’s an error anyway.
With time, this test should vanish and only the dependency check should remain.

27 \cs_if_exist:NTF __kernel_dependency_version_check:nn

i

29 __kernel_dependency_version_check:nn {2023-10-10}
0 (dvipdfmx) {13backend-dvipdfmx.def}

51 {dvips) {13backend-dvips.def}

2 (dvisvgm) {13backend-dvisvgm.def}

53 (luatex) {13backend-luatex.def}

3 (pdftex) {13backend-pdftex.def}

55 (xetex) {13backend-xetex.def}

__kernel_backend_literal:e
__kernel_backend_literal:n

__kernel backend first shipout:n

__kernel backend literal postscript:n

__kernel backend literal postscript:e

37 {

38 \cs_if_exist_use:cF { @latex@error } { \errmessage }

39 {

a0 Mismatched~LaTeX~support~files~detected. \MessageBreak
a1 Loading~aborted!

42 }

3 { \use:c { @ehd } }

a4 \tex_endinput:D

s}

The order of the backend code here is such that we get somewhat logical outcomes
in terms of code sharing whilst keeping things readable. (Trying to mix all of the code
by concept is almost unmanageable.) The key parts which are shared are

 Color support is either dvips-like or LuaTEX/pdfTeX-like.

o LuaTpX/pdiTeX and dvipdfmx/XHTEX share drawing routines.

o XHIEX is the same as dvipdfmx other than image size extraction so takes most of
the same code.

The one shared function for all backends is access to the basic \special primitive: it
has slightly odd expansion behavior so a wrapper is provided.

s \cs_new_eq:NN __kernel_backend_literal:e \tex_special:D
27 \cs_new_protected:Npn __kernel_backend_literal:n #1
48 { __kernel_backend_literal:e { \exp_not:n {#1} } }

(End of definition for __kernel_backend_literal:e.)

We need to write at first shipout in a few places. As we want to use the most up-to-date
method,

20 \cs_if_exist:NTF \@ifl@ter

50 {

51 \@ifl@t@r \fmtversion { 2020-10-01 }

52 {

53 \cs_new_protected:Npn __kernel_backend_first_shipout:n #1

54 { \hook_gput_code:nnn { shipout / firstpage } { 1l3backend } {#1} }
55 }

56 { \cs_new_eq:NN __kernel_backend_first_shipout:n \AtBeginDvi }

57 }

58 { \cs_new_eq:NN __kernel_backend_first_shipout:n \use:n }

(End of definition for __kernel_backend_first_shipout:n.)

1.1 dvips backend

5o (xdvips)
Literal PostScript can be included using a few low-level formats. Here, we use the form
with no positioning: this is overall more convenient as a wrapper. Note that this does
require that where position is important, an appropriate wrapper is included.

e \cs_new_protected:Npn __kernel_backend_literal_postscript:n #1

61 { __kernel_backend_literal:n { ps:: #1 } }
o> \cs_generate_variant:Nn __kernel_backend_literal_postscript:n { e }

__kernel backend postscript:n

__kernel backend postscript:e

__kernel backend align begin:

__kernel_backend_align_end:

__kernel backend scope begin:
__kernel_backend_scope_end:

(End of definition for __kernel_backend_literal_postscript:n.)

PostScript data that does have positioning, and also applying a shift to SDict (which is
not done automatically by ps: or ps::, in contrast to ! or ").

63 \cs_new_protected:Npn __kernel_backend_postscript:n #1

64 { __kernel_backend_literal:n { ps: SDict ~ begin ~ #1 ~ end } }

o5 \cs_generate_variant:Nn __kernel_backend_postscript:n { e }

(End of definition for __kernel_backend_postscript:n.)

PostScript for the header: a small saving but makes the code clearer. This is held
until the start of shipout such that a document with no actual output does not write
anything.

6 \bool_if:NT \g__kernel_backend_header_bool

67 {

68 __kernel_backend_first_shipout:n

69 { __kernel_backend_literal:n { header = l3backend-dvips.pro } }
o F

In dvips there is no built-in saving of the current position, and so some additional Post-
Script is required to set up the transformation matrix and also to restore it afterwards.
Notice the use of the stack to save the current position “up front” and to move back to
it at the end of the process. Notice that the [begin]/[end] pair here mean that we can
use a run of PostScript statements in separate lines: not required but does make the code
and output more clear.

72 \cs_new_protected:Npn __kernel_backend_align_begin:

7 {

73 __kernel_backend_literal:n { ps::[begin] }

74 __kernel_backend_literal_postscript:n { currentpoint }

75 __kernel_backend_literal_postscript:n { currentpoint~translate }

76 }

77 \cs_new_protected:Npn __kernel_backend_align_end:

78 {

79 __kernel_backend_literal_postscript:n { neg~exch~neg~exch~translate }
80 __kernel_backend_literal:n { ps::[end] }

81 }

(End of definition for __kernel_backend_align_begin: and __kernel_backend_align_end:.)

Saving/restoring scope for general operations needs to be done with dvips positioning
(try without to see this!). Thus we need the ps: version of the special here. As only the
graphics state is ever altered within this pairing, we use the lower-cost g-versions.

s> \cs_new_protected:Npn __kernel_backend_scope_begin:

ss { __kernel_backend_literal:n { ps:gsave } }

52 \cs_new_protected:Npn __kernel_backend_scope_end:

s { __kernel_backend_literal:n { ps:grestore } }

(End of definition for __kernel_backend_scope_begin: and __kernel_backend_scope_end:.)
s6 {/dvips)

_ kernel backend literal pdf:n
__kernel backend literal pdf:e

__kernel backend literal page:n

__kernel backend literal page:e

1.2 LuaTgX and pdfTEX backends
¢7 (xluatex | pdftex)

Both LuaTgX and pdfTEX write PDFs directly rather than via an intermediate file.
Although there are similarities, the move of LuaTEX to have more code in Lua means we
create two independent files using shared DocStrip code.

This is equivalent to \special{pdf:} but the engine can track it. Without the direct
keyword everything is kept in sync: the transformation matrix is set to the current point
automatically. Note that this is still inside the text (BT ...ET block).

ss \cs_new_protected:Npn __kernel_backend_literal_pdf:n #1
89 {

) (*Iuatex)

o1 \tex_pdfextension:D literal

92 (/Iuatex)

95 (xpdftex)

94 \tex_pdfliteral:D

95 (/pdftex)

9% { \exp_not:n {#1} }

97 }

s \cs_new_protected:Npn __kernel_backend_literal_pdf:e #1
99 {

00 (xluatex)

101 \tex_pdfextension:D literal

102 (/Iuatex)

103 <*pdftex>

104 \tex_pdfliteral:D

105 (/pdftex)

106 {#1}

107 }

(End of definition for __kernel_backend_literal_pdf:n.)

Page literals are pretty simple. To avoid an expansion, we write out by hand.

ws \cs_new_protected:Npn __kernel_backend_literal_page:n #1
109 {

10 (xluatex)

111 \tex_pdfextension:D literal ~

112 (/Iuatex)

115 (xpdftex)

114 \tex_pdfliteral:D

115 (/pdftex)

116 page { \exp_not:n {#1} }

117 }

115 \cs_new_protected:Npn __kernel_backend_literal_page:e #1
119 {

120 (*Iuatex)

121 \tex_pdfextension:D literal ~

122 (/luatex)

123 (*pdftex)

124 \tex_pdfliteral:D

125 {/pdftex)

126 page {#1}

127 }

(End of definition for __kernel_backend_literal_page:n.)

\ kernel backend scope begin: Higher-level interfaces for saving and restoring the graphic state.

__kernel_backend_scope_end: 125 \cs_new_protected:Npn __kernel_backend_scope_begin:
129 {
130 (*Iuatex)
131 \tex_pdfextension:D save \scan_stop:
132 (/Iuatex)
133 (*pdftex)
134 \tex_pdfsave:D
s (/pdftex)
136 }
137 \cs_new_protected:Npn __kernel_backend_scope_end:
138 {
139 (*Iuatex)
140 \tex_pdfextension:D restore \scan_stop:
141 (/Iuatex)
142 (*pdftex)
143 \tex_pdfrestore:D
144 (/pdftex)
145 }

(End of definition for __kernel_backend_scope_begin: and __kernel_backend_scope_end:.)

__kernel_backend matrix:n Here the appropriate function is set up to insert an affine matrix into the PDF. With
__kernel backend matrix:e pdfTEX and LuaTEX in direct PDF output mode there is a primitive for this, which only
needs the rotation/scaling/skew part.

146 \cs_new_protected:Npn __kernel_backend_matrix:n #1
147 {

148 (*Iuatex)

149 \tex_pdfextension:D setmatrix

150 (/Iuatex)

151 (*pdftex)

152 \tex_pdfsetmatrix:D

153 (/pdftex)

154 { \exp_not:n {#1} }

155 }

156 \cs_new_protected:Npn __kernel_backend_matrix:e #1
157 {

155 (xluatex)

159 \tex_pdfextension:D setmatrix

160 (/Iuatex)

161 (xpdftex)

162 \tex_pdfsetmatrix:D

163 (/pdftex)

164 {#1}

165 }

(End of definition for __kernel_backend_matrix:n.)

166 {/luatex | pdftex)

1.3 dvipdfmx backend

167 (xdvipdfmx | xetex)

The dvipdfmx shares code with the PDF mode one (using the common section to
this file) but also with XfgTEX. The latter is close to identical to dvipdfmx and so all of
the code here is extracted for both backends, with some clean up for X7IEX as required.

\ kernel backend literal pdf:n Undocumented but equivalent to pdfTEX’s literal keyword. It’s similar to be not the
_kernel backend literal pdf:e same as the documented contents keyword as that adds a q/Q pair.

16s \cs_new_protected:Npn __kernel_backend_literal_pdf:n #1
1o { __kernel_backend_literal:n { pdf:literal~ #1 } }
170 \cs_generate_variant:Nn __kernel_backend_literal_pdf:n { e }

(End of definition for __kernel_backend_literal_pdf:n.)

\kernel backend literal page:n Whilst the manual says this is like 1iteral direct in pdfTEX, it closes the BT block!
171 \cs_new_protected:Npn __kernel_backend_literal_page:n #1
172 { __kernel_backend_literal:n { pdf:literal~direct~ #1 } }

(End of definition for __kernel_backend_literal_page:n.)

_kernel backend scope begin: Scoping is done using the backend-specific specials. We use the versions originally from
__kernel_backend_scope_end: xdvidfpmx (X:) as these are well-tested “in the wild”.
173 \cs_new_protected:Npn __kernel_backend_scope_begin:
72 { __kernel_backend_literal:n { x:gsave } }
175 \cs_new_protected:Npn __kernel_backend_scope_end:
176 { __kernel_backend_literal:n { x:grestore } }
(End of definition for __kernel_backend_scope_begin: and __kernel_backend_scope_end:.)

177 (/dvipdfmx | xetex)

1.4 dvisvgm backend
178 (xdvisvgm)

\kernel backend literal svg:n Unlike the other backends, the requirements for making SVG files mean that we can’t
\ kernel backend literal svg:e conveniently transform all operations to the current point. That makes life a bit more
tricky later as that needs to be accounted for. A new line is added after each call to help
to keep the output readable for debugging.
179 \cs_new_protected:Npn __kernel_backend_literal_svg:n #1

1o { __kernel_backend_literal:n { dvisvgm:raw~ #1 { 7nl } } }
151 \cs_generate_variant:Nn __kernel_backend_literal_svg:n { e }

(End of definition for __kernel_backend_literal_svg:n.)

\g__kernel_backend_scope_int In SVG, we need to track scope nesting as properties attach to scopes; that requires a
\1__kernel_backend_scope_int pair of int registers.

122 \int_new:N \g__kernel_backend_scope_int
153 \int_new:N \1__kernel_backend_scope_int

(End of definition for \g__kernel_backend_scope_int and \1__kernel_backend_scope_int.)

\kernel backend scope begin: In SVG, the need to attach concepts to a scope means we need to be sure we will close all
__kernel_backend_scope_end: of the open scopes. That is easiest done if we only need an outer “wrapper” begin/end

\ kernel backend scope begin:n pair, and within that we apply operations as a simple scoped statements. To keep down

__kernel backend scope begin:e the non-productive groups, we also have a begin version that does take an argument.

__kernel_backend_scope:n 18+ \cs_new_protected:Npn __kernel_backend_scope_begin:

__kernel_backend_scope:e 185 {
186 __kernel_backend_literal_svg:n { <g> }
187 \int_set_eq:NN
188 \1__kernel_backend_scope_int
189 \g__kernel_backend_scope_int
190 \group_begin:
101 \int_gset:Nn \g__kernel_backend_scope_int { 1 }
192 }
103 \cs_new_protected:Npn __kernel_backend_scope_end:
194 {
195 \prg_replicate:nn
196 { \g__kernel_backend_scope_int }
197 { __kernel_backend_literal_svg:n { </g> } }
198 \group_end:
199 \int_gset_eq:NN
200 \g__kernel_backend_scope_int
201 \1__kernel_backend_scope_int
202 }
20: \cs_new_protected:Npn __kernel_backend_scope_begin:n #1
204 {
205 __kernel_backend_literal_svg:n { <g ~ #1 > }
206 \int_set_eq:NN
207 \1__kernel_backend_scope_int
208 \g__kernel_backend_scope_int
209 \group_begin:
210 \int_gset:Nn \g__kernel_backend_scope_int { 1 }
211 }

212 \cs_generate_variant:Nn __kernel_backend_scope_begin:n { e }
215 \cs_new_protected:Npn __kernel_backend_scope:n #1

214 {

215 __kernel_backend_literal_svg:n { <g ~ #1 > }
216 \int_gincr:N \g__kernel_backend_scope_int

217 }

215 \cs_generate_variant:Nn __kernel_backend_scope:n { e }

(End of definition for __kernel_backend_scope_begin: and others.)
219 {/dvisvgm)

2

N}

o (/package)

2 I3backend-box implementation

221 (*package)
220 (@@=Dbox)

2.1 dvips backend
223 (*dvips>

__box_backend_clip:N

__box_backend_rotate:Nn
__box_backend_rotate_aux:Nn

The dvips backend scales all absolute dimensions based on the output resolution selected
and any TEX magnification. Thus for any operation involving absolute lengths there is
a correction to make. See normalscale from special.pro for the variables, noting that
here everything is saved on the stack rather than as a separate variable. Once all of that
is done, the actual clipping is trivial.

224 \cs_new_protected:Npn __box_backend_clip:N #1

225 {

226 __kernel_backend_scope_begin:

227 __kernel_backend_align_begin:

228 __kernel_backend_literal_postscript:n { matrix~currentmatrix }

229 __kernel_backend_literal_postscript:n

230 { Resolution~72~div~VResolution~72~div~scale }

231 __kernel_backend_literal_postscript:n { DVImag~dup~scale }

232 __kernel_backend_literal_postscript:e

233 {

234 0 ~

235 \dim_to_decimal_in_bp:n { \box_dp:N #1 } ~

236 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~

237 \dim_to_decimal_in_bp:n { -\box_ht:N #1 - \box_dp:N #1 } ~
238 rectclip

239 }

240 __kernel_backend_literal_postscript:n { setmatrix }
241 __kernel_backend_align_end:

242 \hbox_overlap_right:n { \box_use:N #1 }

243 __kernel_backend_scope_end:

244 \skip_horizontal:n { \box_wd:N #1 }

245 F

(End of definition for __box_backend_clip:N.)

Rotating using dvips does not require that the box dimensions are altered and has a
very convenient built-in operation. Zero rotation must be written as 0 not -0 so there is
a quick test.

26 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2

27 { \exp_args:NNf __box_backend_rotate_aux:Nn #1 { \fp_eval:n {#2} } }

25 \cs_new_protected:Npn __box_backend_rotate_aux:Nn #1#2

249 {

250 __kernel_backend_scope_begin:

251 __kernel_backend_align_begin:

252 __kernel_backend_literal_postscript:e
253 {

254 \fp_compare:nNnTF {#2} = \c_zero_1p
255 {0}

256 { \fp_eval:n { round (-(#2) , 5) } } ~
257 rotate

258 }

259 __kernel_backend_align_end:

260 \box_use:N #1

261 __kernel_backend_scope_end:

262 }

(End of definition for __box_backend_rotate:Nn and __box_backend_rotate_aux:Nn.)

__box_backend_scale:Nnn

__box_backend_clip:N

__box_backend_rotate:Nn
__box_backend_rotate_aux:Nn
\1__box_backend_cos_fp
\1__box_backend_sin_fp

The dvips backend once again has a dedicated operation we can use here.

63 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3

264 {

265 __kernel_backend_scope_begin:

266 __kernel_backend_align_begin:

267 __kernel_backend_literal_postscript:e
268 {

269 \fp_eval:n { round (#2 , 5) } ~
270 \fp_eval:n { round (#3 , 5) } ~
271 scale

272 }

273 __kernel_backend_align_end:

274 \hbox_overlap_right:n { \box_use:N #1 }
275 __kernel_backend_scope_end:

276 }

(End of definition for __box_backend_scale:Nnn.)

277 (/dvips)

2.2 LudTgX and pdfTEX backends

278 (*Iuatex ‘ pdftex)

The general method is to save the current location, define a clipping path equivalent to
the bounding box, then insert the content at the current position and in a zero width box.
The “real” width is then made up using a horizontal skip before tidying up. There are
other approaches that can be taken (for example using XForm objects), but the logic here
shares as much code as possible and uses the same conversions (and so same rounding
errors) in all cases.

270 \cs_new_protected:Npn __box_backend_clip:N #1

280 ‘[

261 __kernel_backend_scope_begin:

282 __kernel_backend_literal_pdf:e

283 {

284 O ~

285 \dim_to_decimal_in_bp:n { -\box_dp:N #1 } ~
286 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~
287 \dim_to_decimal_in_bp:n { \box_ht:N #1 + \box_dp:N #1 } ~
288 re~W~n

289 }

290 \hbox_overlap_right:n { \box_use:N #1 }

201 __kernel_backend_scope_end:

202 \skip_horizontal:n { \box_wd:N #1 }

293 }

(End of definition for __box_backend_clip:N.)

Rotations are set using an affine transformation matrix which therefore requires
sine/cosine values not the angle itself. We store the rounded values to avoid round-
ing twice. There are also a couple of comparisons to ensure that -0 is not written to the
output, as this avoids any issues with problematic display programs. Note that numbers
are compared to 0 after rounding.

201 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2

205 { \exp_args:NNf __box_backend_rotate_aux:Nn #1 { \fp_eval:n {#2} } }
206 \cs_new_protected:Npn __box_backend_rotate_aux:Nn #1#2

297 {

298 __kernel_backend_scope_begin:

299 \box_set_wd:Nn #1 { Opt }

300 \fp_set:Nn \1__box_backend_cos_fp { round (cosd (#2) , 5) }
301 \fp_compare:nNnT \1__box_backend_cos_fp = \c_zero_fp

302 { \fp_zero:N \1__box_backend_cos_fp }

303 \fp_set:Nn \1__box_backend_sin_fp { round (sind (#2) , 5) }
304 __kernel_backend_matrix:e

305 ‘[

306 \fp_use:N \1__box_backend_cos_fp \c_space_tl

307 \fp_compare:nNnTF \1__box_backend_sin_fp = \c_zero_fp
308 { 0~0 }

309 {

310 \fp_use:N \1__box_backend_sin_fp

311 \c_space_t1

312 \fp_eval:n { -\1__box_backend_sin_fp }

313 }

314 \c_space_t1

315 \fp_use:N \1__box_backend_cos_fp

316 }

317 \box_use:N #1

318 __kernel_backend_scope_end:

319 }

320 \fp_new:N \1__box_backend_cos_fp
321 \fp_new:N \1__box_backend_sin_fp

(End of definition for __box_backend_rotate:Nn and others.)

__box_backend_scale:Nnn The same idea as for rotation but without the complexity of signs and cosines.
322 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3

323 {

324 __kernel_backend_scope_begin:

325 __kernel_backend_matrix:e

326 {

327 \fp_eval:n { round (#2 , 5) } ~
328 0~0~

320 \fp_eval:n { round (#3 , 5) }

330 }

331 \hbox_overlap_right:n { \box_use:N #1 }

332 __kernel_backend_scope_end:

333 }
(End of definition for __box_backend_scale:Nnn.)

33 (/luatex | pdftex)

2.3 dvipdfmx/XHTEX backend

335 (xdvipdfmx | xetex)

__box_backend_clip:N The code here is identical to that for LuaTgX/pdfTEX: unlike rotation and scaling, there
is no higher-level support in the backend for clipping.

336 \cs_new_protected:Npn __box_backend_clip:N #1

10

337 ‘[
338 __kernel_backend_scope_begin:
339 __kernel_backend_literal_pdf:e

340 {

341 O ~

342 \dim_to_decimal_in_bp:n { -\box_dp:N #1 } ~
343 \dim_to_decimal_in_bp:n { \box_wd:N #1 } ~
344 \dim_to_decimal_in_bp:n { \box_ht:N #1 + \box_dp:N #1 } ~
345 re~W~n

346 }

347 \hbox_overlap_right:n { \box_use:N #1 }

348 __kernel_backend_scope_end:

349 \skip_horizontal:n { \box_wd:N #1 }

350 }

(End of definition for __box_backend_clip:N.)

__box_backend_rotate:Nn Rotating in dvipdmfx/XHqTEX can be implemented using either PDF or backend-specific
__box_backend_rotate_aux:Nn code. The former approach however is not “aware” of the content of boxes: this means
that any embedded links would not be adjusted by the rotation. As such, the backend-
native approach is preferred: the code therefore is similar (though not identical) to the
dvips version (notice the rotation angle here is positive). As for dvips, zero rotation is
written as 0 not -0.
351 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2
352 { \exp_args:NNf __box_backend_rotate_aux:Nn #1 { \fp_eval:n {#2} } }
353 \cs_new_protected:Npn __box_backend_rotate_aux:Nn #1#2

354 {

355 __kernel_backend_scope_begin:

356 __kernel_backend_literal:e

357 {

358 x:rotate~

359 \fp_compare:nNnTF {#2} = \c_zero_fp
360 { O }

361 { \fp_eval:n { round (#2 , 5) } }
362 }

363 \box_use:N #1

364 __kernel_backend_scope_end:

365 }

(End of definition for __box_backend_rotate:Nn and __box_backend_rotate_aux:Nn.)

__box_backend_scale:Nnn Much the same idea for scaling: use the higher-level backend operation to allow for box

content.
366 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3
367 {
368 __kernel_backend_scope_begin:
369 __kernel_backend_literal:e
370 {
371 x:scale~
372 \fp_eval:n { round (#2 , 5) } ~
373 \fp_eval:n { round (#3 , 5) }
374 }
375 \hbox_overlap_right:n { \box_use:N #1 }
376 __kernel_backend_scope_end:
377 }

11

__box_backend_clip:N
\g__kernel_clip_path_int

(End of definition for __box_backend_scale:Nnn.)

s7s (/dvipdfmx | xetex)

2.4 dvisvgm backend
370 (*dvisvgm)

Clipping in SVG is more involved than with other backends. The first issue is that the
clipping path must be defined separately from where it is used, so we need to track how
many paths have applied. The naming here uses 13cp as the namespace with a number
following. Rather than use a rectangular operation, we define the path manually as this
allows it to have a depth: easier than the alternative approach of shifting content up and
down using scopes to allow for the depth of the TEX box and keep the reference point
the same!

350 \cs_new_protected:Npn __box_backend_clip:N #1

381 {

382 \int_gincr:N \g__kernel_clip_path_int

383 __kernel_backend_literal_svg:e

384 { < clipPath~id = " 13cp \int_use:N \g__kernel_clip_path_int " > }
385 __kernel_backend_literal_svg:e

386 {

387 <

388 path ~ d =

389 "

390 M~0 ~

301 \dim_to_decimal:n { -\box_dp:N #1 } ~

302 L ~ \dim_to_decimal:n { \box_wd:N #1 } ~

303 \dim_to_decimal:n { -\box_dp:N #1 } ~

304 L ~ \dim_to_decimal:n { \box_wd:N #1 } ~

305 \dim_to_decimal:n { \box_ht:N #1 + \box_dp:N #1 } ~
396 L ~0 ~

397 \dim_to_decimal:n { \box_ht:N #1 + \box_dp:N #1 } ~
398 Z

399 "

400 />

401 }

402 __kernel_backend_literal_svg:n

403 { < /clipPath >}

In general the SVG set up does not try to transform coordinates to the current point. For
clipping we need to do that, so have a transformation here to get us to the right place,
and a matching one just before the TEX box is inserted to get things back on track. The
clip path needs to come between those two such that if lines up with the current point,
as does the TEX box.

404 __kernel_backend_scope_begin:n

405 {

406 transform =

107 "

408 translate ({ 7x } , { ?y }) ~
409 scale (1, -1)

410 "

411 }

412 __kernel_backend_scope:e

12

413 {

414 clip-path =

415 "url (\c_hash_str 13cp \int_use:N \g__kernel_clip_path_int) "
416 }

417 __kernel_backend_scope:n

418 {

419 transform =

420 "

421 scale (-1, 1) ~

422 translate ({ 7x } , { ?y }) ~
423 scale (-1 , -1)

424 "

425 }

426 \box_use:N #1

427 __kernel_backend_scope_end:

428 }

20 \int_new:N \g__kernel_clip_path_int
(End of definition for __box_backend_clip:N and \g__kernel_clip_path_int.)
__box_backend_rotate:Nn Rotation has a dedicated operation which includes a center-of-rotation optional pair.

That can be picked up from the backend syntax, so there is no need to worry about the
transformation matrix.

250 \cs_new_protected:Npn __box_backend_rotate:Nn #1#2

431 {

432 __kernel_backend_scope_begin:e
433 {

434 transform =

435 "

436 rotate

437 (\fp_eval:n { round (-(#2) , 5) } , ~{7?x}, ~{ ?y })
438 "

439 3

440 \box_use:N #1

441 __kernel_backend_scope_end:

442 }

(End of definition for __box_backend_rotate:Nn.)

__box_backend_scale:Nnn In contrast to rotation, we have to account for the current position in this case. That
is done using a couple of translations in addition to the scaling (which is therefore done
backward with a flip).

w3 \cs_new_protected:Npn __box_backend_scale:Nnn #1#2#3

444 {

445 __kernel_backend_scope_begin:e

446 {

447 transform =

448 "

449 translate ({ 7x } , { ?y }) ~

450 scale

451 (

452 \fp_eval:n { round (-#2 , 5) } ,
453 \fp_eval:n { round (-#3 , 5) }
454) ~

13

\1__color_backend_stack_int

_ kernel color backend stack init:Nnn

455 translate ({ 7x } , { ?y }) ~

456 scale (-1)

457 "

458 }

459 \hbox_overlap_right:n { \box_use:N #1 }
460 __kernel_backend_scope_end:

461 }

(End of definition for __box_backend_scale:Nnn.)
62 (/dvisvgm)
163 {/package)

3 I3backend-color implementation
164 (*package)
15 (@@=color)

Color support is split into parts: collecting data from ITEX 2, the color stack,
general color, separations, and color for drawings. We have different approaches in each
backend, and have some choices to make about dvipdfmx/XHTEX in particular. Whilst it
is in some ways convenient to use the same approach in multiple backends, the fact that
dvipdfmx/XHTEX is PDF-based means it (largely) sticks closer to direct PDF output.

3.1 The color stack

For PDF-based engines, we have a color stack available inside the specials. This is used
for concepts beyond color itself: it is needed to manage the graphics state generally.
Although dvipdfmx/XgTEX have multiple color stacks in recent releases, the way these
interact with the original single stack and with other graphic state operations means that
currently it is not feasible to use the multiple stacks.

3.1.1 Common code
s (xluatex | pdftex)

For tracking which stack is in use where multiple stacks are used: currently just
pdfTEX/LuaTEX but at some future stage may also cover dvipdfmx/XHTEX.

47 \int_new:N \1__color_backend_stack_int

(End of definition for \1__color_backend_stack_int.)

65 (/luatex | pdftex)

3.1.2 LuaTgXand pdfTEX

s (*luatex | pdftex)

470 \cs_new_protected:Npn __kernel_color_backend_stack_init:Nnn #1#2#3

471 {

472 \int_const:Nn #1

473 {

474 (*Iuatex)

475 \tex_pdffeedback:D colorstackinit ~

476 (/Iuatex)

14

ar7 (*pdftex)

478 \tex_pdfcolorstackinit:D

479 (/pdftex)

480 \t1_if_blank:nF {#2} { #2 ~ }
481 {#3}

482 }

483 }

(End of definition for __kernel_color_backend_stack_init:Nnn.)

__kernel color backend stack push:mn

__kernel_color_backend_stack_pop:n 24 \cs_new_protected:Npn __kernel_color_backend_stack_push:nn #1#2
s {
486 (*Iuatex)
487 \tex_pdfextension:D colorstack ~

a5 (/luatex)

489 (*pdftex)

490 \tex_pdfcolorstack:D

491 (/pdftex)

492 \int_eval:n {#1} ~ push ~ {#2}

493 }

2: \cs_new_protected:Npn __kernel_color_backend_stack_pop:n #1
495 {

496 (*Iuatex)

497 \tex_pdfextension:D colorstack ~

498 (/Iuatex)

400 (kpdftex)

500 \tex_pdfcolorstack:D

501 (/pdftex)

502 \int_eval:n {#1} ~ pop \scan_stop:
503 }

(End of definition for __kernel_color_backend_stack_push:nn and __kernel_color_backend_stack_-
pop:n.)

s0¢ {/luatex | pdftex)

3.2 General color
3.2.1 dvips-style
sos (*dvips | dvisvgm)

__color backend select ciyk:n Push the data to the stack. In the case of dvips also saves the drawing color in raw
_color backend select gray:n PostScript. The spot model is for handling data in classical format.

__color backend _select _named:n s06 \cs_new_protected:Npn __color_backend_select_cmyk:n #1
__color_backend_select_rgb:n s { __color_backend_select:n { cmyk ~ #1 } }

__color_backend_select:n s0s \cs_new_protected:Npn __color_backend_select_gray:n #1
__color_backend_reset: s00 { __color_backend_select:n { gray ~ #1 } }

510 \cs_new_protected:Npn __color_backend_select_named:n #1
s { __color_backend select:n { ~ #1 } }

512 \cs_new_protected:Npn __color_backend_select_rgb:n #1
513 { __color_backend_select:n { rgb ~ #1 } }

514 \cs_new_protected:Npn __color_backend_select:n #1

515 {

516 __kernel_backend_literal:n { color~push~ #1 }

15

s17. (xdvips)

518 __kernel_backend_postscript:n { /color.sc ~ { } ~ def }
519 </dVipS>
520 }

521 \cs_new_protected:Npn __color_backend_reset:
522 { __kernel_backend_literal:n { color~pop } }

(End of definition for __color_backend_select_cmyk:n and others.)

523 (/dvips | dvisvgm)

3.2.2 LuaTgX and pdfTEX

s (*luatex | pdftex)

\1__color_backend_ fill_tl

\1__color_backend_stroke tl . \tl new:N \1__color_backend fill_tl
526 \tl_new:N \1__color_backend_stroke_tl
527 \tl_set:Nn \1__color_backend_£fill_tl1 { 0 ~ g }
526 \t1l_set:Nn \1__color_backend_stroke_tl { 0 ~ G }

(End of definition for \1__color_backend_fill_t1l and \1__color_backend_stroke_t1.)

_color backend select cnyk:n Store the values then pass to the stack.

__color_backend_select_gray:n 520 \cs_new_protected:Npn __color_backend_select_cmyk:n #1
__color_backend_select_rgb:n 530 { __color_backend_select:nn { #1 ~ k } { #1 ~ K } }
__color_backend_select:nn 531 \cs_new_protected:Npn __color_backend_select_gray:n #1
__color_backend_reset: 532 { __color_backend_select:nn { #1 ~ g } { #1 ~ G } }
533 \cs_new_protected:Npn __color_backend_select_rgb:n #1
s3s { __color_backend_select:nn { #1 ~ rg } { #1 ~ RG } }
535 \cs_new_protected:Npn __color_backend_select:nn #1#2

536 {

537 \tl_set:Nn \1__color_backend_fill_tl {#1}

538 \tl_set:Nn \1__color_backend_stroke_tl {#2}

539 __kernel_color_backend_stack_push:nn \1__color_backend_stack_int { #1 ~ #2 }
540 }

521 \cs_new_protected:Npn __color_backend_reset:
522 { __kernel_color_backend_stack_pop:n \1__color_backend_stack_int }
(End of definition for __color_backend_select_cmyk:n and others.)

53 (/luatex | pdftex)

3.2.3 dvipmdfx/XHgTEX

These backends have the most possible approaches: it recognizes both dvips-based color
specials and its own format, plus one can include PDF statements directly. Recent
releases also have a color stack approach similar to pdfTEX. Of the stack methods, the
dedicated the most versatile is the latter as it can cover all of the use cases we have.
However, at present this interacts problematically with any color on the original stack.
We therefore stick to a single-stack approach here.

saa (xdvipdfmx | xetex)

16

__color_backend_select:n

__color backend select cmyk:n

__color_backend select gray:n
__color backend select rgb:n
__color_backend_reset:

__color backend select named:n

\

\g__color_backend_colorant prop

__color_backend devicen colorants:n

__color backend devicen colorants:w

Using the single stack is relatively easy as there is only one route.

s \cs_new_protected:Npn __color_backend_select:n #1

526 { __kernel_backend_literal:n { pdf : bc ~ [#1] } }

557 \cs_new_eq:NN __color_backend_select_cmyk:n __color_backend_select:n
s2s \cs_new_eq:NN __color_backend_select_gray:n __color_backend_select:n
2 \cs_new_eq:NN __color_backend_select_rgb:n __color_backend_select:n
s50 \cs_new_protected:Npn __color_backend_reset:

551 { __kernel_backend_literal:n { pdf : ec } }

5.

X

<

(End of definition for __color_backend_select:n and others.)

For classical named colors, the only value we should get is Black.

552 \cs_new_protected:Npn __color_backend_select_named:n #1

553 {

554 \str_if_eq:nnTF {#1} { Black }

555 { __color_backend_select_gray:n { 0 } }

556 { \msg_error:nnn { color } { unknown-named-color } {#1} }
557 }

555 \msg_new:nnn { color } { unknown-named-color }

550 { Named~color~’#1’~is~not~known. }

(End of definition for __color_backend_select_named:n.)

s60 (/dvipdfmx | xetex)

3.3 Separations

Here, life gets interesting and we need essentially one approach per backend.

st (xdvipdfmx | luatex | pdftex | xetex | dvips)

But we start with some functionality needed for both PostScript and PDF based

backends.

s62 \prop_new:N \g__color_backend_colorant_prop

(End of definition for \g__color_backend_colorant_prop.)

563 \cs_new:Npe __color_backend_devicen_colorants:n #1

564 {

565 \exp_not:N \tl_if_blank:nF {#1}

566 {

567 \c_space_tl

568 << ~

569 /Colorants ~

570 << ~

571 \exp_not:N __color_backend_devicen_colorants:w #1 ~
572 \exp_not:N \q_recursion_tail \c_space_t1l
573 \exp_not:N \q_recursion_stop

574 >> ~

575 >>

576 }

s72 \cs_new:Npn __color_backend_devicen_colorants:w #1 ~

17

__color backend select separation:nn
__color backend select devicen:mn

__color backend select iccbased:nn

__color_backend separation init:nnnnn
__color backend separation init:neenn
__color backend separation init aux:nnnnmn
lor backend separation init /DeviceCMYK:nmn
lor backend separation init /DeviceGray:nmn
olor backend separation init /DeviceRGB:nmn
__color backend separation init Device:Nn
__color backend separation init:nnn
__color backend separation init count:n
__color backend separation init count:w
__color backend separation init:nnmn
__color_backend separation init:w
__color_backend separation_init:n

__color backend separation init:nw
__color backend separation init CIELAB:nmn

580 \quark_if_recursion_tail_stop:n {#1}

581 \prop_if_in:NnT \g__color_backend_colorant_prop {#1}

582 {

583 #1 ~

584 \prop_item:Nn \g__color_backend_colorant_prop {#1} ~
585 }

586 __color_backend_devicen_colorants:w

587 }

(End of definition for __color_backend_devicen_colorants:n and __color_backend_devicen_colorants:w.)
se (/dvipdfmx | luatex | pdftex | xetex | dvips)
sso (*dvips)

so00 \cs_new_protected:Npn __color_backend_select_separation:nn #1#2
501 { __color_backend_select:n { separation ~ #1 ~ #2 } }
502 \cs_new_eq:NN __color_backend_select_devicen:nn __color_backend_select_separation:nn

(End of definition for __color_backend_select_separation:nn and __color_backend_select_devicen:nn.)

No support.

503 \cs_new_protected:Npn __color_backend_select_iccbased:nn #1#2 { }

(End of definition for __color_backend_select_iccbased:nn.)

Initializing here means creating a small header set up plus massaging some data. This
comes about as we have to deal with PDF-focussed data, which makes most sense “higher-
up”. The approach is based on ideas from https://tex.stackexchange.com/q/560093
plus using the PostScript manual for other aspects.

501 \cs_new_protected:Npe __color_backend_separation_init:nnnnn #1#2#3#4#5

595 {

506 \bool_if:NT \g__kernel_backend_header_bool

597 ‘[

508 \exp_not:N \exp_args:Ne __kernel_backend_first_shipout:n
599 {

600 \exp_not:N __color_backend_separation_init_aux:nnnnnn
601 { \exp_not:N \int_use:N \g__color_model_int }

602 {#1} {#2} {#3} {#4} {#5}

603 }

604 \prop_gput :Nee \exp_not:N \g__color_backend_colorant_prop
605 { / \exp_not:N \str_convert_pdfname:n {#1} }

606 {

607 << ~

608 /setcolorspace ~ {} ~

609 >> ~ begin ~

610 color \exp_not:N \int_use:N \g__color_model_int \c_space_tl
611 end

612 }

613 }

614 3

615 \cs_generate_variant:Nn __color_backend_separation_init:nnnnn { nee }
616 \cs_new_protected:Npn __color_backend_separation_init_aux:nnnnnn #1#2#3#4#5#6

617 {

18

https://tex.stackexchange.com/q/560093

618 __kernel_backend_literal:e

619 {

620 !

621 TeXDict ~ begin ~

622 /color #1

623 {

624 [~

625 /Separation ~ (\str_convert_pdfname:n {#2}) ~
626 [~#3 ~] ~

627 {

628 \cs_if_exist_use:cF { __color_backend_separation_init_ #3 :nnn }
629 { __color_backend_separation_init:nnn }
630 {#4} {#5} {#6}

631 }

632] ~ setcolorspace

633 } ~ def ~

634 end

635 }

636 }

637 \cs_new:cpn { __color_backend_separation_init_ /DeviceCMYK :nnn } #1#2#3
ess { __color_backend_separation_init_Device:Nn 4 {#3} }

630 \cs_new:cpn { __color_backend_separation_init_ /DeviceGray :nnn } #1#2#3
60 { __color_backend_separation_init_Device:Nn 1 {#3} }

621 \cs_new:cpn { __color_backend_separation_init_ /DeviceRGB :nnn } #1#2#3
62 { __color_backend_separation_init_Device:Nn 2 {#3} }

63 \cs_new:Npn __color_backend_separation_init_Device:Nn #1#2

644 {

645 #2 ~

646 \prg_replicate:nn {#1}

647 { #1 ~ index ~ mul ~ #1 ~ 1 ~ roll ~ }
648 \int_eval:n { #1 + 1 } ~ -1 ~ roll ~ pop
649 }

For the generic case, we cannot use /FunctionType 2 unfortunately, so we have to code
that idea up in PostScript. Here, we will therefore assume that a range is always given.
First, we count values in each argument: at the backend level, we can assume there are
always well-behaved with spaces present.

60 \cs_new:Npn __color_backend_separation_init:nnn #1#2#3

651 {

652 \exp_args:Ne __color_backend_separation_init:nnnn

653 { __color_backend_separation_init_count:n {#2} }

654 {#1} {#2} {#3}

655 }

es6 \cs_new:Npn __color_backend_separation_init_count:n #1

es7 { \int_eval:n { O __color_backend_separation_init_count:w #1 ~ \s__color_stop } }

ess \cs_new:Npn __color_backend_separation_init_count:w #1 ~ #2 \s__color_stop

659 {

660 +1

661 \tl_if_blank:nF {#2}

662 { __color_backend_separation_init_count:w #2 \s__color_stop }

663 }
Now we implement the algorithm. In the terms in the PostScript manual, we have N = 1
and Domain = [0 1], with Range as #2, CO as #3 and C1 as #4, with the number of
output components in #1. So all we have to do is implement y; = CO0; + 2(C1; — CO0;)

19

with lots of stack manipulation, then check the ranges. That’s done by adding everything
to the stack first, then using the fact we know all of the offsets. As manipulating the
stack is tricky, we start by re-formatting the CO and C1 arrays to be interleaved, and
add a 0 to each pair: this is used to keep the stack of constant length while we are doing
the first pass of mathematics. We then working through that list, calculating from the
last to the first value before tidying up by removing all of the input values. We do that
by first copying all of the final y values to the end of the stack, then rolling everything
so we can pop the now-unneeded material.

64 \cs_new:Npn __color_backend_separation_init:nnnn #1#2#3#4

665 {

666 __color_backend_separation_init:w #3 ~ \s__color_stop #4 ~ \s__color_stop
667 \prg_replicate:nn {#1}

668 {

669 pop ~ 1 ~ index ~ neg ~ 1 ~ index ~ add ~

670 \int_eval:n { 3 * #1 } ~ index ~ mul ~

671 2 ~ index ~ add ~

672 \int_eval:n { 3 * #1 } ~ #1 ~ roll ~

673 }

674 \int_step_function:nnnN {#1} { -1 } { 1 }

675 __color_backend_separation_init:n

676 \int_eval:n { 4 * #1 + 1 } ~ #1 ~ roll ~

677 \prg_replicate:nn { 3 * #1 + 1 } { pop ~ }

o7 \tl_if blank:nF {#2}

679 { __color_backend_separation_init:nw {#1} #2 ~ \s__color_stop }
680 }

6s1 \cs_new:Npn __color_backend_separation_init:w
6> #1 ~ #2 \s__color_stop #3 ~ #4 \s__color_stop

683 {

684 #1 ~ #3 ~ 0 ~

685 \tl_if_blank:nF {#2}

686 { __color_backend_separation_init:w #2 \s__color_stop #4 \s__color_stop }
687 }

ess \cs_new:Npn __color_backend_separation_init:n #1

650 { \int_eval:n { #1 * 2 } ~ index ~ }
Finally, we deal with the range limit if required. This is handled by splitting the range into
pairs. It’s then just a question of doing the comparisons, this time dropping everything
except the desired result.

690 \cs_new:Npn __color_backend_separation_init:nw #1#2 ~ #3 ~ #4 \s__color_stop

691 {

692 #2 ~ #3 ~

693 2 ~ index ~ 2 ~ index ~ 1t ~

694 { ~ pop ~ exch ~ pop ~ } ~

695 { ~

696 2 ~ index ~ 1 ~ index ~ gt ~

697 { ~ exch ~ pop ~ exch ~ pop ~ } ~
698 { ~ pop ~ pop ~ } ~

699 ifelse ~

700 }

701 ifelse ~

702 #1 ~ 1 ~ roll ~

03 \tl_if_blank:nF {#4}

704 { __color_backend_separation_init:nw {#1} #4 \s__color_stop }

20

__color_backend devicen init:nnn

705 }

CIELAB support uses the detail from the PostScript reference, page 227; other than that

block of PostScript, this is the same as for PDF-based routes.

706 \cs_new_protected:Npn __color_backend_separation_init_CIELAB:nnn #1#2#3

707 {

708 __color_backend_separation_init:neenn

709 {#2}

710 {

711 /CIEBasedABC ~

712 << ~

713 /RangeABC ~ [~ \c__color_model_range_CIELAB_tl \c_space_tl] ~
714 /DecodeABC ~

715 [~

716 { ~ 16 ~ add ~ 116 ~ div ~ } ~ bind ~

717 { ~ 500 ~ div ~ } ~ bind ~

718 { ~ 200 ~ div ~ } ~ bind ~

719 1 ~

720 /MatrixABC ~ [~1 ~1~1~1~0~0~0~0~-1~17~
721 /DecodeLMN ~

722 [~

723 { ~

724 dup ~ 6 ~ 29 ~ div ~ ge ~

725 { ~dup ~ dup ~ mul ~ mul ~ ~ } ~

726 {~4~29 ~div ~ sub ~ 108 ~ 841 ~ div ~ mul ~ } ~
727 ifelse ~

728 0.9505 ~ mul ~

729 } ~ bind ~

730 { ~

731 dup ~ 6 ~ 29 ~ div ~ ge ~

732 { ~dup ~ dup ~ mul ~ mul ~ } ~

733 {~4~29 ~ div ~ sub ~ 108 ~ 841 ~ div ~ mul ~ } ~
734 ifelse ~

735 } ~ bind ~

736 { ~

737 dup ~ 6 ~ 29 ~ div ~ ge ~

738 { ~dup ~ dup ~ mul ~ mul ~ } ~

739 {~4~29 ~ div ~ sub ~ 108 ~ 841 ~ div ~ mul ~ } ~
740 ifelse ~

741 1.0890 ~ mul ~

742 } ~ bind

743 1 ~

744 /WhitePoint ~

745 [~ \tl_use:c { c__color_model_whitepoint_CIELAB_ #1 _tl1 }
746 >>

747 }

748 { \c__color_model_range_CIELAB_tl }

749 { 100 ~ 0 ~ 0 }

750 {#3}

751 }

(End of definition for __color_backend_separation_init:nnnnn and others.)

Trivial as almost all of the work occurs in the shared code.

72 \cs_new_protected:Npn __color_backend_devicen_init:nnn #1#2#3

21

753 ‘[

754 __kernel_backend_literal:e

755 {

756 !

757 TeXDict ~ begin ~

758 /color \int_use:N \g__color_model_int
759 {

760 [~

761 /DeviceN ~

762 [~#1 ~] ~

763 #2 ~

764 {~ #3 ~ } ~

765 __color_backend_devicen_colorants:n {#1}
766] ~ setcolorspace

767 } ~ def ~

768 end

769 }

770 }

(End of definition for __color_backend_devicen_init:nnn.)

_color backend icchased init:nmn No support at present.

771 \cs_new_protected:Npn __color_backend_iccbased_init:nnn #1#2#3 { }

(End of definition for __color_backend_iccbased_init:nnn.)
772 </dvips>

773 (*dvisvgm)

_ color backend select separation:mn No support at present.
__color_backend_select_devicen:nn 774 \cs_new_protected:Npn __color_backend_select_separation:nn #1#2 { }
775 \cs_new_eq:NN __color_backend_select_devicen:nn __color_backend_select_separation:nn

(End of definition for __color_backend_select_separation:nn and __color_backend_select_devicen:nn.)

\ color backend separation init:nmmm No support at present.

__color_backend_separation_init CIELAB:nn 776 \cs_new_protected:Npn __color_backend_separation_init:nnnnn #1#2#3#4#5 { }
777 \cs_new_protected:Npn __color_backend_separation_init_CIELAB:nnnnnn #1#2#3 { }

(End of definition for __color_backend_separation_init:nnnnn and __color_backend_separation_-
init_CIELAB:nnn.)

_color backend select icchased:mn As detailed in https://www.w3.org/TR/css-color-4/#at-profile, we can apply a
color profile using CSS. As we have a local file, we use a relative URL.

772 \cs_new_protected:Npn __color_backend_select_iccbased:nn #1#2

779 {

780 __kernel_backend_literal_svg:e

781 {

782 <style>

783 Q@color-profile ~

784 \str_if_eq:nnTF {#2} { cmyk }

785 { device-cmyk }

786 { --color \int_use:N \g__color_model_int }
787 \c_space_tl1

788 {

22

https://www.w3.org/TR/css-color-4/#at-profile

\

\

__color backend select separation:nn

__color backend select devicen:mn

__color backend select iccbased:nn

__color backend init resource:n

__color backend separation init:nnnnn
__color_backend separation init:mn

_color_backend separation_init CIELAB:nnn

789 src: ("#1")

790 F

791 </s tyle>
792 }

03 F

(End of definition for __color_backend_select_iccbased:nn.)
701 (/dvisvgm)

705 (xdvipdfmx | luatex | pdftex | xetex)

796 (xdvipdfmx | xetex)

707 \cs_new_protected:Npn __color_backend_select_separation:nn #1#2

706 { __kernel_backend_literal:e { pdf : bc ~ \pdf_object_ref:n {#1} ~ [#2] } }

799 (/dvipdfmx | xetex)

800 (*Iuatex ‘ pdftex)

sor \cs_new_protected:Npn __color_backend_select_separation:nn #1#2

s0o { __color_backend_select:nn { /#1 ~ cs ~ #2 ~ scn } { /#1 ~ CS ~ #2 ~ SCN } }

803 (/Iuatex ‘ pdftex)

s« \cs_new_eq:NN __color_backend_select_devicen:nn __color_backend_select_separation:nn
s0s \cs_new_eq:NN __color_backend_select_iccbased:nn __color_backend_select_separation:nn

(End of definition for __color_backend_select_separation:nn, __color_backend_select_devicen:nn,
and __color_backend_select_iccbased:nn.)

Resource initiation comes up a few times. For dvipdfmx/XHTEX, we skip this as at
present it’s handled by the backend.

s0s \cs_new_protected:Npn __color_backend_init_resource:n #1

807 {

s0s (xluatex | pdftex)

809 \bool_lazy_and:nnT

810 { \cs_if_exist_p:N \pdfmanagement_if_active_p: }
811 { \pdfmanagement_if_active_p: }

812 {

813 \use:e

814 {

815 \pdfmanagement_add:nnn

816 { Page / Resources / ColorSpace }
817 {#1}

818 { \pdf_object_ref_last: }

819 }

820 }

s21 (/luatex | pdftex)

822 }

(End of definition for __color_backend_init_resource:n.)

Initializing the PDF structures needs two parts: creating an object containing the “real”
name of the Separation, then adding a reference to that to each page. We use a separate
object for the tint transformation following the model in the PDF reference. The object
here for the color needs to be named as that way it’s accessible to dvipdfmx/XqTEX.

s23 \cs_new_protected:Npn __color_backend_separation_init:nnnnn #1#2#3#4#5

824 {

825 \pdf_object_unnamed_write:ne { dict }

23

__color_backend devicen_init:nmn

__color backend devicen init:w

845

846

847

}

/FunctionType ~ 2
/Domain ~ [0 ~ 1]
\tl_if_blank:nF {#3} { /Range ~ [#3] }
/CO ~ [#4] ~
/C1 ~ [#5] /N ~ 1
}

\exp_args:Ne __color_backend_separation_init:nn

{ \str_convert_pdfname:n {#1} } {#2}

__color_backend_init_resource:n { color \int_use:N \g__color_model_int }

\cs_new_protected:Npn __color_backend_separation_init:nn #1#2

{

}

\use:e

{
\pdf_object_new:n { color \int_use:N \g__color_model_int }
\pdf_object_write:nnn { color \int_use:N \g__color_model_int } { array }
{ /Separation /#1 ~ #2 ~ \pdf_object_ref_last: }
}

\prop_gput :Nne \g__color_backend_colorant_prop { /#1 }

{ \pdf_object_ref_ last: }

For CIELAB colors, we need one object per document for the illuminant, plus initializa-
tion of the color space referencing that object.

848

849

\cs_new_protected:Npn __color_backend_separation_init_CIELAB:nnn #1#2#3

{

}

\pdf_object_if_exist:nF { __color_illuminant_CIELAB_ #1 }

{
\pdf_object_new:n { __color_illuminant_CIELAB_ #1 }
\pdf_object_write:nne { __color_illuminant_CIELAB_ #1 } { array }
{
/Lab ~
<<
/WhitePoint ~
[\tl_use:c { c__color_model_whitepoint_CIELAB_ #1 _t1 }]
/Range ~ [\c__color_model_range_CIELAB_tl1]
>>
}
}

__color_backend_separation_init:nnnnn

{#2}

{ \pdf_object_ref:n { __color_illuminant_CIELAB_ #1 } }
{ \c__color_model_range_CIELAB_tl }

{100 ~ 0 ~ 0 }

{#3}

(End of definition for __color_backend_separation_init:nnnnn, __color_backend_separation_-
init:nn, and __color_backend_separation_init_CIELAB:nnn)

Similar to the Separations case, but with an arbitrary function for the alternative space
work.

s70 \cs_new_protected:Npn __color_backend_devicen_init:nnn #1#2#3

871

{

24

872 \pdf_object_unnamed_write:ne { stream }

873 {

874 {

875 /FunctionType ~ 4 ~

876 /Domain ~

877 [~

878 \prg_replicate:nn

879 { 0 __color_backend_devicen_init:w #1 ~ \s__color_stop }
880 {0~1~1%

881]~

882 /Range ~

883 [~

884 \str_case:nn {#2}

885 {

886 { /DeviceCMYK } { 0 ~1 ~0~1~0~1~0~11%
887 { /DeviceGray } { 0 ~ 1 }

888 { /DeviceRGB } {0 ~1~0~1~0~11}

889 } ~

890 J

891 }

892 { {#3} }

893 F}

894 \use:e

895 {

896 \pdf_object_new:n { color \int_use:N \g__color_model_int }
897 \pdf_object_write:nnn { color \int_use:N \g__color_model_int } { array }
898 {

899 /DeviceN ~

900 [~#1 ~] ~

901 #2 ~

902 \pdf_object_ref_last:

903 __color_backend_devicen_colorants:n {#1}

904 }

905 }

906 __color_backend_init_resource:n { color \int_use:N \g__color_model_int }
907 }

oz \cs_new:Npn __color_backend_devicen_init:w #1 ~ #2 \s__color_stop
909 {

910 + 1

011 \tl_if_blank:nF {#2}

912 { __color_backend_devicen_init:w #2 \s__color_stop }

913 }

(End of definition for __color_backend_devicen_init:nnn and __color_backend_devicen_init:w.)

\

_color backend icchased init:mn Lots of data to save here: we only want to do that once per file, so track it by name.

914 \cs_new_protected:Npn __color_backend_iccbased_init:nnn #1#2#3

915 {

916 \pdf_object_if_exist:nF { __color_icc_ #1 }

917 {

918 \pdf_object_new:n { __color_icc_ #1 }

919 \pdf_object_write:nne { __color_icc_ #1 } { fstream }
920 {

921 {

25

__color backend iccbased device:nnn

__color_backend_fill:n
__color_backend_fill_cmyk:n
__color_backend_fill_gray:n

__color_backend_fill_rgb:n
__color_backend_stroke:n

__color backend stroke cmyk:n

__color backend stroke gray:n

__color_backend stroke rgh:n

922 /N ~ \exp_not:n { #2 } ~
923 \tl_if_empty:nF { #3 } { /Range~[#3] }

924 }

925 {#1}

926 }

927 }

928 \pdf_object_unnamed_write:ne { array }

929 { /ICCBased ~ \pdf_object_ref:n { __color_icc_ #1 } }

930 __color_backend_init_resource:n { color \int_use:N \g__color_model_int }
931 }

(End of definition for __color_backend_iccbased_init:nnn.)

This is very similar to setting up a color space: the only part we add to the page resources
differently.
932 \cs_new_protected:Npn __color_backend_iccbased_device:nnn #1#2#3

033 {

034 \pdf_object_if_exist:nF { __color_icc_ #1 }

935 {

936 \pdf_object_new:n { __color_icc_ #1 }

037 \pdf_object_write:nnn { __color_icc_ #1 } { fstream }
938 {

939 { /N -~ #3 }

940 {#1}

941 }

942 }

043 \pdf_object_unnamed_write:ne { array }

944 { /ICCBased ~ \pdf_object_ref:n { __color_icc_ #1 } }
945 __color_backend_init_resource:n { Default #2 }

946 }

(End of definition for __color_backend_iccbased_device:nnn.)

os7 (/dvipdfmx | luatex | pdftex | xetex)

3.4 Fill and stroke color

Here, dvipdfmx/XHqTEX we write direct PDF specials for the fill, and only use the stack
for the stroke color (see above for comments on why we cannot use multiple stacks with
these backends). LuaTgX and pdfTEX have multiple stacks that can deal with fill and
stroke. For dvips we have to manage fill and stroke color ourselves. We also handle
dvisvgnm independently, as there we can create SVG directly.

s (*dvipdfmx | xetex)

99 \cs_new_protected:Npn __color_backend_fill:n #1

os0o { __kernel_backend_literal:n { pdf : bc ~ fill ~ [#1] } }

051 \cs_new_eq:NN __color_backend_fill_cmyk:n __color_backend_fill:n

952 \cs_new_eq:NN __color_backend_fill_gray:n __color_backend_fill:n

os3 \cs_new_eq:NN __color_backend_fill_rgb:n __color_backend_fill:n

952 \cs_new_protected:Npn __color_backend_stroke:n #1

055 { __kernel_backend_literal:n { pdf : bc ~ stroke ~ [#1] } }

os6 \cs_new_eq:NN __color_backend_stroke_cmyk:n __color_backend_stroke:n
057 \cs_new_eq:NN __color_backend_stroke_gray:n __color_backend_stroke:n
9ss \cs_new_eq:NN __color_backend_stroke_rgb:n __color_backend_stroke:n

26

(End of definition for __color_backend_fill:n and others.)

__color backend fill separation:nn

__color_backend stroke separation:nn o5 \cs_new_protected:Npn __color_backend fill_separation:nn #1#2
__color backend fill devicen:nn 960 {
__color backend stroke devicen:nn 961 __kernel_backend_literal:e
962 { pdf : bc ~ fill ~ \pdf_object_ref:n {#1} ~ [#2] }
963 }
96 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2
965 {

966 __kernel_backend_literal:e

967 { pdf : bc ~ stroke ~ \pdf_object_ref:n {#1} ~ [#2] }

968 }

o0 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn

970 \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill_reset:
__color_backend stroke reset: o1 \cs_new_eq:NN __color_backend_fill_reset: __color_backend reset:
o2 \cs_new_eq:NN __color_backend_stroke_reset: __color_backend_reset:
(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)
073 (/dvipdfmx | xetex)
o (*luatex | pdftex)

n Drawing (fill/stroke) color is handled in dvipdfmx/XHTEX in the same way as LuaTgX/pdfTEX.
__color_backend_fill gray:n We use the same approach as earlier, except the color stack is not involved so the generic
__color_backend_fill_rgb:n direct PDF operation is used. There is no worry about the nature of strokes: everything
__color_backend_fill:n is handled automatically.

__color_backend_fill_cmyk:

__color_backend_stroke_cuyk:n o075 \cs_new_protected:Npn __color_backend_fill_cmyk:n #1
__color_backend_stroke_gray:n 976 { __color_backend_fill:n { #1 ~ k } }
__color backend stroke rgh:n o77 \cs_new_protected:Npn __color_backend_fill_gray:n #1

__color backend stroke:n 9% { __color_backend_fill:n { #1 ~ g } }
oo \cs_new_protected:Npn __color_backend_fill_rgb:n #1
950 { __color_backend_fill:n { #1 ~ rg } }
os1 \cs_new_protected:Npn __color_backend_fill:n #1

982 {

983 \tl_set:Nn \1__color_backend_ fill_tl {#1}

984 __kernel_color_backend_stack_push:nn \1__color_backend_stack_int
985 { #1 ~ \1__color_backend_stroke_tl }

986 }

os7 \cs_new_protected:Npn __color_backend_stroke_cmyk:n #1
9 { __color_backend_stroke:n { #1 ~ K } }

9s9 \cs_new_protected:Npn __color_backend_stroke_gray:n #1
oo { __color_backend_stroke:n { #1 ~ G } }

991 \cs_new_protected:Npn __color_backend_stroke_rgb:n #1
9902 { __color_backend_stroke:n { #1 ~ RG } }

003 \cs_new_protected:Npn __color_backend_stroke:n #1

994 {

995 \tl_set:Nn \1__color_backend_stroke_tl {#1}

996 __kernel_color_backend_stack_push:nn \1__color_backend_stack_int
997 { \1__color_backend_fill_tl \c_space_tl #1 }

998 }

27

(End of definition for __color_backend_fill_cmyk:n and others.)

__color backend fill separation:nn

__color_backend_stroke_separation:mn 999 \cs_new_protected:Npn __color_backend_fill_separation:nn #1#2
__color backend fill devicen:nn 000 { __color_backend_fill:n { /#1 ~ cs ~ #2 ~ scn } }
__color backend stroke devicen:mn 1000 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2

w02 { __color_backend_stroke:n { /#1 ~ CS ~ #2 ~ SCN } }
1003 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn
100+ \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill_reset:

__color_backend stroke reset: 15, \cs_new_eq:NN __color_backend_fill_reset: __color_backend_reset:
1005 \cs_new_eq:NN __color_backend_stroke_reset: __color_backend_reset:

(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)
1007 (/Iuatex ‘ pdftex)

1008 (*dvips)

__color_backend_fill_cmyk:n Fill color here is the same as general color except we skip the stroke part.

__color_backend_fill_gray:n \cs_new_protected:Npn __color_backend_fill_cmyk:n #1
__color_backend fill rgb:n i { __color_backend_fill:n { cmyk ~ #1 } }

__color_backend_fill:n i \cs_new_protected:Npn __color_backend_fill_gray:n #1
__color backend stroke cuyk:n w012 { __color_backend_fill:n { gray ~ #1 } }

__color backend stroke gray:n 1013 \cs_new_protected:Npn __color_backend_fill_rgb:n #1
N ; 9 R w014 { __color_backend_fill:n { rgb ~ #1 } }

__color backend stroke rgb:n
1015 \cs_new_protected:Npn __color_backend_fill:n #1

1016 {

1017 __kernel_backend_literal:n { color~push~ #1 }

1018 }

1010 \cs_new_protected:Npn __color_backend_stroke_cmyk:n #1

100 { __kernel_backend_postscript:n { /color.sc { #1 ~ setcmykcolor } def } }

1021 \cs_new_protected:Npn __color_backend_stroke_gray:n #1

w22 { __kernel_backend_postscript:n { /color.sc { #1 ~ setgray } def } }

1023 \cs_new_protected:Npn __color_backend_stroke_rgb:n #1

1020 { __kernel_backend_postscript:n { /color.sc { #1 ~ setrgbcolor } def } }

(End of definition for __color_backend_fill_cmyk:n and others.)

__color backend fill separation:nn
__color_backend_stroke separation:mn ;g5 \cs_new_protected:Npn __color_backend_fill_separation:nn #1#2
__color backend fill devicen:nn 1025 { __color_backend_fill:n { separation ~ #1 ~ #2 } }
__color backend stroke devicen:mn 1027 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2
102 { __kernel_backend_postscript:n { /color.sc { separation ~ #1 ~ #2 } def } }
1020 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn
1030 \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill_reset:

__color_backend stroke reset: 1,; \cs_new_eq:NN __color_backend_fill_reset: __color_backend_reset:
1032 \cs_new_protected:Npn __color_backend_stroke_reset: { }

28

(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)
1033 (/dvips)

1034 <*dViSng>

__color_backend_fill_cmyk:n Fill color here is the same as general color.

__color_backend fill_gray:n \cs_new_protected:Npn __color_backend_£fill_cmyk:n #1
__color_backend fill rgb:n .3 { __color_backend_fill:n { cmyk ~ #1 } }
__color_backend fill:n 1037 \cs_new_protected:Npn __color_backend_fill_gray:n #1
wse { __color_backend_fill:n { gray ~ #1 } }
1030 \cs_new_protected:Npn __color_backend_fill_rgb:n #1
w0 { __color_backend_fill:n { rgb ~ #1 } }
1041 \cs_new_protected:Npn __color_backend_fill:n #1

1042 {
1043 __kernel_backend_literal:n { color~push~ #1 }
1044 3

(End of definition for __color_backend_fill_cmyk:n and others.)

\color backend stroke ciyk:n - For drawings in SVG, we use scopes for all stroke colors. The backend provides the
\color backend stroke gray:n necessary conversion for CMYK but only if that is set as the main color: a little bit of
_color backend stroke gray aux:n gymmnastics as a result.

__color_backend stroke rgb:n ;o5 \cs_new_protected:Npn __color_backend_stroke_cmyk:n #1

__color backend stroke rgh:w 1046 {
__color_backend:nnn 1047 __color_backend_£fill_cmyk:n {#1}
1048 __kernel_backend_scope:n { stroke = "{7color}" }
1049 __color_backend_reset:
1050 }
1051 \cs_new_protected:Npn __color_backend_stroke_gray:n #1
1052 {
1053 \use:e
1054 {
1055 __color_backend_stroke_gray_aux:n
1056 { \fp_eval:n { 100 * (#1) } }
1057 }
1058 }
1050 \cs_new_protected:Npn __color_backend_stroke_gray_aux:n #1
1060 { __color_backend:nnn {#1} {#1} {#1} }

1051 \cs_new_protected:Npn __color_backend_stroke_rgb:n #1
w2 { __color_backend_rgb:w #1 \s__color_stop }

1063 \cs_new_protected:Npn __color_backend_stroke_rgb:w
w061 #1 ~ #2 ~ #3 \s__color_stop

1065 ‘[

1066 \use:e

1067 {

1068 __color_backend:nnn

1069 { \fp_eval:n { 100 * (#1) } }
1070 { \fp_eval:n { 100 * (#2) } }
1071 { \fp_eval:n { 100 * (#3) } }
1072 }

1073 }

1072 \cs_new_protected:Npe __color_backend:nnn #1#2#3
1075 {

1076 __kernel_backend_scope:n

29

1077 {

1078 stroke =

1079 "

1080 rghb

1081 (

1082 #1 \c_percent_str ,
1083 #2 \c_percent_str ,
1084 #3 \c_percent_str
1085)

1086

1087 }

1088 }

(End of definition for __color_backend_stroke_cmyk:n and others.)

__color backend fill separation:nn At present, these are no-ops.
__color_backend _stroke separation:nmn ;4 \cs_new_protected:Npn __color_backend_fill_separation:nn #1#2 { }
__color backend fill devicen:nn ;000 \cs_new_protected:Npn __color_backend_stroke_separation:nn #1#2 { }
__color backend stroke devicen:mn 1001 \cs_new_eq:NN __color_backend_fill_devicen:nn __color_backend_fill_separation:nn
1092 \cs_new_eq:NN __color_backend_stroke_devicen:nn __color_backend_stroke_separation:nn

(End of definition for __color_backend_fill_separation:nn and others.)

__color_backend_fill _reset:

__color _backend stroke reset: .0, \cs_new. eq:NN __color_backend_fill_reset: __color_backend_reset:

1091 \cs_new_protected:Npn __color_backend_stroke_reset: { }

(End of definition for __color_backend_fill_reset: and __color_backend_stroke_reset:.)

_color backend devicen init:nn No support at present.

__color_backend iccbased init:mmn pos \cs_new_protected:Npn __color_backend_devicen_init:nnn #1#2#3 { }
w9 \cs_new_protected:Npn __color_backend_iccbased_init:nnn #1#2#3 { }

(End of definition for __color_backend_devicen_init:nnn and __color_backend_iccbased_init:nnn.)
1097 {/dvisvgm)
1098 (/package)

3.5 Font handling integration

In LuaTgX these colors should also be usable to color fonts, so luaotfload color handling
is extended to include these.

1099 <*Iua)

100 local 1 = lpeg

1101 local spaces = 1.P’ ’70

102 local digitl6 = 1.R(°09’, ’af’, ’AF’)

1103

1104 local octet = digitl6 * digitl6 / function(s)

105 return string.format(’’.3g ’, tonumber(s, 16) / 255)

1106 end

1107

108 if luaotfload and luaotfload.set_transparent_colorstack then
100 local htmlcolor = 1.Cs(octet * octet * octet * -1 * 1.Cc’rg’)
110 local color_export = {

30

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

114

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1160

1161

1162

1163

token.create’tex_endlocalcontrol:D’,
token.create’tex_hpack:D’,
token.new(0, 1),
token.create’color_export:nnN’,
token.new(0, 1),

3
>

token.new(0, 2),
token.new(0, 1),
’backend’,
token.new(0, 2),
token.create’l_tmpa_tl’,
token.create’exp_after:wN’,
token.create’__color_select:nn’,
token.create’l_tmpa_tl’,
token.new(0, 2),
}
local group_end = token.create’group_end:’
local value = (1 - 1.P’}’)"0
luatexbase.add_to_callback(’luaotfload.parse_color’, function (value)
% Also allow HTML colors to preserve compatibility
local html = htmlcolor:match(value)
if html then return html end

% If no 13color named color with this name is known, check for defined xcolor colors
local 13color_prop = token.get_macro(string.format(’1l__color_named_%s_prop’, value))

if 13color_prop == nil or 1l3color_prop == ’’ then
local legacy_color_macro = token.create(string.format(’\\color@y%s’, value))
if legacy_color_macro.cmdname ~= ’undefined_cs’ then

token.put_next (legacy_color_macro)
return token.scan_argument ()
end
end

tex.runtoks (function()
token.get_next ()
color_export[6] = value
tex.sprint (-2, color_export)

end)

local list = token.scan_list()

if not list.head or list.head.next

or list.head.subtype ~= node.subtype’pdf_colorstack’ then

error’Unexpected backend behavior’

end

local cmd = list.head.data

node.free(list)

return cmd

end, ’13color’)
end

(/lua)
(*luatex)

(xpackage)
\lua_load_module:n {13backend-luatex}
(/package)

31

__draw_backend_literal:n
__draw_backend_literal:e

__draw_backend_begin:
__draw_backend_end:

__draw_backend_scope_begin:
__draw_backend_scope_end:

__draw_backend_moveto:nn
__draw_backend_lineto:nn
__draw backend rectangle:nnmn

__draw_backend curveto:nnmnnn

1164 (/Iuatex)

4 13backend-draw implementation

ues (*package)
1166 (@@=draw>

4.1 dvips backend

67 (xdvips)

The same as literal PostScript: same arguments about positioning apply here.

1165 \cs_new_eq:NN __draw_backend_literal:n __kernel_backend_literal_postscript:n

160 \cs_generate_variant:Nn __draw_backend_literal:n { e }

(End of definition for __draw_backend_literal:n.)

The ps:: [begin] special here deals with positioning but allows us to continue on to a
matching ps: : [end]: contrast with ps:, which positions but where we can’t split material
between separate calls. The @beginspecial/@endspecial pair are from special.pro
and correct the scale and y-axis direction. As for pgf, we need to save the current point
as this is required for box placement. (Note that @beginspecial/@endspecial forms a
backend scope.)

1170 \cs_new_protected:Npn __draw_backend_begin:

1171 {

1172 __draw_backend_literal:n { [begin] }

1173 __draw_backend_literal:n { /draw.x~currentpoint~/draw.y~exch~def~def }
1174 __draw_backend_literal:n { @beginspecial }

1175 }

1176 \cs_new_protected:Npn __draw_backend_end:

1177 {

1178 __draw_backend_literal:n { @endspecial }

1179 __draw_backend_literal:n { [end] }

1180 }

(End of definition for __draw_backend_begin: and __draw_backend_end:.)

Scope here may need to contain saved definitions, so the entire memory rather than just
the graphic state has to be sent to the stack.

1151 \cs_new_protected:Npn __draw_backend_scope_begin:

sz { __draw_backend_literal:n { save } }

1153 \cs_new_protected:Npn __draw_backend_scope_end:

182 { __draw_backend_literal:n { restore } }

(End of definition for __draw_backend_scope_begin: and __draw_backend_scope_end:.)

Path creation operations mainly resolve directly to PostScript primitive steps, with only
the need to convert to bp. Notice that e-type expansion is included here to ensure that
any variable values are forced to literals before any possible caching. There is no native
rectangular path command (without also clipping, filling or stroking), so that task is
done using a small amount of PostScript.

155 \cs_new_protected:Npn __draw_backend_moveto:nn #1#2

1186 {

1187 __draw_backend_literal:e

32

1188 {

1189 \dim_to_decimal_in_bp:n {#1} ~

1190 \dim_to_decimal_in_bp:n {#2} ~ moveto

1191 }

1192 }

1195 \cs_new_protected:Npn __draw_backend_lineto:nn #1#2

1194 {

1195 __draw_backend_literal:e

1196 {

1197 \dim_to_decimal_in_bp:n {#1} ~

1198 \dim_to_decimal_in_bp:n {#2} ~ lineto

1199 }

1200 }

1200 \cs_new_protected:Npn __draw_backend_rectangle:nnnn #1#2#3#4

1202 {

1203 __draw_backend_literal:e

1204 ‘[

1205 \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#3} ~
1206 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~
1207 moveto~dup~0O~rlineto~exch~0O~exch~rlineto~neg~0O~rlineto~closepath
1208 }

1209 }

1210 \cs_new_protected:Npn __draw_backend_curveto:nnnnnn #1#2#3#4#5#6

1211 {

1212 __draw_backend_literal:e

1213 {

1214 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~
1215 \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~
1216 \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~
1217 curveto

1218 }

1219 }

(End of definition for __draw_backend_moveto:nn and others.)

\drav backend evenodd rule: The even-odd rule here can be implemented as a simply switch.
__draw_backend_nonzero_rule: 1220 \cs_new_protected:Npn __draw_backend_evenodd_rule:
\g__draw_draw_eor_bool 1 { \bool_gset_true:N \g__draw_draw_eor_bool }
1222 \cs_new_protected:Npn __draw_backend_nonzero_rule:
1223 { \bool_gset_false:N \g__draw_draw_eor_bool }
1224 \bool_new:N \g__draw_draw_eor_bool

(End of definition for __draw_backend_evenodd_rule:, __draw_backend_nonzero_rule:, and \g__-
draw_draw_eor_bool.)

__draw_backend_closepath: Unlike PDF, PostScript doesn’t track separate colors for strokes and other elements. It is
__draw_backend_stroke: also desirable to have the clip keyword after a stroke or fill. To achieve those outcomes,
__draw_backend_closestroke: there is some work to do. For color, the stoke color is simple but the fill one has to be
__draw_backend_fill: inserted by hand. For clipping, the required ordering is achieved using a TEX switch.
__draw_backend_fillstroke: All of the operations end with a new path instruction as they do not terminate (again in
__draw_backend_clip: contrast to PI)F).
__draw_backend_discardpath: ,.,; \cs_new_protected:Npn __draw_backend_closepath:
\g__draw_draw_clip_bool ;% { __draw_backend_literal:n { closepath } }
1227 \cs_new_protected:Npn __draw_backend_stroke:

33

1229 __draw_backend_literal:n { gsave }

1230 __draw_backend_literal:n { color.sc }

1231 __draw_backend_literal:n { stroke }

1232 __draw_backend_literal:n { grestore }

1233 \bool_if:NT \g__draw_draw_clip_bool

1234 {

1235 __draw_backend_literal:e

1236 {

1237 \bool_if:NT \g__draw_draw_eor_bool { eo }
1238 clip

1239 }

1240 }

1241 __draw_backend_literal:n { newpath }

1242 \bool_gset_false:N \g__draw_draw_clip_bool
1243 3

1244 \cs_new_protected:Npn __draw_backend_closestroke:

1245 {

1246 __draw_backend_closepath:
1247 __draw_backend_stroke:
1248 }

1290 \cs_new_protected:Npn __draw_backend_£fill:

1250 {

1251 __draw_backend_literal:e

1252 {

1253 \bool_if:NT \g__draw_draw_eor_bool { eo }
1254 fill

1255 }

1256 \bool_if:NT \g__draw_draw_clip_bool

1257 {

1258 __draw_backend_literal:e

1259 {

1260 \bool_if:NT \g__draw_draw_eor_bool { eo }
1261 clip

1262 }

1263 }

1264 __draw_backend_literal:n { newpath }

1265 \bool_gset_false:N \g__draw_draw_clip_bool
1266 }

1267 \cs_new_protected:Npn __draw_backend_fillstroke:

1268 {

1269 __draw_backend_literal:e

1270 {

1271 \bool_if:NT \g__draw_draw_eor_bool { eo }
1272 fill

1273 }

1274 __draw_backend_literal:n { gsave }
1275 __draw_backend_literal:n { color.sc }
1276 __draw_backend_literal:n { stroke }
1277 __draw_backend_literal:n { grestore }
1278 \bool_if:NT \g__draw_draw_clip_bool
1279 {

1280 __draw_backend_literal:e

1281 {

34

1282 \bool_if:NT \g__draw_draw_eor_bool { eo }

1283 clip

1284 }

1285 }

1286 __draw_backend_literal:n { newpath }

1287 \bool_gset_false:N \g__draw_draw_clip_bool
1288 }

1230 \cs_new_protected:Npn __draw_backend_clip:

1200 { \bool_gset_true:N \g__draw_draw_clip_bool }
1201 \bool_new:N \g__draw_draw_clip_bool

1202 \cs_new_protected:Npn __draw_backend_discardpath:

1293 {

1294 \bool_if:NT \g__draw_draw_clip_bool

1295 ‘[

1296 __draw_backend_literal:e

1297 {

1208 \bool_if:NT \g__draw_draw_eor_bool { eo }
1299 clip

1300 }

1301 }

1302 __draw_backend_literal:n { newpath }

1303 \bool_gset_false:N \g__draw_draw_clip_bool
1304 }

(End of definition for __draw_backend_closepath: and others.)

\ draw backend dash pattern:mn Converting paths to output is again a case of mapping directly to PostScript operations.

__draw_backend_dash:n \cs_new_protected:Npn __draw_backend_dash_pattern:nn #1#2
__draw_backend_linewidth:n 53 {

__draw_backend_miterlimit:n 1307 __draw_backend_literal:e
__draw_backend_cap_butt: 1308 {
__draw_backend_cap_round: 1309 [
__draw backend cap rectangle: 1310 \exp_args:Nf \use:n

1311 { \clist_map_function:nN {#1} __draw_backend_dash:n }
1312] ~

_d backend Goin bevel 1313 \dim_to_decimal_in_bp:n {#2} ~ setdash
__draw_backend_join_bevel: 3

__draw_backend_join_miter:
__draw_backend_join_round:

1314

1315 }

1316 \cs_new:Npn __draw_backend_dash:n #1

117 { ~ \dim_to_decimal_in_bp:n {#1} }

1318 \cs_new_protected:Npn __draw_backend_linewidth:n #1

1319 {

1320 __draw_backend_literal:e

1321 { \dim_to_decimal_in_bp:n {#1} ~ setlinewidth }
1322 3

1323 \cs_new_protected:Npn __draw_backend_miterlimit:n #1
1324 { __draw_backend_literal:n { #1 ~ setmiterlimit } }
1325 \cs_new_protected:Npn __draw_backend_cap_butt:

1326 { __draw_backend_literal:n { O ~ setlinecap } }

1327 \cs_new_protected:Npn __draw_backend_cap_round:

1322 { __draw_backend_literal:n { 1 ~ setlinecap } }

1320 \cs_new_protected:Npn __draw_backend_cap_rectangle:
1330 { __draw_backend_literal:n { 2 ~ setlinecap } }

1331 \cs_new_protected:Npn __draw_backend_join_miter:

35

1332 { __draw_backend_literal:n { 0 ~ setlinejoin } }
1333 \cs_new_protected:Npn __draw_backend_join_round:
133+ { __draw_backend_literal:n { 1 ~ setlinejoin } }
1335 \cs_new_protected:Npn __draw_backend_join_bevel:
1336 { __draw_backend_literal:n { 2 ~ setlinejoin } }

(End of definition for __draw_backend_dash_pattern:nn and others.)

__drav backend_transforn:mnn - In dvips, keeping the transformations in line with the engine is unfortunately not possible
__draw_backend_shift:nn for scaling and rotations: even if we decompose the matrix into those operations, there is
still no backend tracking (c¢f. dvipdfmx/XHTEX). Thus we take the shortest path available

and simply dump the matrix as given.

1337 \cs_new_protected:Npn __draw_backend_transform:nnnn #1#2#3#4

1338 {

1339 __draw_backend_literal:n

1340 { [#1 ~ #2 ~ #3 ~ #4 ~ 0 ~ 0] ~ concat }
1341 }

1322 \cs_new_protected:Npn __draw_backend_shift:nn #1#2
1343 {

1344 __draw_backend_literal:n

1345 {[1~0~0~1~#1 ~#2] ~ concat }

1346 }

(End of definition for __draw_backend_transform:nnnn and __draw_backend_shift:nn.)

__dray backend_box use:lmmn Inside a picture @beginspecial/@endspecial are active, which is normally a good
thing but means that the position and scaling would be off if the box was inserted
directly. To deal with that, there are a number of possible approaches. A previ-
ous implementation suggested by Tom Rokici used @endspecial/@beginspecial. This
avoids needing internals of dvips, but fails if there the box is used inside a scope (see
https://github.com/latex3/latex3/issues/1504). Instead, we use the same method
as pgf, which means tracking the position at the PostScript level. Also note that us-
ing @endspecial would close the scope it creates, meaning that after a box insertion,
any local changes would be lost. Keeping dvips on track is non-trivial, hence the
[begin] /[end] pair before the save and around the restore.

137 \cs_new_protected:Npn __draw_backend_box_use:Nnnnn #1#2#3#4#5

1348 {

1349 __draw_backend_literal:n { save }

1350 __draw_backend_literal:n { 72~Resolution~div~72~VResolution~div~neg~scale }
1351 __draw_backend_literal:n { magscale { 1~DVImag~div~dup~scale } if }
1352 __draw_backend_literal:n { draw.x~neg~draw.y~neg~translate }

1353 __draw_backend_literal:n { [end] }

1354 __draw_backend_literal:n { [begin] }

1355 __draw_backend_literal:n { save }

1356 __draw_backend_literal:n { currentpoint }

1357 __draw_backend_literal:n { currentpoint~translate }

1358 __draw_backend_transform:nnnn { 1 } { 0 +} { 0 } { -1 }

1359 __draw_backend_transform:nnnn {#2} {#3} {#4} {#5}

1360 __draw_backend_transform:nnnn { 1 }» { 0+ { 0 } { -1 }

1361 __draw_backend_literal:n { neg~exch~neg~exch~translate }

1362 __draw_backend_literal:n { [end] }

1363 \hbox_overlap_right:n { \box_use:N #1 }

1364 __draw_backend_literal:n { [begin] }

36

https://github.com/latex3/latex3/issues/1504

1365 __draw_backend_literal:n { restore }
1366 __draw_backend_literal:n { [end] }
1367 __draw_backend_literal:n { [begin] }
1368 __draw_backend_literal:n { restore }
1369 }

(End of definition for __draw_backend_box_use:Nnnnn.)

1370 (/dvips>

4.2 LuaTgX, pdfTEX, dvipdfmx and X{TEX

LuaTgX, pdfTEX, dvipdfmx and XHTEX directly produce PDF output and understand a
shared set of specials for drawing commands.

1571 (xdvipdfmx | luatex | pdftex | xetex)

4.2.1 Drawing

__draw_backend_literal:n Pass data through using a dedicated interface.
__draw_backend literal:e .5, \cs_new_eq:NN __draw_backend_literal:n __kernel_backend_literal_pdf:n
1373 \cs_new_eq:NN __draw_backend_literal:e __kernel_backend_literal_pdf:e

(End of definition for __draw_backend_literal:n.)

__draw_backend_begin: No special requirements here, so simply set up a drawing scope.

__draw_backend_end: 5, \cs_new_protected:Npn __draw_backend_begin:
1575 { __draw_backend_scope_begin: }
1376 \cs_new_protected:Npn __draw_backend_end:
1377 { __draw_backend_scope_end: }

(End of definition for __draw_backend_begin: and __draw_backend_end:.)

__draw_backend_scope_begin: Use the backend-level scope mechanisms.

__draw_backend_scope_end: ,;; \cs_new_eq:NN __draw_backend_scope_begin: __kernel_backend_scope_begin:
1379 \cs_new_eq:NN __draw_backend_scope_end: __kernel_backend_scope_end:

(End of definition for __draw_backend_scope_begin: and __draw_backend_scope_end:.)

__draw_backend_moveto:nn Path creation operations all resolve directly to PDF primitive steps, with only the need
__draw_backend_lineto:nn to convert to bp.

__dra_backend_curveto:nnnnmn ;54 \cs_new_protected:Npn __draw_backend_moveto:nn #1#2

\”drawibackendirectangle nnnn 1381 {
1382 __draw_backend_literal:e
1383 { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ m }
1384 }
1365 \cs_new_protected:Npn __draw_backend_lineto:nn #1#2
1386 {
1387 __draw_backend_literal:e
1388 { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ 1 }
1389 }
1300 \cs_new_protected:Npn __draw_backend_curveto:nnnnnn #1#2#3#4#5#6
1391 {
1302 __draw_backend_literal:e
1393 {
1394 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~

37

1395 \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~

1396 \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~
1397 C

1398 }

1399 }

1200 \cs_new_protected:Npn __draw_backend_rectangle:nnnn #1#2#3#4

1401 {

1402 __draw_backend_literal:e

1403 {

1404 \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~
1405 \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~
1406 re

1407 }

1408 }

(End of definition for __draw_backend_moveto:nn and others.)

\ drav backend evenodd rule: The even-odd rule here can be implemented as a simply switch.

__drau_backend nonzero rule: 1, \cs_new_protected:Npn __draw_backend_evenodd_rule:
\g__draw_draw_eor_bool .1 { \bool_gset_true:N \g__draw_draw_eor_bool }
111 \cs_new_protected:Npn __draw_backend_nonzero_rule:
12 { \bool_gset_false:N \g__draw_draw_eor_bool }
1413 \bool_new:N \g__draw_draw_eor_bool

(End of definition for __draw_backend_evenodd_rule:, __draw_backend_nonzero_rule:, and \g__-
draw_draw_eor_bool.)

__draw_backend_closepath: Converting paths to output is again a case of mapping directly to PDF operations.

__draw_backend_stroke: 1414 \cs_new_protected:Npn __draw_backend_closepath:
__draw_backend_closestroke: ;s { __draw backend literal:n { h } }
__draw_backend_fill: 1us \cs_new_protected:Npn __draw_backend_stroke:
__draw_backend fillstroke: 147 { __draw_backend_literal:n { S } }
__draw_backend_clip: 1415 \cs_new_protected:Npn __draw_backend_closestroke:

119 { __draw_backend_literal:n { s } }

__draw_backend_discardpath:
1420 \cs_new_protected:Npn __draw_backend_£fill:

1421 {

1422 __draw_backend_literal:e

1423 { £ \bool_if:NT \g__draw_draw_eor_bool * }
1424 }

1425 \cs_new_protected:Npn __draw_backend_fillstroke:
1426 {

1427 __draw_backend_literal:e

1428 { B \bool_if:NT \g__draw_draw_eor_bool * }
1429 }

1130 \cs_new_protected:Npn __draw_backend_clip:

1431 {

1432 __draw_backend_literal:e

1433 { W \bool_if:NT \g__draw_draw_eor_bool * }
1434 3

1435 \cs_new_protected:Npn __draw_backend_discardpath:
13 { __draw_backend_literal:n { n } }

(End of definition for __draw_backend_closepath: and others.)

38

__draw backend dash pattern:mn
__draw_backend_dash:n
__draw_backend_linewidth:n
__draw_backend _miterlimit:n
__draw_backend_cap_butt:
__draw_backend_cap_round:
__draw backend cap rectangle:
__draw_backend_join_miter:
__draw_backend_join_round:
__draw_backend_join_bevel:

__draw _backend transform:nnnn
__draw_backend transform aux:nnnn
__draw_backend_shift:nn

Converting paths to output is again a case of mapping directly to PDF operations.

1457 \cs_new_protected:Npn __draw_backend_dash_pattern:nn #1#2

1438 {

1439 __draw_backend_literal:e

1440 {

1441 [

1442 \exp_args:Nf \use:n

1443 { \clist_map_function:nN {#1} __draw_backend_dash:n }
1444 J ~

1445 \dim_to_decimal_in_bp:n {#2} ~ d

1446 }

1447 }

1125 \cs_new:Npn __draw_backend_dash:n #1
199 { ~ \dim_to_decimal_in_bp:n {#1} }
150 \cs_new_protected:Npn __draw_backend_linewidth:n #1

1451 {

1452 __draw_backend_literal:e

1453 { \dim_to_decimal_in_bp:n {#1} ~ w }
1454 }

1455 \cs_new_protected:Npn __draw_backend_miterlimit:n #1
156 { __draw_backend_literal:e { #1 ~ M } }

1457 \cs_new_protected:Npn __draw_backend_cap_butt:

155 { __draw_backend_literal:n { 0 ~ J } }

150 \cs_new_protected:Npn __draw_backend_cap_round:

so { __draw_backend_literal:n { 1 ~ J } }

161 \cs_new_protected:Npn __draw_backend_cap_rectangle:
162 { __draw_backend_literal:n { 2 ~ J } }

1263 \cs_new_protected:Npn __draw_backend_join_miter:
s { __draw_backend_literal:n { 0 ~ j } }

1465 \cs_new_protected:Npn __draw_backend_join_round:
166 { __draw_backend_literal:n { 1 ~ j } }

167 \cs_new_protected:Npn __draw_backend_join_bevel:
wwes { __draw_backend_literal:n { 2 ~ j } }

(End of definition for __draw_backend_dash_pattern:nn and others.)

Another split here between LuaTEX/pdfTeX and dvipdfmx/XH{TEX. In the former, we
have a direct method to maintain alignment: the backend can use a matrix itself. For
dvipdfmx/XHTEX, we can to decompose the matrix into rotations and a scaling, then
use those operations as they are handled by the backend. (There is backend support for
matrix operations in dvipdfmx/XHTEX, but as a matched pair so not suitable for the
“stand alone” transformation set up here.) The specials used here are from xdvipdfmx
originally: they are well-tested, but probably equivalent to the pdf: versions! As working
out the rotation is relatively expensive, we optimize for the case where there is only a
scaling.

1169 \cs_new_protected:Npn __draw_backend_transform:nnnn #1#2#3#4

1470 {

71 (*luatex | pdftex)

1472 __kernel_backend_matrix:n { #1 ~ #2 ~ #3 ~ #4 }
1473 (/Iuatex ‘ pdftex)

1474 (*dvipdfmx | xetex)

1475 \str_if_eq:nnTF { #2 ~ #3 } { 0 ~ 0 }

1476 {

14

39

__draw backend transform decompose:nnnnll
drav_backend transform decompose auxi:nnnnl
raw_backend transform decompose auxii:nnnnll
aw_backend transform decompose auxiii:nnnnN

1477 __kernel_backend_literal:n { x:rotate~0 }

1478 __kernel_backend_literal:n { x:scale~#1~#4 }

1479 __kernel_backend_literal:n { x:rotate~0 }

1480 }

1481 {

1482 __draw_backend_transform_decompose:nnnnN {#1} {#2} {#3} {#4}
1483 __draw_backend_transform_aux:nnnn

1484 }

185 (/dvipdfmx | xetex)

1486 }

1487 (*dvipdfmx | xetex>
1155 \cs_new_protected:Npn __draw_backend_transform_aux:nnnn #1#2#3#4

1489 {

1490 __kernel_backend_literal:e

1491 {

1492 X:rotate~

1493 \fp_compare:nNnTF {#1} = \c_zero_fp
1494 {017}

1495 { \fp_eval:n { round (-#1 , 5) } }
1496 }

1497 __kernel_backend_literal:e

1498 {

1499 x:scale~

1500 \fp_eval:n { round (#2 , 5) } ~
1501 \fp_eval:n { round (#3 , 5) }

1502 }

1503 __kernel_backend_literal:e

1504 {

1505 x:rotate~

1506 \fp_compare:nNnTF {#4} = \c_zero_1p
1507 { O }

1508 { \fp_eval:n { round (-#4 , 5) } }
1509 }

1510 }

1511 (/dvipdfmx | xetex)

Much less complex for a shift: this is deliberately not tracked by the engine (we would
otherwise do stuff in TEX), so use the same approach for all PDF-based routes.

1512 \cs_new_protected:Npn __draw_backend_shift:nn #1#2

1513 {

1514 __draw_backend_literal:n

1515 {1 ~0~0~1~#1~#2 ~cm }
1516 }

(End of definition for __draw_backend_transform:nnnn, __draw_backend_transform_aux:nnnn, and
__draw_backend_shift:nn.)

Internally, transformations for drawing are tracked as a matrix. Not all engines provide
a way of dealing with this: if we use a raw matrix, the engine looses track of positions
(for example for hyperlinks), and this is not desirable. They do, however, allow us to
track rotations and scalings. Luckily, we can decompose any (two-dimensional) matrix
into two rotations and a single scaling;:

A B| |cosp sing||w; O cosy sinvy
C D| |—sinf cosfB| |0 ws||—siny cosy

40

The parent matrix can be converted to
A B| |EF H F G
¢ p|= |- E|T|¢ -F

From these, we can find that

wy + we _ JEr L H?

2
wz,/pz_,_cgz
v — B =tan"*(G/F)

(
v+ B =tan ' (H/E)

at which point we just have to do various pieces of re-arrangement to get all of the values.
(See J. Blinn, IEEE Comput. Graph. Appl., 1996, 16, 82-88.) There is one wrinkle: the
PostScript (and PDF) way of specifying a transformation matrix exchanges where one
would normally expect B and C to be.

1517 (xdvipdfmx | xetex)

151 \cs_new_protected:Npn __draw_backend_transform_decompose:nnnnlN #1#2#3#4#5

1519 {

1520 \use:e

1521 {

1522 __draw_backend_transform_decompose_auxi:nnnnN
1523 { \fp_eval:n { (#1 + #4) / 2 } }

1524 { \fp_eval:n { (#1 - #4) / 2 } }

1525 { \fp_eval:n { (#3 + #2) / 2 } }

1526 { \fp_eval:n { (#3 - #2) / 2 } }

1527 }

1528 #5

1529 }

1530 \cs_new_protected:Npn __draw_backend_transform_decompose_auxi:nnnnN #1#2#3#4#5

1531 {

1532 \use:e

1533 {

1534 __draw_backend_transform_decompose_auxii:nnnnN

1535 { \fp_eval:n { 2 * sqrt (#1 * #1 + #4 * #4) } }
1536 { \fp_eval:n { 2 * sqrt (#2 * #2 + #3 * #3) } }
1537 { \fp_eval:n { atand (#3 , #2) } }

1538 { \fp_eval:n { atand (#4 , #1) } }

1539 }

1540 #5

1541 3

152 \cs_new_protected:Npn __draw_backend_transform_decompose_auxii:nnnnN #1#2#3#4#5

1543 {

1544 \use:e

1545 {

1546 __draw_backend_transform_decompose_auxiii:nnnnN
1547 { \fp_eval:n { (#4 - #3) / 2 } }

1548 { \fp_eval:n { (#1 +#2) / 2 } }

1549 { \fp_eval:n { (#1 - #2) / 2 } }

1550 { \fp_eval:n { (#4 + #3) / 2 } }

1551 }

41

__draw_backend box use:Nnnnn

__draw_backend_literal:n
__draw_backend_literal:e

__draw_backend_scope_begin:
__draw_backend_scope_end:

1552 #5

1551 \csS_new_protected:Npn __draw_backend_transform_decompose_auxiii:nnnnN #1#2#3#4#5

1555 {

1556 \fp_compare:nNnTF { abs(#2) } > { abs (#3) }
1557 { #5 {#1} {#2} {#3} {#4} }

1558 { #5 {#1} {#3} {#2} {#4} }

1559 }

1560 {/dvipdfmx | xetex)

(End of definition for __draw_backend_transform_decompose:nnnnN and others.)

Inserting a TEX box transformed to the requested position and using the current matrix
is done using a mixture of TEX and low-level manipulation. The offset can be handled
by TEX, so only any rotation/skew/scaling component needs to be done using the matrix
operation. As this operation can never be cached, the scope is set directly not using the
draw version.

1561 \cs_new_protected:Npn __draw_backend_box_use:Nnnnn #1#2#3#4#5
1562 {

1563 __kernel_backend_scope_begin:
161 (xluatex | pdftex)
1565 __kernel_backend_matrix:n { #2 ~ #3 ~ #4 ~ #5 }

1566 (/Iuatex ‘ pdftex)
1567 (*dvipdfmx | xetex>

1568 __kernel_backend_literal:n

1569 { pdf:btrans~matrix~ #2 ~ #3 ~ #4 ~ #5 ~ 0 ~ 0 }
1570 (/dvipdfmx | xetex)

1571 \hbox_overlap_right:n { \box_use:N #1 }

1572 (*dvipdfmx | xetex)

1573 __kernel_backend_literal:n { pdf:etrans }

1574 (/dvipdfmx | xetex)

1575 __kernel_backend_scope_end:

1576 }

(End of definition for __draw_backend_box_use:Nnnnn.)

1577 (/dvipdfmx | luatex | pdftex | xetex)

4.3 dvisvgm backend
1578 (*dvisvgm)

The same as the more general literal call.

1579 \cs_new_eq:NN __draw_backend_literal:n __kernel_backend_literal_svg:n
1550 \cs_generate_variant:Nn __draw_backend_literal:n { e }

(End of definition for __draw_backend_literal:n.)

Use the backend-level scope mechanisms.

1551 \cs_new_eq:NN __draw_backend_scope_begin: __kernel_backend_scope_begin:
1552 \cs_new_eq:NN __draw_backend_scope_end: __kernel_backend_scope_end:

(End of definition for __draw_backend_scope_begin: and __draw_backend_scope_end:.)

42

_

_draw_backend_begin:
__draw_backend_end:

__draw_backend_moveto:nn

__draw_backend_lineto:nn

\g__

__draw_backend rectangle:nnmn
__draw backend curveto:nnnnmn
__draw_backend add to path:n
draw_backend_path_t1l

A drawing needs to be set up such that the coordinate system is translated. That is done
inside a scope, which as described below

1553 \cs_new_protected:Npn __draw_backend_begin:

1584 {

1585 __kernel_backend_scope_begin:

1586 __kernel_backend_scope:n { transform="translate({7x},{?y})~scale(1,-1)" }
1587 }

1555 \cs_new_eq:NN __draw_backend_end: __kernel_backend_scope_end:

(End of definition for __draw_backend_begin: and __draw_backend_end:.)

Once again, some work is needed to get path constructs correct. Rather then write the
values as they are given, the entire path needs to be collected up before being output
in one go. For that we use a dedicated storage routine, which adds spaces as required.
Since paths should be fully expanded there is no need to worry about the internal e-type
expansion.

1559 \cS_new_protected:Npn __draw_backend_moveto:nn #1#2

1590 ‘[

1591 __draw_backend_add_to_path:n

1502 { M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} }
1593 }

1501 \cs_new_protected:Npn __draw_backend_lineto:nn #1#2

1595 {

1596 __draw_backend_add_to_path:n

1597 { L ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} }
1598 }

1590 \cs_new_protected:Npn __draw_backend_rectangle:nnnn #1#2#3#4
1600 {

1601 __draw_backend_add_to_path:n

1602 {

1603 M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2}
1604 h ~ \dim_to_decimal:n {#3} ~

1605 v ~ \dim_to_decimal:n {#4} ~

1606 h ~ \dim_to_decimal:n { -#3 } ~

1607 Z

1608 F}

1609 }

1610 \cs_new_protected:Npn __draw_backend_curveto:nnnnnn #1#2#3#4#5#6
1611 {

1612 __draw_backend_add_to_path:n

1613 {

1614 C ~

1615 \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} ~
1616 \dim_to_decimal:n {#3} ~ \dim_to_decimal:n {#4} ~
1617 \dim_to_decimal:n {#5} ~ \dim_to_decimal:n {#6}
1618 }

w610 F

1620 \cs_new_protected:Npn __draw_backend_add_to_path:n #1

1621 {

1622 \tl_gset:Ne \g__draw_backend_path_tl

1623 {

1624 \g__draw_backend_path_t1

1625 \tl_if_empty:NF \g__draw_backend_path_tl { \c_space_tl }
1626 #1

43

__draw backend evenodd rule:

__draw_backend nonzero rule:

__draw_backend_path:n
__draw_backend_closepath:
__draw_backend_stroke:
__draw_backend_closestroke:
__draw_backend_fill:
__draw_backend_fillstroke:
__draw_backend_clip:
__draw_backend_discardpath:
\g__draw_draw_clip_bool
\g__draw_draw_path_int

1627 }
1628 }
1620 \t1_new:N \g__draw_backend_path_t1

(End of definition for __draw_backend_moveto:nn and others.)

The fill rules here have to be handled as scopes.

1630 \cs_new_protected:Npn __draw_backend_evenodd_rule:
1631 { __kernel_backend_scope:n { fill-rule="evenodd" } }
1632 \cs_new_protected:Npn __draw_backend_nonzero_rule:
1633 { __kernel_backend_scope:n { fill-rule="nonzero" } }

(End of definition for __draw_backend_evenodd_rule: and __draw_backend_nonzero_rule:.)

Setting fill and stroke effects and doing clipping all has to be done using scopes. This
means setting up the various requirements in a shared auxiliary which deals with the
bits and pieces. Clipping paths are reused for path drawing: not essential but avoids
constructing them twice. Discarding a path needs a separate function as it’s not quite
the same.

1632 \cs_new_protected:Npn __draw_backend_closepath:

1635 { __draw_backend_add_to_path:n { Z } }

1636 \cs_new_protected:Npn __draw_backend_path:n #1

1637 {

1638 \bool_if:NTF \g__draw_draw_clip_bool

1639 {

1640 \int_gincr:N \g__kernel_clip_path_int

1641 __draw_backend_literal:e

1642 {

1643 < clipPath~id = " 13cp \int_use:N \g__kernel_clip_path_int " >
1644 { ?nl1 }

1645 <path~d=" \g__draw_backend_path_tl1 "/> { 7nl }

1646 < /clipPath > { ? nl1 }

1647 <

1648 use~xlink:href =

1649 "\c_hash_str 13path \int_use:N \g__draw_backend_path_int " ~
1650 #1

1651 />

1652 }

1653 __kernel_backend_scope:e

1654 {

1655 clip-path =

1656 "url(\c_hash_str 13cp \int_use:N \g__kernel_clip_path_int)"
1657 }

1658 }

1659 {

1660 __draw_backend_literal:e

1661 { <path ~ d=" \g__draw_backend_path_tl " ~ #1 /> }

1662 }

1663 \tl_gclear:N \g__draw_backend_path_tl

1664 \bool_gset_false:N \g__draw_draw_clip_bool

1665 }

1666 \int_new:N \g__draw_backend_path_int
1667 \cs_new_protected:Npn __draw_backend_stroke:
1665 { __draw_backend_path:n { style="fill:none" } }

44

1660 \cs_new_protected:Npn __draw_backend_closestroke:

1670 {

1671 __draw_backend_closepath:
1672 __draw_backend_stroke:

1673 }

1674 \cs_new_protected:Npn __draw_backend_£ill:

1675 {1 __draw_backend_path:n { style="stroke:none" } }
1676 \cs_new_protected:Npn __draw_backend_fillstroke:
1677 { __draw_backend_path:n { } }

167 \cs_new_protected:Npn __draw_backend_clip:

w679 { \bool_gset_true:N \g__draw_draw_clip_bool }

160 \bool_new:N \g__draw_draw_clip_bool

1651 \cs_new_protected:Npn __draw_backend_discardpath:

1682 {

1683 \bool_if:NT \g__draw_draw_clip_bool

1684 {

1685 \int_gincr:N \g__kernel_clip_path_int

1686 __draw_backend_literal:e

1687 {

1688 < clipPath~id = " 13cp \int_use:N \g__kernel_clip_path_int " >
1689 { ?nl }

1690 <path~d=" \g__draw_backend_path_t1 "/> { 7nl }

1691 < /ClipPath >

1692 }

1693 __kernel_backend_scope:e

1694 {

1695 clip-path =

1696 "url(\c_hash_str 13cp \int_use:N \g__kernel_clip_path_int)"
1697 }

1698 }

1699 \tl_gclear:N \g__draw_backend_path_t1l

1700 \bool_gset_false:N \g__draw_draw_clip_bool

1701 }

(End of definition for __draw_backend_path:n and others.)

\draw backend dash pattern:in All of these ideas are properties of scopes in SVG. The only slight complexity is converting
__draw_backend_dash:n the dash array properly (doing any required maths).

__draw_backend_dash_aux:nn ,;, \cs_new_protected:Npn __draw_backend_dash_pattern:nn #1#2
__draw_backend_linewidth:n ;73 {

__draw_backend _miterlimit:n 1704 \use:e
__draw_backend_cap_butt: 1705 {
__draw_backend_cap_round: 1706 __draw_backend_dash_aux:nn
_drav backend cap rectangle: 1797 { \clist_map_function:nN {#1} __draw_backend_dash:n }
__draw_backend_join_miter: % { \dim_to_decimal:n {#2} }
__draw_backend_join_round: ii 3 +

__draw_backend_join_bevel: 1711 \cs_new:Npn __draw_backend_dash:n #1

1712 { , \dim_to_decimal_in_bp:n {#1} }
1713 \cs_new_protected:Npn __draw_backend_dash_aux:nn #1#2

1714 {

1715 __kernel_backend_scope:e
1716 {

1717 stroke-dasharray =

45

1719 \tl_if_empty:nTF {#1}

1720 { none }

1721 { \use_none:n #1 }
1722 "o~

1723 stroke-offset=" #2 "
1724 }

1725 }

1726 \cs_new_protected:Npn __draw_backend_linewidth:n #1

1727 { __kernel_backend_scope:e { stroke-width=" \dim_to_decimal:n {#1} " } }
172s \cs_new_protected:Npn __draw_backend_miterlimit:n #1

1729 { __kernel_backend_scope:e { stroke-miterlimit=" #1 " } }
1750 \cs_new_protected:Npn __draw_backend_cap_butt:

1731 { __kernel_backend_scope:n { stroke-linecap="butt" } }
1732 \cs_new_protected:Npn __draw_backend_cap_round:

173 { __kernel_backend_scope:n { stroke-linecap="round" } }
1732 \cs_new_protected:Npn __draw_backend_cap_rectangle:

1735 { __kernel_backend_scope:n { stroke-linecap="square" } }
1736 \cs_new_protected:Npn __draw_backend_join_miter:

1737 { __kernel_backend_scope:n { stroke-linejoin="miter" } }
1736 \cs_new_protected:Npn __draw_backend_join_round:

730 { __kernel_backend_scope:n { stroke-linejoin="round" } }
1720 \cs_new_protected:Npn __draw_backend_join_bevel:

1741 { __kernel_backend_scope:n { stroke-linejoin="bevel" } }

(End of definition for __draw_backend_dash_pattern:nn and others.)

__dray backend_transforn:mnmn - The four arguments here are floats (the affine matrix), the last two are a displacement
__draw_backend_shift:nn vector.

1722 \cs_new_protected:Npn __draw_backend_transform:nnnn #1#2#3#4

1743 {

1744 __kernel_backend_scope:n

1745 {

1746 transform =

1747 " matrix (#1 , #2 , #3 , #4 , Opt , Opt) "
1748 }

1749 }

1750 \cs_new_protected:Npn __draw_backend_shift:nn #1#2
1751 {

1752 __kernel_backend_scope:n

1753 {

1754 transform =

1755 " matrix (1, 0, 0, 1, #lpt , #2pt) "
1756 }

1757 }

(End of definition for __draw_backend_transform:nnnn and __draw_backend_shift:nn.)

\ draw backend box use:lnmn No special savings can be made here: simply displace the box inside a scope. As there is
nothing to re-box, just make the box passed of zero size.
1755 \cs_new_protected:Npn __draw_backend_box_use:Nnnnn #1#2#3#4#5
1759 {
1760 __kernel_backend_scope_begin:
1761 __draw_backend_transform:nnnn {#2} {#3} {#4} {#5}

46

1762 __kernel_backend_literal_svg:n

1763 {

1764 < g~

1765 stroke="none"~

1766 transform="scale(-1,1)~translate({?x},{?y})~scale(-1,-1)"
1767 >

1768 }

1769 \box_set_wd:Nn #1 { Opt }

1770 \box_set_ht:Nn #1 { Opt 3

1771 \box_set_dp:Nn #1 { Opt }

1772 \box_use:N #1

1773 __kernel_backend_literal_svg:n { </g> }
1774 __kernel_backend_scope_end:

1775 }

(End of definition for __draw_backend_box_use:Nnnnn.)
1776 </dViSng>
w77 (/package)

5 I13backend-graphics implementation

1775 (xpackage)

1779 (@@=graphics)

5.1 dvips backend
1750 (xdvips)

\1_graphics_search_ext_seq

171 \seq_set_from_clist:Nn \1_graphics_search_ext_seq { .eps , .ps }

(End of definition for \1_graphics_search_ext_seq.)

=

~ graphics backend getbb eps:n Simply use the generic function.

__graphics_backend getbb ps:n 7, \cs_new_eq:NN __graphics_backend_getbb_eps:n __graphics_read_bb:n
1733 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_read_bb:n

(End of definition for __graphics_backend_getbb_eps:n and __graphics_backend_getbb_ps:n.)

_graphics backend include eps:n The special syntax is relatively clear here: remember we need PostScript sizes here.

__graphics backend include ps:n .5, \cs_new_protected:Npn __graphics_backend_include_eps:n #1
1785 {
1786 __kernel_backend_literal:e
1787 {
1788 PSfile = #1 \c_space_tl
1789 11x = \dim_to_decimal_in_bp:n \1__graphics_1l1x_dim \c_space_tl
1790 11y = \dim_to_decimal_in_bp:n \1__graphics_1ly_dim \c_space_tl
1701 urx = \dim_to_decimal_in_bp:n \1__graphics_urx_dim \c_space_tl
1792 ury = \dim_to_decimal_in_bp:n \1__graphics_ury_dim
1793 }
1794 }

1705 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n

(End of definition for __graphics_backend_include_eps:n and __graphics_backend_include_ps:n.)

47

__graphics backend get pagecount:n

\1_graphics_search_ext_seq

\1__graphics_attr_tl

\1__graphics_transgroup_bool

__graphics backend getbb jpg:

=

__graphics_backend getbb_jpeg:
__graphics_backend getbb pdf:

=

__graphics backend getbb png:

=

__graphics _backend getbb auxi:n
__graphics_backend getbb auxii:n

__graphics_backend_getbb_auxiii

__graphics backend dequote:w

1796 \cs_new_eq:NN __graphics_backend_get_pagecount:n __graphics_get_pagecount:n

(End of definition for __graphics_backend_get_pagecount:n.)
1797 </dvips>

5.2 LuaTgX and pdfTEX backends

1798 (*Iuatex ‘ pdftex)

1790 \seq_set_from_clist:Nn \1_graphics_search_ext_seq
{ .pdf , .eps , .ps , .png , .jpg , -jpeg *}

1800
(End of definition for \1_graphics_search_ext_seq.)

In PDF mode, additional attributes of an graphic (such as page number) are needed both
to obtain the bounding box and when inserting the graphic: this occurs as the graphic
dictionary approach means they are read as part of the bounding box operation. As such,
it is easier to track additional attributes using a dedicated t1 rather than build up the
same data twice.

1501 \t1_new:N \1__graphics_attr_tl
(End of definition for \1__graphics_attr_tl.)

Needed to indicate that a transparency group should be applied: only currently for PDF
images, but could be extended.

1202 \bool_new:N \1__graphics_transgroup_bool

(End of definition for \1__graphics_transgroup_bool.)

Getting the bounding box here requires us to box up the graphic and measure it. To
deal with the difference in feature support in bitmap and vector graphics but keeping
the common parts, there is a little work to do in terms of auxiliaries. The key here is to
notice that we need two forms of the attributes: a “short” set to allow us to track for
caching, and the full form to pass to the primitive.

1203 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1
1804 {

1805 \int_zero:N \1__graphics_page_int

\tl_clear:N \1__graphics_pagebox_tl
\bool_set_false:N\1__graphics_transgroup_bool

1808 \tl_set:Ne \1__graphics_attr_tl

1809 ‘[

1810

1806

1807

\tl_if_empty:NF \1__graphics_decodearray_str
1811 { :D \1__graphics_decodearray_str }
\bool_if:NT \1__graphics_interpolate_bool

1812

1813 {:I}

1814 \str_if_empty:NF \1__graphics_pdf_str
1815 { :X \1__graphics_pdf_str }

1816 }

1817 __graphics_backend_getbb_auxi:n {#1}

1818 }

\cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
120 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n

48

121 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1

1822 {

1823 \tl_clear:N \1__graphics_decodearray_str

1824 \bool_set_true:N \1__graphics_transgroup_bool

1825 \bool_set_false:N \1__graphics_interpolate_bool

1826 \tl_set:Ne \1__graphics_attr_tl

1827 {

1828 : \1__graphics_pagebox_t1

1829 \int_compare:nNnT \1__graphics_page_int > 1

1830 { :P \int_use:N \1__graphics_page_int }

1831 \str_if_empty:NF \1__graphics_pdf_str

1832 { :X \1__graphics_pdf_str }

1833 }

1834 __graphics_backend_getbb_auxi:n {#1}

1835 }

136 \cs_new_protected:Npn __graphics_backend_getbb_auxi:n #1
1837 {

1838 __graphics_bb_restore:eF { #1 \1__graphics_attr_tl }
1839 { __graphics_backend_getbb_auxii:n {#1} }

1840 }

Measuring the graphic is done by boxing up: for PDF graphics we could use \tex_pdfximagebbox:D,
but if doesn’t work for other types. As the box always starts at (0,0) there is no need

to worry about the lower-left position. Quotes need to be removed as LualTEX does not

like them here. We always apply a transparency group attribute here as included PDFs

otherwise may have non-obvious behavior.

1521 \cs_new_protected:Npn __graphics_backend_getbb_auxii:n #1

1842 {

1843 \exp_args:Ne __graphics_backend_getbb_auxiii:n

1844 { __graphics_backend_dequote:w #1 " #1 " \s__graphics_stop }
1845 \int_const:cn { c__graphics_ #1 \1__graphics_attr_tl _int }
1846 { \tex_the:D \tex_pdflastximage:D }

1847 __graphics_bb_save:e { #1 \1__graphics_attr_tl }

1848 }

189 \cs_new_protected:Npn __graphics_backend_getbb_auxiii:n #1

1850 {

1851 \tex_immediate:D \tex_pdfximage:D

1852 \bool_lazy_any:nT

1853 {

1854 { \1__graphics_interpolate_bool }

1855 { \1__graphics_transgroup_bool }

1856 { ! \tl_if_empty_p:N \1__graphics_decodearray_str }
1857 { ! \str_if_empty_p:N \1__graphics_pdf_str }

1858 }

1859 {

1860 attr ~

1861 {

1862 \tl_if_empty:NF \1__graphics_decodearray_str

1863 { /Decode~[\1__graphics_decodearray_str] }
1864 \bool_if:NT \1__graphics_transgroup_bool

1865 { /Group << /S /Transparency /K ~ false /I ~ false >> }
1866 \bool_if:NT \1__graphics_interpolate_bool

1867 { /Interpolate~true }

1868 \1__graphics_pdf_str

49

1869 }

1870 }

1871 \int_compare:nNnT \1__graphics_page_int > 0

1872 { page ~ \int_use:N \1__graphics_page_int }

1873 \tl_if_empty:NF \1__graphics_pagebox_tl

1874 { \1__graphics_pagebox_tl }

1875 {#1}

1876 \hbox_set:Nn \1__graphics_tmp_box

1877 { \tex_pdfrefximage:D \tex_pdflastximage:D }

1878 \dim_set:Nn \1__graphics_urx_dim { \box_wd:N \1__graphics_tmp_box }
1879 \dim_set:Nn \1__graphics_ury_dim { \box_ht:N \1__graphics_tmp_box }
1880 }

151 \cs_new:Npn __graphics_backend_dequote:w #1 " #2 " #3 \s__graphics_stop {#2}

(End of definition for __graphics_backend_getbb_jpg:n and others.)

\ graphics backend include jpg:n Images are already loaded for the measurement part of the code, so inclusion is straight-
__graphics backend include jpegin forward, with only any attributes to worry about. The latter carry through from deter-
_ graphics backend include pdf:n mination of the bounding box.

__graphics backend include png:n 50 \cs_new_protected:Npn __graphics_backend_include_jpg:n #1

1883 {

1884 \tex_pdfrefximage:D

1885 \int_use:c { c__graphics_ #1 \1__graphics_attr_tl _int }
1886 F

1557 \cs_new_eq:NN __graphics_backend_include_jpeg:n __graphics_backend_include_jpg:n
1535 \cs_new_eq:NN __graphics_backend_include_pdf:n __graphics_backend_include_jpg:n
180 \cs_new_eq:NN __graphics_backend_include_png:n __graphics_backend_include_jpg:n

(End of definition for __graphics_backend_include_jpg:n and others.)

EPS graphics may be included in LuaTgX/pdfTeX by conversion to PDF: this requires
restricted shell escape. Modeled on the epstopdf IETEX 2¢ package, but simplified, con-
\ graphics backend getbb eps:nm version takes place here if we have shell access.

__graphics backend include eps:n

__graphics backend getbb eps:1

=

__graphics backend getbb ps:

190 \sys_if_shell:T

__graphics backend include ps:n ;g0 {
\1__graphics_backend_dir_str 1se \str_new:N \1__graphics_backend_dir_str
\1”grapmcsibackendinameistr 1893 \str_neW:N \1__graphi cs_backend_name_str
\1__graphics_backend_ext_str 6% \str_new:N \1__graphics_backend_ext_str
1805 \cs_new_protected:Npn __graphics_backend_getbb_eps:n #1
1896 {
1897 \file_parse_full_name:nNNN {#1}
1898 \1__graphics_backend_dir_str
1899 \1__graphics_backend_name_str
1900 \1__graphics_backend_ext_str
1001 \exp_args:Ne __graphics_backend_getbb_eps:nn
1902 {
1903 \exp_args:Ne __kernel_file_name_quote:n
1904 {
1905 \1__graphics_backend_name_str
1906 - \str_tail:N \1__graphics_backend_ext_str
1907 -converted-to.pdf
1908 }
1909 }
1910 {#1}

50

1911 }

1912 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_backend_getbb_eps:n
1913 \cs_new_protected:Npn __graphics_backend_getbb_eps:nn #1#2

1914 {

1915 \file_compare_timestamp:nNnT {#2} > {#1}

1916 {

1917 \sys_shell_now:n

1918 { repstopdf ~ #2 ~ #1 }

1919 }

1920 \tl_set:Nn \1__graphics_final_name_str {#1}

1921 __graphics_backend_getbb_pdf:n {#1}

1922 }

1923 \cs_new_protected:Npn __graphics_backend_include_eps:n #1

1924 {

1025 \file_parse_full_name:nNNN {#1}

1926 \1__graphics_backend_dir_str \1__graphics_backend_name_str \1__graphics_backend_es:
1927 \exp_args:Ne __graphics_backend_include_pdf:n

1928 {

1929 \exp_args:Ne __kernel_file_name_quote:n

1930 {

1031 \1__graphics_backend_name_str

1932 - \str_tail:N \1__graphics_backend_ext_str

1933 —-converted-to.pdf

1934 }

1935 }

1936 }

1037 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n
1938 }

(End of definition for __graphics_backend_getbb_eps:n and others.)

__graphics backend get pagecomnt:n Simply load and store.

1930 \cs_new_protected:Npn __graphics_backend_get_pagecount:n #1

1940 {

1941 \tex_pdfximage:D {#1}

1942 \int_const:cn { c__graphics_ #1 _pages_int }
1943 { \int_use:N \tex_pdflastximagepages:D }
1944 I

(End of definition for __graphics_backend_get_pagecount:n.)
1945 (/Iuatex ‘ pdftex)

5.3 dvipdfmx backend

106 (xdvipdfmx | xetex)

\1_graphics_search_ext_seq
1947 \seq_set_from_clist:Nn \1_graphics_search_ext_seq
19 { .pdf , .eps , .ps , .png , .jpg , .jpeg , .bmp }

(End of definition for \1_graphics_search_ext_seq.)

o1

_graphics backend getbb eps:n Simply use the generic functions: only for dvipdfmx in the extraction cases.
__graphics_backend_getbb psin 1, \cs_new_eq:NN __graphics_backend_getbb_eps:n __graphics_read_bb:n
__graphics backend getbb jpg:n ies0 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_read_bb:n

__graphics backend gethb jpegin 1051 (xdvipdfmx)

_ graphics backend getbb pdf:n 1952 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1
__graphics backend getbb png:n 1953 {

__graphics_backend getbb bup:n 15¢ \int_zero:N \1__graphics_page_int
1955 \tl_clear:N \1__graphics_pagebox_t1
1956 __graphics_extract_bb:n {#1}
1957 }

1955 \cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
1050 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n
1060 \cs_new_eq:NN __graphics_backend_getbb_bmp:n __graphics_backend_getbb_jpg:n
1961 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1

1962 {

1963 \tl_clear:N \1__graphics_decodearray_str

1964 \bool_set_rfalse:N \1__graphics_interpolate_bool
1965 __graphics_extract_bb:n {#1}

1966 }

1067 /dvipdfmx)

(End of definition for __graphics_backend_getbb_eps:n and others.)

\1__graphics_transgroup_bool Needed to indicate that a transparency group should be applied: only currently for PDF
images, but could be extended.

196 \bool_new:N \1__graphics_transgroup_bool

(End of definition for \1__graphics_transgroup_bool.)

\g__graphics_track_int Used to track the object number associated with each graphic.

1960 \int_new:N \g__graphics_track_int

(End of definition for \g__graphics_track_int.)

\ graphics backend include eps:n The special syntax depends on the file type. There is a difference in how PDF graphics
_graphics backend include ps:n are best handled between dvipdfmx and XHITEX: for the latter it is better to use the
_ graphics backend include jpg:n primitive route. The relevant code for that is included later in this file.

__graphics backend include_jpseg:n ., \cs_new_protected:Npn __graphics_backend_include_eps:n #1
__graphics backend include pdf:n ;o7 {

__graphics backend include pngin 1072 __kernel_backend_literal:e
__graphics backend include bmp:n 1973 {
__graphics backend include auxi:n 1974 Psfile = #1 \c_space_tl
_graphics backend include auxii:m 1972 11x = \dim_to_decimal_in_bp:n \1__graphics_l1lx_dim \c_space_tl
__graphics backend include awxiizen 7° 11y = \dim_to_decimal_in_bp:n \1__graphics_11ly_dim \c_space_tl
\ _;raphics {)aclzend ;ndude ;u:xtm:rm 1077 urx = \dim_to_decimal_in_bp:n \1__graphics_urx_dim \c_space_tl
- - - B 1978 ury = \dim_to_decimal_in_bp:n \1__graphics_ury_dim
1979 }
1980 }

1951 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n
Graphic inclusion is set up to use the fact that each image is stored in the PDF as an
XObject. This means that we can include repeated images only once and refer to them.
To allow that, track the nature of each image: much the same as for the direct PDF
mode case.

52

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

\cs_new_protected:Npn __graphics_backend_include_jpg:n #1
{
\bool_set_false:N \1__graphics_transgroup_bool
__graphics_backend_include_auxi:n {#1}
}
\cs_new_eq:NN __graphics_backend_include_jpeg:n __graphics_backend_include_jpg:n
\cs_new_eq:NN __graphics_backend_include_bmp:n __graphics_backend_include_jpg:n
\cs_new_eq:NN __graphics_backend_include_png:n __graphics_backend_include_jpg:n
\cs_new_protected:Npn __graphics_backend_include_pdf:n #1
{
\bool_set_true:N \1__graphics_transgroup_bool
__graphics_backend_include_auxi:n {#1}
}
\cs_new_protected:Npn __graphics_backend_include_auxi:n #1
{
__graphics_backend_include_auxii:en
{
\tl_if_empty:NF \1__graphics_pagebox_tl
{ : \1__graphics_pagebox_tl }
\int_compare:nNnT \1__graphics_page_int > 1
{ :P \int_use:N \1__graphics_page_int }
\tl_if_empty:NF \1__graphics_decodearray_str
{ :D \1__graphics_decodearray_str }
\bool_if:NT \1__graphics_interpolate_bool
{:I}
}
{#1}
}
\cs_new_protected:Npn __graphics_backend_include_auxii:nn #1#2
{
\int_if_exist:cTF { c__graphics_ #2#1 _int }
{
__kernel_backend_literal:e
{ pdf:usexobj~O0graphic \int_use:c { c__graphics_ #2#1 _int } }
}
{ __graphics_backend_include_auxiii:nn {#2} {#1} }
}

\cs_generate_variant:Nn __graphics_backend_include_auxii:nn { e }

Inclusion using the specials is relatively straight-forward, but there is one wrinkle. To get
the pagebox correct for PDF graphics in all cases, it is necessary to provide both that
information and the bbox argument: odd things happen otherwise! We use the dvipdfmx
special in all cases as it allows attributes to be added to the XObject.

2020
2021
2022
2023
2024
2025
2026
2027
2028
2029

2030

\cs_new_protected:Npn __graphics_backend_include_auxiii:nn #1#2
{
\int_gincr:N \g__graphics_track_int
\int_const:cn { c__graphics_ #1#2 _int } { \g__graphics_track_int }
__kernel_backend_literal:e
{
pdf:image ~
Ographic \int_use:c { c__graphics_ #1#2 _int } ~
\int_compare:nNnT \1__graphics_page_int > 1
{ page ~ \int_use:N \1__graphics_page_int \c_space_tl }
\tl_if_empty:NF \1__graphics_pagebox_t1l

53

__graphics backend get pagecount:n

__graphics_backend_getbb_jpg:n
__graphics backend getbb jpeg:n
__graphics backend getbb pdf:n
__graphics_backend getbb_png:n
__graphics backend getbb bmp:n

__graphics backend getbb auxi:nll
__graphics backend getbb auxii:mll
__graphics backend getbb auxii:Vnll

__graphics_backend getbb_auxiii:nlinn

__graphics backend getbb auxiv:nnlinn

__graphics backend getbb aux
__graphics backend getbb auxv:nl
__graphics backend getbb auxv:nlnn

__graphics_backend getbb pagebox:w

2031 {
2032 pagebox ~ \1__graphics_pagebox_tl \c_space_tl

2033 bbox ~

2034 \dim_to_decimal_in_bp:n \1__graphics_11lx_dim \c_space_tl
2035 \dim_to_decimal_in_bp:n \1__graphics_11ly_dim \c_space_tl
2036 \dim_to_decimal_in_bp:n \1__graphics_urx_dim \c_space_tl
2037 \dim_to_decimal_in_bp:n \1__graphics_ury_dim \c_space_tl
2038 }

2039 (#1)

2040 \bool_lazy_any:nT

2041 {

2042 { \1__graphics_interpolate_bool }

2043 { \1__graphics_transgroup_bool }

2044 { ! \tl_if_empty_p:N \1__graphics_decodearray_str }

2045 }

2046 {

2047 <<

2048 \tl_if_empty:NF \1__graphics_decodearray_str

2049 { /Decode~[\1__graphics_decodearray_str] }

2050 \bool_if:NT \1__graphics_transgroup_bool

2051 { /Group << /S /Transparency /K ~ false /I ~ false >> }
2052 \bool_if:NT \1__graphics_interpolate_bool

2053 { /Interpolate~true }

2054 >>

2055 }

2056 }

2057 }

(End of definition for __graphics_backend_include_eps:n and others.)

20 (xdvipdfmx)

2050 \cs_new_eq:NN __graphics_backend_get_pagecount:n __graphics_get_pagecount:n
2060 (/dvipdfmx>

(End of definition for __graphics_backend_get_pagecount:n.)

2061 (/dvipdfmx | xetex)

5.4 XHTEX backend

2062 (*xetex>

For XHTEX, there are two primitives that allow us to obtain the bounding box without
needing extractbb. The only complexity is passing the various minor variations to
a common core process. The XHTEX primitive omits the text box from the page box
specification, so there is also some “trimming” to do here.

2065 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1

2064 {

2065 \int_zero:N \1__graphics_page_int

2066 \tl_clear:N \1__graphics_pagebox_tl

2067 __graphics_backend_getbb_auxi:nN {#1} \tex_XeTeXpicfile:D
2068 }

2060 \cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
2070 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n

54

2071 \cs_new_eq:NN __graphics_backend_getbb_bmp:n __graphics_backend_getbb_jpg:n
2072 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1

2073 {

2074 \tl_clear:N \1__graphics_decodearray_str

2075 \bool_set_false:N \1__graphics_interpolate_bool

2076 __graphics_backend_getbb_auxi:nN {#1} \tex_XeTeXpdffile:D

2077 }

2076 \cs_new_protected:Npn __graphics_backend_getbb_auxi:nN #1#2

2079 {

2080 \int_compare:nNnTF \1__graphics_page_int > 1

2081 { __graphics_backend_getbb_auxii:VnN \1__graphics_page_int {#1} #2 }
2082 { __graphics_backend_getbb_auxiii:nNnn {#1} #2 { :P 1 } { page 1 } }
2083 }

2084 \cs_new_protected:Npn __graphics_backend_getbb_auxii:nnN #1#2#3

2085 { __graphics_backend_getbb_auxiii:nNnn {#2} #3 { :P #1 } { page #1 } }
20ss \cs_generate_variant:Nn __graphics_backend_getbb_auxii:nnN { V }

2057 \cs_new_protected:Npn __graphics_backend_getbb_auxiii:nNnn #1#2#3#4

2088 {

2089 \tl_if_empty:NTF \1__graphics_pagebox_t1

2090 { __graphics_backend_getbb_auxiv:VnNnn \1__graphics_pagebox_tl }
2001 { __graphics_backend_getbb_auxv:nNnn }

2092 {#1} #2 {#3} {#4}

2093 }

2004 \cs_new_protected:Npn __graphics_backend_getbb_auxiv:nnNnn #1#2#3#4#5
2095 {

2096 \use:e

2097 {

2098 __graphics_backend_getbb_auxv:nNnn {#2} #3 { : #1 #4 }

2099 {

2100 #5

2101 \tl_if_blank:nF {#1}

2102 { \c_space_tl __graphics_backend_getbb_pagebox:w #1 }
2103 }

2104 }

2105 }

2106 \cs_generate_variant:Nn __graphics_backend_getbb_auxiv:nnNnn { V }
2107 \cs_new_protected:Npn __graphics_backend_getbb_auxv:nNnn #1#2#3#4

2108 {

2109 __graphics_bb_restore:nF {#1#3}

2110 { __graphics_backend_getbb_auxvi:nNnn {#1} #2 {#3} {#4} }

2111 }

2112 \cs_new_protected:Npn __graphics_backend_getbb_auxvi:nNnn #1#2#3#4

2113 {

2114 \hbox_set:Nn \1__graphics_tmp_box { #2 #1 ~ #4 }

115 \dim_set:Nn \1__graphics_urx_dim { \box_wd:N \1__graphics_tmp_box }
2116 \dim_set:Nn \1__graphics_ury_dim { \box_ht:N \1__graphics_tmp_box }
2117 __graphics_bb_save:n {#1#3}

2118 3

2119 \cs_new:Npn __graphics_backend_getbb_pagebox:w #1 box {#1}

(End of definition for __graphics_backend_getbb_jpg:n and others.)

\ graphics backend get pagecomnt:n Very little to do here other than cover the case of a non-PDF file.

2120 \cs_new_protected:Npn __graphics_backend_get_pagecount:n #1

55

2121 {

2122 \int_const:cn { c__graphics_ #1 _pages_int }

2123 {

2124 \int_max:nn

2125 { \int_use:N \tex_XeTeXpdfpagecount:D #1 ~ }
2126 { 1 }

2127 }

2128 }

(End of definition for __graphics_backend_get_pagecount:n.)

2129 (/xetex)

5.5 dvisvgm backend
2130 (*dvisvgm)

\1_graphics_search_ext_seq
2131 \seq_set_from_clist:Nn \1_graphics_search_ext_seq
2122 { .svg , .pdf , .eps , .ps , .png , .jpg , .jpeg }

(End of definition for \1_graphics_search_ext_seq.)

_ graphics backend getbb svg:n This is relatively similar to reading bounding boxes for .eps files. Life is though made

\ graphics backend getbb svg auri:nin more tricky as we cannot pick a single line for the data. So we have to loop until we

_ graphics backend getbb svg aurii:v collect up both height and width. To do that, we can use a marker value. We also have
\graphics backend getbb svg auwxiii:lv to allow for the default units of the lengths: they are big points and may be omitted.

2133 \cs_new_protected:Npn __graphics_backend_getbb_svg:n #1

__graphics _backend getbb svg al ! 2134 {
__graphics_backend_getbb_svg_ n o235 __graphics_bb_restore:nF {#1}
__graphics_backend getbb_svg auxvii:w 2136 {
2137 \ior_open:Nn \1__graphics_tmp_ior {#1}
2138 \ior_if_eof :NTF \1__graphics_tmp_ior
2139 { \msg_error:nnn { graphics } { graphic-not-found } {#1} }
2140 {
2141 \dim_zero:N \1__graphics_11x_dim
2142 \dim_zero:N \1__graphics_11ly_dim
2143 \dim_set:Nn \1__graphics_urx_dim { -\c_max_dim }
2144 \dim_set:Nn \1__graphics_ury_dim { -\c_max_dim }
2145 \ior_str_map_inline:Nn \1__graphics_tmp_ior
2146 {
2147 \dim_compare:nNnT \1__graphics_urx_dim = { -\c_max_dim }
2148 {
2149 __graphics_backend_getbb_svg_auxi:nNn
2150 { width } \1__graphics_urx_dim {##1}
2151 }
2152 \dim_compare:nNnT \1__graphics_ury_dim = { -\c_max_dim }
2153 {
2154 __graphics_backend_getbb_svg_auxi:nln
2155 { height } \1__graphics_ury_dim {##1}
2156 }
2157 \bool_lazy_and:nnF
2158 { \dim_compare_p:nNn \1__graphics_urx_dim = { -\c_max_dim } }
2159 { \dim_compare_p:nNn \1__graphics_ury_dim = { -\c_max_dim } }
2160 { \ior_map_break: }

56

2161 }

2162 __graphics_bb_save:n {#1}

2163 }

2164 \ior_close:N \1__graphics_tmp_ior

2165 }

2166 F

2167 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxi:nNn #1#2#3
2168 {

2169 \use :e

2170 {

2171 \cs_set_protected:Npn __graphics_backend_getbb_svg_auxii:w
2172 ##1 \tl_to_str:n {#1} = ##2 \tl_to_str:n {#1} = ##3

2173 \s__graphics_stop

2174 }

2175 {

2176 \tl_if_blank:nF {##2}

2177 {

2178 \peek_remove_spaces:n

2179 {

2180 \peek_meaning:NTF ’> 7 ~’

2181 { __graphics_backend_getbb_svg_auxiii:Nw #2 }
2182 {

2183 \peek_meaning:NTF " J, "

2184 { __graphics_backend_getbb_svg_auxiv:Nw #2 }
2185 { __graphics_backend_getbb_svg_auxv:Nw #2 }
2186 }

2187 }

2188 ##2 \s__graphics_stop

2189 }

2190 }

2191 \use:e

2192 {

2193 __graphics_backend_getbb_svg_auxii:w #3

2194 \tl_to_str:n {#1} = \tl_to_str:n {#1} =

2195 \s__graphics_stop

2196 }

2197 }

2196 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxii:w { }

2190 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxiii:Nw #1 ° #2 ° #3 \s__graphics_stop
2200 { __graphics_backend_getbb_svg_auxvi:Nn #1 {#2} }

2201 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxiv:Nw #1 " #2 " #3 \s__graphics_stop
2202 { __graphics_backend_getbb_svg_auxvi:Nn #1 {#2} }

220: \cs_new_protected:Npn __graphics_backend_getbb_svg_auxv:Nw #1 #2 ~ #3 \s__graphics_stop
20¢ { __graphics_backend_getbb_svg_auxvi:Nn #1 {#2} }

205 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxvi:Nn #1#2

2206 {

2207 \tex_afterassignment:D __graphics_backend_getbb_svg_auxvii:w
2208 \1__graphics_tmp_dim #2 bp \scan_stop:

2209 \dim_set_eq:NN #1 \1__graphics_tmp_dim

2210 }

211 \cs_new_protected:Npn __graphics_backend_getbb_svg_auxvii:w #1 \scan_stop: { }

(End of definition for __graphics_backend_getbb_svg:n and others.)

57

\ graphics backend getbb eps:n Simply use the generic function.
__graphics_backend_getbb psin 5, \cs_new_eq:NN __graphics_backend_getbb_eps:n __graphics_read_bb:n
2213 \cs_new_eq:NN __graphics_backend_getbb_ps:n __graphics_read_bb:n

(End of definition for __graphics_backend_getbb_eps:n and __graphics_backend_getbb_ps:n.)

\graphics backend getbb png:n These can be included by extracting the bounding box data.

&

__graphics_backend getbb_jpg:

2214 \cs_new_protected:Npn __graphics_backend_getbb_jpg:n #1

__graphics backend getbb jpeg:n o5 {
2216 \int_zero:N \1__graphics_page_int
2217 \tl_clear:N \1__graphics_pagebox_t1
2218 __graphics_extract_bb:n {#1}
2219 3

2220 \cs_new_eq:NN __graphics_backend_getbb_jpeg:n __graphics_backend_getbb_jpg:n
2221 \cs_new_eq:NN __graphics_backend_getbb_png:n __graphics_backend_getbb_jpg:n

(End of definition for __graphics_backend_getbb_png:n, __graphics_backend_getbb_jpg:n, and _-
_graphics_backend_getbb_jpeg:n.)

_ graphics backend getbb pdf:n Same as for dvipdfmx: use the generic function

2222 \cs_new_protected:Npn __graphics_backend_getbb_pdf:n #1

2223 {

2224 \tl_clear:N \1__graphics_decodearray_str

2225 \bool_set_false:N \1__graphics_interpolate_bool
2226 __graphics_extract_bb:n {#1}

2227 }

(End of definition for __graphics_backend_getbb_pdf:n.)

\

__graphics backend include eps:n The special syntax is relatively clear here: remember we need PostScript sizes here. (This

is the same as the dvips code.)

__graphics backend include ps:

=

__graphics backend_include pdfin 55 \cs_new_protected:Npn __graphics_backend_include_eps:n #1
__graphics backend include:nn .0 { __graphics_backend_include:nn { PSfile } {#1} }
2250 \cs_new_eq:NN __graphics_backend_include_ps:n __graphics_backend_include_eps:n
2231 \cs_new_protected:Npn __graphics_backend_include_pdf:n #1
2232 { __graphics_backend_include:nn { pdffile } {#1} }
2233 \cs_new_protected:Npn __graphics_backend_include:nn #1#2

2234 {

2235 __kernel_backend_literal:e

2236 {

2237 #1 = #2 \c_space_tl

2038 11x = \dim_to_decimal_in_bp:n \1__graphics_11x_dim \c_space_tl
2230 11y = \dim_to_decimal_in_bp:n \1__graphics_11ly_dim \c_space_tl
2240 urx = \dim_to_decimal_in_bp:n \1__graphics_urx_dim \c_space_tl
2241 ury = \dim_to_decimal_in_bp:n \1__graphics_ury_dim

2242 }

2243 F

(End of definition for __graphics_backend_include_eps:n and others.)

__graphics backend_include svg:n The backend here has built-in support for basic graphic inclusion (see dvisvgm.def for a
__graphics backend_include png:n more complex approach, needed if clipping, etc., is covered at the graphic backend level).
_graphics backend include jpg:in We have to deal with the fact that the image reference point is at the top, so there is a
_graphics backend include jpeg:n meed for a vertical shift to put it in the right place. The other issue is that #1 must be

__graphics backend include dequote:w

=

58

__graphics backend get pagecount:n

__pdf_backend_pdfmark:n
__pdf_backend_pdfmark:e

quote-corrected. The dvisvgm:img operation quotes the file name, but if it is already
quoted (contains spaces) then we have an issue: we simply strip off any quotes as a result.

224 \cs_new_protected:Npn __graphics_backend_include_svg:n #1

2245 {

2246 \box_move_up:nn { \1__graphics_ury_dim }

2247 {

2248 \hbox:n

2249 {

2250 __kernel_backend_literal:e

2251 {

2252 dvisvgm:img~

2253 \dim_to_decimal:n { \1__graphics_urx_dim } ~
2254 \dim_to_decimal:n { \1__graphics_ury_dim } ~
2255 __graphics_backend_include_dequote:w #1 " #1 " \s__graphics_stop
2256 }

2257 }

2258 F

2259 }

2260 \cs_new_eq:NN __graphics_backend_include_png:n __graphics_backend_include_svg:n
2261 \cs_new_eq:NN __graphics_backend_include_jpeg:n __graphics_backend_include_svg:n
2262 \cs_new_eq:NN __graphics_backend_include_jpg:n __graphics_backend_include_svg:n
2265 \cs_new:Npn __graphics_backend_include_dequote:w #1 " #2 " #3 \s__graphics_stop
2264 {#2}

(End of definition for __graphics_backend_include_svg:n and others.)

2265 \cs_new_eq:NN __graphics_backend_get_pagecount:n __graphics_get_pagecount:n
(End of definition for __graphics_backend_get_pagecount:n.)

2266 (/dvisvgm)

267 (/package)

6 I3backend-pdf implementation

2268 (*package)
2269 <@@=pdf>

Setting up PDF resources is a complex area with only limited documentation in
the engine manuals. The following code builds heavily on existing ideas from hyperref
work by Sebastian Rahtz and Heiko Oberdiek, and significant contributions by Alexander
Grahn, in addition to the specific code referenced a various points.

6.1 dvips backend
2270 (*dvips)

Used often enough it should be a separate function.

2271 \cs_new_protected:Npn __pdf_backend_pdfmark:n #1
272 { __kernel_backend_postscript:n { mark #1 ~ pdfmark } }
2273 \cs_generate_variant:Nn __pdf_backend_pdfmark:n { e }

(End of definition for __pdf_backend_pdfmark:n.)

59

__pdf backend catalog gput:mn
__pdf_backend_info_gput:nn

__pdf_backend_object_new:
__pdf_backend_object_ref:n
__pdf_backend_object_id:n

__pdf backend object write:nmn

__pdf backend object write:mne

__pdf backend object write aux:nnn
__pdf backend object write array:nn
__pdf backend object write dict:nn
__pdf backend object write fstream:nn
__pdf backend object write stream:mn
__pdf backend object write stream:nnn

6.1.1 Catalogue entries

\cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2

{ __pdf_backend_pdfmark:n { { Catalog } << /#1 ~ #2 >> /PUT } }
\cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2

{ __pdf_backend_pdfmark:n { /#1 ~ #2 /DOCINFO } }

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

6.1.2 Objects

2275 \cs_new_protected:Npn __pdf_backend_object_new:

{ \int_gincr:N \g__pdf_backend_object_int }

2260 \cs_new:Npn __pdf_backend_object_ref:n #1 { { pdf.obj #1 } }
\cs_new_eq:NN __pdf_backend_object_id:n __pdf_backend_object_ref:n

2279

2281

(End of definition for __pdf_backend_object_new:, __pdf_backend_object_ref:n, and __pdf_-
backend_object_id:n.)

This is where we choose the actual type: some work to get things right. To allow code
sharing with the anonymous version, we use an auxiliary.

2287

2288

2289

2290

2291

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

\cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3

{

__pdf_backend_object_write_aux:nnn
{ __pdf_backend_object_ref:n {#1} }
{#2} {#3}

}

\cs_generate_variant:Nn __pdf_backend_object_write:nnn { nne }
\cs_new_protected:Npn __pdf_backend_object_write_aux:nnn #1#2#3

{

__pdf_backend_pdfmark:e

{

}

/_objdef ~ #1
/type
\str_case:nn {#2}
{
{ array } { /array }
{ dict } { /dict }
{ fstream } { /stream }
{ stream } { /stream }
}
/0BJ

\use:c { __pdf_backend_object_write_ #2 :nn } {#1} {#3}

}

\cs_new_protected:Npn __pdf_backend_object_write_array:nn #1#2

{

__pdf_backend_pdfmark:e
{ #1 ~0~ [~ \exp_not:n {#2} ~] ~ /PUTINTERVAL }

}

\cs_new_protected:Npn __pdf_backend_object_write_dict:nn #1#2

{

60

2313 __pdf_backend_pdfmark:e

2314 { #1 << \exp_not:n {#2} >> /PUT }

2315 }

2516 \cs_new_protected:Npn __pdf_backend_object_write_fstream:nn #1#2
2317 {

2318 \exp_args:Ne

2319 __pdf_backend_object_write_fstream:nnn {#1} #2

2320 }

2321 \cs_new_protected:Npn __pdf_backend_object_write_fstream:nnn #1#2#3
2322 {

2323 __kernel_backend_postscript:n

2324 {

2325 SDict ~ begin ~

2326 mark ~ #1 ~ << #2 >> /PUT ~ pdfmark ~

2327 mark ~ #1 ~ (#3)~ (r)~ file ~ /PUT ~ pdfmark ~

2328 end

2329 }

2330 }

2331 \cs_new_protected:Npn __pdf_backend_object_write_stream:nn #1#2
2332 {

2333 \exp_args:Ne

2334 __pdf_backend_object_write_stream:nnn {#1} #2

2335 }

2336 \cs_new_protected:Npn __pdf_backend_object_write_stream:nnn #1#2#3
2337 {

2338 __kernel_backend_postscript:n

2339 {

2340 mark ~ #1 ~ (#3) /PUT ~ pdfmark ~

2341 mark ~ #1 ~ << #2 >> /PUT ~ pdfmark

2342 F

2343 }

(End of definition for __pdf_backend_object_write:nnn and others.)

__pdf_backend_object_now:nn No anonymous objects, so things are done manually.
__pdf_backend_object_now:ne .u \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2

2345 {

2346 \int_gincr:N \g__pdf_backend_object_int

2347 __pdf_backend_object_write_aux:nnn

2348 { { pdf.obj \int_use:N \g__pdf_backend_object_int } }
2349 {#1} {#2}

2350 }

2351 \cs_generate_variant:Nn __pdf_backend_object_now:nn { ne }
(End of definition for __pdf_backend_object_now:nn.)
__pdf_backend_object_last: Much like the annotation version.

2352 \cs_new:Npn __pdf_backend_object_last:
253 { { pdf.obj \int_use:N \g__pdf_backend_object_int } }

(End of definition for __pdf_backend_object_last:.)

_ pdf backend pageobject ref:n Page references are easy in dvips.

2354 \cs_new:Npn __pdf_backend_pageobject_ref:n #1
255 { { Page #1 } }

(End of definition for __pdf_backend_pageobject_ref:n.)

61

6.1.3 Destinations

_ pdf backend destination:nn Here, we need to turn the zoom into a scale. We also need to know where the current
_ pdf backend destination:nnmn anchor point actually is: worked out in PostScript. For the rectangle version, we have a
_ pdf backend destination awc:nnmn bit more PostScript: we need two points. fitr without rule spec doesn’t work, so it falls

back to /Fit here.
2356 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2

2357 {

2358 __kernel_backend_postscript:n { pdf.dest.anchor }

2350 __pdf_backend_pdfmark:e

2360 {

2361 /View

2362 [

2363 \str_case:nnF {#2}

2364 {

2365 { xyz } { /XYZ ~ pdf.dest.point ~ null }

2366 { fit } { /Fit }

2367 { fitb } { /FitB }

2368 { fitbh } { /FitBH ~ pdf.dest.y }

2369 { fitbv } { /FitBV ~ pdf.dest.x }

2370 { fith } { /FitH ~ pdf.dest.y }

2371 { fitv } { /FitV ~ pdf.dest.x }

2372 { fitr } { /Fit }

2373 }

2374 {

2375 /XYZ ~ pdf.dest.point ~ \fp_eval:n { (#2) / 100 }
2376 }

2377]

2378 /Dest (\exp_not:n {#1}) cvn

2379 /DEST

2380 }

2381 3

252 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4
2383 ‘[

2384 \exp_args:Ne __pdf_backend_destination_aux:nnnn

2385 { \dim_eval:n {#2} } {#1} {#3} {#4}

2386 }

2357 \cs_new_protected:Npn __pdf_backend_destination_aux:nnnn #1#2#3#4
2388 {

2380 \vbox_to_zero:n

2390 {

2301 \dim_vertical:n {#4}

2392 \hbox:n { __kernel_backend_postscript:n { pdf.save.ll } }
2393 \tex_vss:D

2394 }

2395 \dim_horizontal:n {#1}

2396 \vbox_to_zero:n

2397 {

2398 \dim_vertical:n { -#3 }

2399 \hbox:n { __kernel_backend_postscript:n { pdf.save.ur } }
2400 \tex_vss:D

2401 }

2402 \dim_horizontal:n { -#1 }

2403 __pdf_backend_pdfmark:n

62

2404 {

2405 /View

2406 [

2407 /FitR ~

2408 pdf.1lx ~ pdf.1ly ~ pdf.dest2device ~
2409 pdf.urx ~ pdf.ury ~ pdf.dest2device
2410]

2411 /Dest (#2) cvn

2412 /DEST

2413 }

2414 }

(End of definition for __pdf_backend_destination:nn, __pdf_backend_destination:nnnn, and __-
pdf_backend_destination_aux:nnnn.)

6.1.4 Structure

_ pdf backend compresslevel:n Doable for the usual ps2pdf method.

__pdf_backend compress_objects:n ;5 \cs_new_protected:Npn __pdf_backend_compresslevel:n #1
2416 {
2417 \int_compare:nNnT {#1} = 0
2418 {
2419 __kernel_backend_literal_postscript:n
2420 {
2421 /setdistillerparams ~ where
2422 { pop << /CompressPages ~ false >> setdistillerparams }
2423 if
2424 }
2425 3
2426 }
2427 \cs_new_protected:Npn __pdf_backend_compress_objects:n #1
2428 {
2429 \bool_if:nF {#1}
2430 {
2431 __kernel_backend_literal_postscript:n
2432 {
2433 /setdistillerparams ~ where
2434 { pop << /CompressStreams ~ false >> setdistillerparams }
2435 if
2436 }
2437 }
2438 }

(End of definition for __pdf_backend_compresslevel:n and __pdf_backend_compress_objects:n.)

__pdf backend version major gset:n

__pdf_backend version minor_gset:n ., \cs_new_protected:Npn __pdf_backend_version_major_gset:n #1
2440 {
2441 \cs_gset:Npe __pdf_backend_version_major: { \int_eval:n {#1} }
2442 }
2443 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1
2444 {
2445 \cs_gset:Npe __pdf_backend_version_minor: { \int_eval:n {#1} }
2446 }

63

__pdf backend version major:
__pdf backend version minor:

__pdf_backend_bdc:nn
__pdf_backend_emc:

\def7backend7dest1nat10n :nn

__pdf backend destination:nnnn

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

Data not available!

2227 \cs_new:Npn __pdf_backend_version_major: { -1 }

2225 \cs_new:Npn __pdf_backend_version_minor: { -1 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

6.1.5 Marked content

Simple wrappers.

2420 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2
250 { __pdf_backend_pdfmark:n { /#1 ~ #2 /BDC } }
251 \cs_new_protected:Npn __pdf_backend_emc:

252 { __pdf_backend_pdfmark:n { /EMC } }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)
2153 {/dvips)

6.2 LuaTgX and pdfTEX backend

2454 (*Iuatex ‘ pdftex)
6.2.1 Destinations

A simple task: pass the data to the primitive. The \scan_stop: deals with the danger
of an unterminated keyword. The zoom given here is a percentage, but we need to pass
it as per mille. The rectangle version is also easy as everything is build in.

2255 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2

2456 {

2157 (*luatex)

2458 \tex_pdfextension:D dest ~
2150 {/luatex)

2460 (*pdftex)

2461 \tex_pdfdest :D

2462 </ pdftex)

2463 name {#1}

2464 \str_case:nnF {#2}

2465 {

2466 {xyz } { xyz }
2467 { fit } { fit }
2468 { fitb } { fitb }
2469 { fitbh } { fitbh }
2470 { fitbv } { fitbv }
2471 { fith } { fith }
2472 { fitv } { fitv }
2473 { fitr } { fitr }
2474 3

2475 { xyz ~ zoom \fp_eval:n { #2 * 10 } }
2476 \scan_stop:

2477 }

2172 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4
2479 {

64

2150 (*luatex)
2481 \tex_pdfextension:D dest ~
212 { [luatex)
2483 (*pdftex)

2484 \tex_pdfdest :D

25 {/pdftex)

2486 name {#1}

2487 fitr ~

2488 width \dim_eval:n {#2} ~

2489 height \dim_eval:n {#3} ~

2490 depth \dim_eval:n {#4} \scan_stop:
2491 }

(End of definition for __pdf_backend_destination:nn and __pdf_backend_destination:nnnn.)

6.2.2 Catalogue entries

__pdf backend catalog gput:mn
__pdf_backend_info_gput:nn ., \cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2

2493 {
2494 (*Iuatex)
2495 \tex_pdfextension:D catalog

2105 {/luatex)
2497 (*pdftex)

2498 \tex_pdfcatalog:D

2499 </ pdftex)

2500 { / #1 ~ #2 }

2501 }

2502 \cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2
2503 ‘[

2504 (*Iuatex)

2505 \tex_pdfextension:D info

2506 (/Iuatex)
2507 (*pdftex)

2508 \tex_pdfinfo:D
2509 </pdfteX>

2510 {/ #1 ~ #2 }
ESTRI

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

6.2.3 Objects

\g__pdf_backend_object_prop For tracking objects to allow finalization.
2512 \prop_new:N \g__pdf_backend_object_prop

(End of definition for \g__pdf_backend_object_prop.)

__pdf_backend_object_new: Declaring objects means reserving at the PDF level plus starting tracking.
__pdf_backend_object_ref:n ,;; \cs_new_protected:Npn __pdf_backend_object_new:
__pdf_backend_object_id:n .54 {

2515 (*luatex)

2516 \tex_pdfextension:D obj ~

2517 (/luatex)

65

2518 (*pdftex)

2519 \tex_pdfobj:D

2520 </pdftex)

2521 reserveobjnum ~

2522 \int_gset:Nn \g__pdf_backend_object_int
2523 (*luatex)

2524 { \tex_pdffeedback:D lastobj }

2525 (/Iuatex)
2526 (*pdftex)

2527 { \tex_pdflastobj:D }
2528 </ pdftex)
2529 }

2530 \cs_new:Npn __pdf_backend_object_ref:n #1 { #1 ~ 0 ~ R }
2531 \cs_new:Npn __pdf_backend_object_id:n #1 {#1}

(End of definition for __pdf_backend_object_new:, __pdf_backend_object_ref:n, and __pdf_-
backend_object_id:n.)

\ pdf backend object write:nmn Writing the data needs a little information about the structure of the object.
__pdf_backend object write:nme 53 \cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3

__pdf backend object write:mn 533 {
__pdf_exp_not_i:nn 23 (xluatex)
__pdf_exp_not_ii:nn 2% \tex_immediate:D \tex_pdfextension:D obj ~

2536 {/luatex)
2537 (*pdftex)

2538 \tex_immediate:D \tex_pdfobj:D

2539 </pdftex>

2540 useobjnum ~ #1

2541 __pdf_backend_object_write:nn {#2} {#3}

2542 F

2543 \cs_new:Npn __pdf_backend_object_write:nn #1#2

2544 {

2545 \str_case:nn {#1}

2546 {

2547 { array } { { [~ \exp_not:n {#2} ~] } }
2548 { dict } { { << ~ \exp_not:n {#2} ~ >> } }
2549 { fstream }

2550 {

2551 stream ~ attr ~ { __pdf_exp_not_i:nn #2 } ~
2552 file ~ { __pdf_exp_not_ii:nn #2 }
2553 }

2554 { stream }

2555 {

2556 stream ~ attr ~ { __pdf_exp_not_i:nn #2 } ~
2557 { __pdf_exp_not_ii:nn #2 }

2558 3

2559 }

2560 }

2561 \cs_generate_variant:Nn __pdf_backend_object_write:nnn { nne }
2562 \cs_new:Npn __pdf_exp_not_i:nn #1#2 { \exp_not:n {#1} }
2563 \cs_new:Npn __pdf_exp_not_ii:nn #1#2 { \exp_not:n {#2} }

(End of definition for __pdf_backend_object_write:nnn and others.)

__pdf_backend_object_now:nn Much like writing, but direct creation.
__pdf_backend_object_now:ne

66

2561 \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2

2565 {

2566 {*luatex)

2567 \tex_immediate:D \tex_pdfextension:D obj ~
2568 </ | uatex)

2560 (*pdftex)

2570 \tex_immediate:D \tex_pdfobj:D

2571 (/pdftex)

2572 __pdf_backend_object_write:nn {#1} {#2}
2573 }

2574 \cs_generate_variant:Nn __pdf_backend_object_now:nn { ne }

(End of definition for __pdf_backend_object_now:nn.)

__pdf_backend_object_last: Much like annotation.
2575 \cs_new:Npe __pdf_backend_object_last:

2576 {

2577 \exp_not:N \int_value:w

2575 (*luatex)

2579 \exp_not:N \tex_pdffeedback:D lastobj ~

2550 (/luatex)
2581 (*pdftex)

2582 \exp_not:N \tex_pdflastobj:D
2583 (/pdftex)

2584 \c_space_tl 0 ~ R

2585 }

(End of definition for __pdf_backend_object_last:.)

_ pdf backend pageobject ref:n The usual wrapper situation; the three spaces here are essential.
256 \cs_new:Npe __pdf_backend_pageobject_ref:n #1

2587 {

2588 \exp_not:N \int_value:w

2550 (*luatex)

2590 \exp_not:N \tex_pdffeedback:D pageref

2591 (/Iuatex)
2502 (*pdftex)

2503 \exp_not:N \tex_pdfpageref:D

2594 (/pdftex)

2505 \c_space_tl #1 \c_space_tl \c_space_tl \c_space_tl 0 ~ R
2596 }

(End of definition for __pdf_backend_pageobject_ref:n.)

6.2.4 Structure

\ pdf backend compresslevel:n Simply pass data to the engine.
__pdf backend compress objects:n s, \cs_new_protected:Npn __pdf_backend_compresslevel:n #1
__pdf backend objcompresslevel:n 5508 {
2599 \tex_global:D
2600 (*luatex)
2601 \tex_pdfvariable:D compresslevel
2602 (/Iuatex)
2603 <*pdftex>
2604 \tex_pdfcompresslevel:D

67

2605 (/pdftex)
2606 \int_value:w \int_eval:n {#1} \scan_stop:

2607 }

260s \cs_new_protected:Npn __pdf_backend_compress_objects:n #1
2609 {

2610 \bool_if:nTF {#1}

2611 { __pdf_backend_objcompresslevel:n { 2 } }

2612 { __pdf_backend_objcompresslevel:n { 0 } }

2613 }

2614 \cs_new_protected:Npn __pdf_backend_objcompresslevel:n #1
2615 {

2616 \tex_global:D

2617 (*luatex)

2618 \tex_pdfvariable:D objcompresslevel

2619 {/luatex)

2620 <>k pdftex)

2621 \tex_pdfobjcompresslevel:D
> (/pdftex)

2623 #1 \scan_stop:

2624 }

(End of definition for __pdf_backend_compresslevel:n, __pdf_backend_compress_objects:n, and
__pdf_backend_objcompresslevel:n.)

26.

N}

_ pdf backend version major gset:n The availability of the primitive is not universal, so we have to test at load time.

__pdf backend version minor gset:n .55 \cs_new_protected:Npe __pdf_backend_version_major_gset:n #1

2626 {

2627 (*luatex)

2628 \int_compare:nNnT \tex_luatexversion:D > { 106 }

2629 {

2630 \exp_not:N \tex_global:D \tex_pdfvariable:D majorversion
2631 \exp_not:N \int_eval:n {#1} \scan_stop:

2632 }

2633 (/Iuatex)
2634 <>kpdfteX>

2635 \cs_if_exist:NT \tex_pdfmajorversion:D

2636 {

2637 \exp_not:N \tex_global:D \tex_pdfmajorversion:D

2638 \exp_not:N \int_eval:n {#1} \scan_stop:

2639 }

2640 </ pdftex)

2641 }

2622 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1
2643 {

2644 \tex_global:D
2605 (*luatex)

2646 \tex_pdfvariable:D minorversion

2647 (/Iuatex)

2648 <*pdftex>

2649 \tex_pdfminorversion:D

2650 (/pdftex)

2651 \int_eval:n {#1} \scan_stop:

2652 }

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

68

__pdf backend version major: As above.

__pdf_backend version minor: 455 \cs_new:Npe __pdf_backend_version_major:

2654 {

2655 (*Iuatex)

2656 \int_compare:nNnTF \tex_luatexversion:D > { 106 }

2657 { \exp_not:N \tex_the:D \tex_pdfvariable:D majorversion }
2658 {17

2659 (/Iuatex)
2660 <* pdftex)

2661 \cs_if_exist:NTF \tex_pdfmajorversion:D

2662 { \exp_not:N \tex_the:D \tex_pdfmajorversion:D }
2663 {1}

2664 (/pdftex)

2665 }

2666 \cs_new:Npn __pdf_backend_version_minor:

2667 {

2668 \tex_the:D

2669 (*Iuatex)

2670 \tex_pdfvariable:D minorversion

2671 (/Iuatex)
2672 (*pdftex)

2673 \tex_pdfminorversion:D
2674 (/pdftex)
2675 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

6.2.5 Marked content

__pdf_backend_bdc:nn Simple wrappers. May need refinement: see https://chat.stackexchange.com/
__pdf_backend_emc: transcript/message/49970158#49970158.

2676 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2

2677 { __kernel_backend_literal_page:n { /#1 ~ #2 ~ BDC } }
2675 \cs_new_protected:Npn __pdf_backend_emc:

2679 { __kernel_backend_literal_page:n { EMC } }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)

2650 (/luatex | pdftex)

6.3 dvipdfmx backend

2ss1 (xdvipdfmx | xetex)

__pdf_backend:n A generic function for the backend PDF specials: used where we can.

__pdf_backend:e \cs_new_protected:Npe __pdf_backend:n #1
2683 { __kernel_backend_literal:n { pdf: #1 } }
2651 \cs_generate_variant:Nn __pdf_backend:n { e }

(End of definition for __pdf_backend:n.)

69

https://chat.stackexchange.com/transcript/message/49970158#49970158
https://chat.stackexchange.com/transcript/message/49970158#49970158

__pdf backend catalog gput:mn
__pdf_backend_info_gput:nn

\g__pdf_backend_object_prop

__pdf_backend_object_new:
__pdf_backend_object_ref:n
__pdf_backend_object_id:n

__pdf backend object urite:nmn

__pdf backend object write:mne

__pdf backend object write array:nn
__pdf backend object write dict:mn

_ pdf backend object write fstream:nn
_ pdf backend object write stream:nn

__pdf backend object write stream:nmn

6.3.1 Catalogue entries

2655 \cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2
266 { __pdf_backend:n { put ~ @catalog << /#1 ~ #2 >> } }
2657 \cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2
2655 { __pdf_backend:n { docinfo << /#1 ~ #2 >> } }

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

6.3.2 Objects

For tracking objects to allow finalization.

2650 \prop_new:N \g__pdf_backend_object_prop

(End of definition for \g__pdf_backend_object_prop.)

Objects are tracked at the macro level, but we don’t have to do anything at this stage.

2600 \cs_new_protected:Npn __pdf_backend_object_new:

2691 { \int_gincr:N \g__pdf_backend_object_int }

2602 \cs_new:Npn __pdf_backend_object_ref:n #1 { @pdf.obj #1 }

2605 \cs_new_eq:NN __pdf_backend_object_id:n __pdf_backend_object_ref:n

(End of definition for __pdf_backend_object_new:, __pdf_backend_object_ref:n, and __pdf_-
backend_object_id:n.)

This is where we choose the actual type.

2601 \cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3
2695 {

2696 \use:c { __pdf_backend_object_write_ #2 :nn }

2697 { __pdf_backend_object_ref:n {#1} } {#3}

2698 }

2600 \cs_generate_variant:Nn __pdf_backend_object_write:nnn { nne }
2700 \cs_new_protected:Npn __pdf_backend_object_write_array:nn #1#2
2701 {

2702 __pdf_backend:e

2703 { obj ~ #1 ~ [~ \exp_not:n {#2} ~ 1 }

2704 }

2705 \cs_new_protected:Npn __pdf_backend_object_write_dict:nn #1#2
2706 {

2707 __pdf_backend:e
2708 { obj ~ #1 ~ << ~ \exp_not:n {#2} ~ >> }
2709 }

2710 \cs_new_protected:Npn __pdf_backend_object_write_fstream:nn #1#2

2711 { __pdf_backend_object_write_stream:nnnn { f } {#1} #2 }

2712 \cs_new_protected:Npn __pdf_backend_object_write_stream:nn #1#2

2713 { __pdf_backend_object_write_stream:nnnn { } {#1} #2 }

2714 \cs_new_protected:Npn __pdf_backend_object_write_stream:nnnn #1#2#3#4
2715 {

2716 __pdf_backend:e

2717 {

2718 #1 stream ~ #2 ~

2719 (\exp_not:n {#4}) ~ << \exp_not:n {#3} >>
2720 }

2721 }

70

__pdf _backend_object_now:nn

__pdf_backend_object_now:ne

__pdf_backend_object_last:

__pdf backend pageobject ref:n

__pdf backend destination:nn
__pdf backend destination:nnnn
__pdf backend destination aux:nnnn

(End of definition for __pdf_backend_object_write:nnn and others.)

No anonymous objects with dvipdfmx so we have to give an object name.

2722 \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2

2723 {

2724 \int_gincr:N \g__pdf_backend_object_int

2725 \exp_args:Nne \use:c { __pdf_backend_object_write_ #1 :nn }
2726 { @Opdf.obj \int_use:N \g__pdf_backend_object_int }

2727 {#2}

2728 }

2720 \cs_generate_variant:Nn __pdf_backend_object_now:nn { ne }

(End of definition for __pdf_backend_object_now:nn.)

2750 \cs_new:Npn __pdf_backend_object_last:
2732 { @pdf.obj \int_use:N \g__pdf_backend_object_int }

(End of definition for __pdf_backend_object_last:.)

Page references are easy in dvipdfmx/XHTEX.
2732 \cs_new:Npn __pdf_backend_pageobject_ref:n #1
273 { @page #1 }

(End of definition for __pdf_backend_pageobject_ref:n.)

6.3.3 Destinations

Here, we need to turn the zoom into a scale. The method for FitR is from Alexander
Grahn: the idea is to avoid needing to do any calculations in TEX by using the backend
data for @xpos and @ypos. /FitR without rule spec doesn’t work, so it falls back to /Fit
here.

2734 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2

2735 {

2736 __pdf_backend:e

2737 {

2738 dest ~ (\exp_not:n {#1})

2739 [

2740 Othispage

2741 \str_case:nnF {#2}

2742 {

2743 { xyz } { /XYZ ~ @xpos ~ @ypos ~ null }
2744 { fit } { /Fit }

2745 { fitb } { /FitB }

2746 { fitbh } { /FitBH }

2747 { fitbv } { /FitBV ~ @xpos }
2748 { fith } { /FitH ~ @ypos }
2749 { fitv } { /FitV ~ Oxpos }
2750 { fitr } { /Fit }

2751 }

2752 { /XYZ ~ @xpos ~ @ypos ~ \fp_eval:n { (#2) / 100 } }
2753]

2754 }

2755 }

71

2756 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4

2757 {

2758 \exp_args:Ne __pdf_backend_destination_aux:nnnn
2750 { \dim_eval:n {#2} } {#1} {#3} {#4}

2760 }

2761 \cs_new_protected:Npn __pdf_backend_destination_aux:nnnn #1#2#3#4
2762 {

2763 \vbox_to_zero:n

2764 {

2765 \dim_vertical:n {#4}

2766 \hbox:n

2767 {

2768 __pdf_backend:n { obj ~ @pdf_ #2 _1llx ~ @xpos }
2769 __pdf_backend:n { obj ~ @pdf_ #2 _1ly ~ @ypos }
2770 }

2771 \tex_vss:D

2772 }

2773 \dim_horizontal:n {#1}

2774 \vbox_to_zero:n

2775 {

2776 \dim_vertical:n { -#3 }

2777 \hbox:n

2778 {

2779 __pdf_backend:n

2780 {

2781 dest ~ (#2)

2782 [

2783 O@thispage

2784 /FitR ~

2785 Opdf_ #2 _1lx ~ @pdf_ #2 _1lly ~
2786 ©@xpos ~ @ypos

2787 J

2788 }

2789 }

2790 \tex_vss:D

2791 }

2792 \dim_horizontal:n { -#1 }

2793 }

(End of definition for __pdf_backend_destination:nn, __pdf_backend_destination:nnnn, and __-
pdf_backend_destination_aux:nnnn.)

6.3.4 Structure

__pdf backend compresslevel:n Pass data to the backend: these are a one-shot.

__pdf_backend_compress_objects:n \cs_new_protected:Npn __pdf_backend_compresslevel:n #1
2705 { __kernel_backend_literal:e { dvipdfmx:config~z~ \int_eval:n {#1} } }
2706 \cs_new_protected:Npn __pdf_backend_compress_objects:n #1

2797 {

2798 \bool_if:nF {#1}

2790 { __kernel_backend_literal:n { dvipdfmx:config~C~0x40 } }
2800 F

(End of definition for __pdf_backend_compresslevel:n and __pdf_backend_compress_objects:n.)

72

\ pdf backend version major gset:n We start with the assumption that the default is active.

__pdf_backend version minor gset:n 4, \cs_new_protected:Npn __pdf_backend_version_major_gset:n #1

2802 {

2803 \cs_gset:Npe __pdf_backend_version_major: { \int_eval:n {#1} }

2804 __kernel_backend_literal:e { pdf:majorversion~ __pdf_backend_version_major: }
2805 3

2806 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1

2807 {

2808 \cs_gset:Npe __pdf_backend_version_minor: { \int_eval:n {#1} }

2800 __kernel_backend_literal:e { pdf:minorversion~ __pdf_backend_version_minor: }
2810 >

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

\ pdf backend version major: We start with the assumption that the default is active.

__pdf_backend version minor: g, \cs_new:Npn __pdf_backend_version_major: { 1 }
2612 \cs_new:Npn __pdf_backend_version_minor: { 7 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

6.3.5 Marked content

__pdf_backend_bdc:nn Simple wrappers. May need refinement: see https://chat.stackexchange.com/
__pdf_backend_emc: transcript/message/49970158#49970158.

2515 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2

214 { __kernel_backend_literal_page:n { /#1 ~ #2 ~ BDC } }
2615 \cs_new_protected:Npn __pdf_backend_emc:

2616 { __kernel_backend_literal_page:n { EMC } }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)

2817 (/dvipdfmx | xetex)

6.4 dvisvgm backend
2515 (*xdvisvgm)
6.4.1 Destinations

__pdf backend destination:nn

__pdf backend destination:mmmn 55 \cs_new_protected:Npn __pdf_backend_destination:nn #1#2 { }
2620 \cs_new_protected:Npn __pdf_backend_destination:nnnn #1#2#3#4 { }

(End of definition for __pdf_backend_destination:nn and __pdf_backend_destination:nnnn.)

6.4.2 Catalogue entries

_ pdf backend catalog gput:nn No-op.

__pdf_backend_info_gput:nn ,, \cs_new_protected:Npn __pdf_backend_catalog_gput:nn #1#2 { }
2522 \cs_new_protected:Npn __pdf_backend_info_gput:nn #1#2 { }

(End of definition for __pdf_backend_catalog_gput:nn and __pdf_backend_info_gput:nn.)

73

https://chat.stackexchange.com/transcript/message/49970158#49970158
https://chat.stackexchange.com/transcript/message/49970158#49970158

__pdf_backend_object_new:
__pdf_backend_object_ref:n
__pdf_backend_object_id:n
__pdf backend object urite:nm

__pdf backend object write:ne
__pdf_backend_object_now:nn
__pdf_backend_object_now:ne
__pdf_backend_object_last:
__pdf backend pageobject ref:n

__pdf backend compresslevel:n
__pdf backend compress objects:n

__pdf backend version major gset:n

__pdf backend version minor gset:n

__pdf backend version major:
__pdf backend version minor:

__pdf_backend_bdc:nn
__pdf_backend_emc:

6.4.3 Objects

All no-ops here.

2825 \cs_new_protected:Npn __pdf_backend_object_new: { }

2524 \cs_new:Npn __pdf_backend_object_ref:n #1 { }

2625 \cs_new:Npn __pdf_backend_object_id:n #1 { }

2526 \cs_new_protected:Npn __pdf_backend_object_write:nnn #1#2#3 { }
2527 \cs_new_protected:Npn __pdf_backend_object_write:nne #1#2#3 { }
2s2¢ \cs_new_protected:Npn __pdf_backend_object_now:nn #1#2 { }

2520 \cs_new_protected:Npn __pdf_backend_object_now:ne #1#2 { }

2830 \cs_new:Npn __pdf_backend_object_last: { }

2631 \cs_new:Npn __pdf_backend_pageobject_ref:n #1 { }

(End of definition for __pdf_backend_object_new: and others.)

6.4.4 Structure

These are all no-ops.

2532 \cs_new_protected:Npn __pdf_backend_compresslevel:n #1 { }
2633 \cs_new_protected:Npn __pdf_backend_compress_objects:n #1 { }

(End of definition for __pdf_backend_compresslevel:n and __pdf_backend_compress_objects:n.)

Data not available!

2631 \cs_new_protected:Npn __pdf_backend_version_major_gset:n #1 { }
2635 \cs_new_protected:Npn __pdf_backend_version_minor_gset:n #1 { }

(End of definition for __pdf_backend_version_major_gset:n and __pdf_backend_version_minor_-
gset:n.)

Data not available!

2836 \cs_new:Npn __pdf_backend_version_major: { -1 }
2637 \cs_new:Npn __pdf_backend_version_minor: { -1 }

(End of definition for __pdf_backend_version_major: and __pdf_backend_version_minor:.)

More no-ops.

2633 \cs_new_protected:Npn __pdf_backend_bdc:nn #1#2 { }
2830 \cs_new_protected:Npn __pdf_backend_emc: { }

(End of definition for __pdf_backend_bdc:nn and __pdf_backend_emc:.)

2810 (/dvisvgm)

6.5 PDF Page size (media box)

For setting the media box, the split between backends is somewhat different to other
areas, thus we approach this separately. The code here assumes a recent KTEX 2¢: that
is ensured at the level above.

2sa1 (*xdvipdfmx | dvips)

74

\ pdf backend pagesize gset:nn This is done as a backend literal, so we deal with it using the shipout hook.

512 \cs_new_protected:Npn __pdf_backend_pagesize_gset:nn #1#2

__kernel_backend_first_shipout:n

2845 {

2846 __kernel_backend_literal:e

2847 {

235 (xdvipdfmx)

2849 pdf:pagesize ~

2850 width ~ \dim_eval:n {#1} ~
2851 height ~ \dim_eval:n {#2}

2852 (/dvipdfmx)
253 (*dvips)

2854 papersize = \dim_eval:n {#1} , \dim_eval:n {#2}
2855 (/dvips>

2856 }

2857 }

2858 3

(End of definition for __pdf_backend_pagesize_gset:nn.)
2850 (/dvipdfmx | dvips)

as00 (kluatex | pdftex | xetex)

_ pdf backend pagesize gset:mn Pass to the primitives.

2861 \cs_new_protected:Npn __pdf_backend_pagesize_gset:nn #1#2

2862 {
2863 \dim_gset:Nn \tex_pagewidth:D {#1}
2864 \dim_gset:Nn \tex_pageheight:D {#2}
2865 }

(End of definition for __pdf_backend_pagesize_gset:nn.)
266 (/luatex | pdftex | xetex)
2567 (*dvisvgm)
_ pdf backend pagesize gset:nn A no-op.
2s6s \cs_new_protected:Npn __pdf_backend_pagesize_gset:nn #1#2 { }
(End of definition for __pdf_backend_pagesize_gset:nn.)
2860 (/dvisvgm)

28

3

o (/package)

7 I13backend-pdfannot implementation

271 (kpackage)
2572 (@@=pdfannot)

7.1 dvips backend
2873 (*dvips>

In dvips, annotations have to be constructed manually. As such, we need the object
code above for some definitions. Here, the PostScript uses the pdf namespace: unlike for

75

expl3, we do not really control the namespacing and also have to cut across PDF-related
areas.
\l pdfannot backend content box The content of an annotation.

2s74 \box_new:N \1__pdfannot_backend_content_box

(End of definition for \1__pdfannot_backend_content_box.)

\l_pdfannot backend model box ~For creating model sizing for links.

2675 \box_new:N \1__pdfannot_backend_model_box

(End of definition for \1__pdfannot_backend_model_box.)

\g__pdfannot_backend_int Needed to track annotations.

2676 \int_new:N \g__pdfannot_backend_int

(End of definition for \g__pdfannot_backend_int.)

\ pdfamnot backend generic:nmnn - Annotations are objects but they are not in the object data lists. Here, to get the
_ pdfannot backend generic aur:nnmn coordinates of the annotation, we need to have the data collected at the PostScript level.
That requires a bit of box trickery (effectively a WTEX 2¢ picture of zero size). Once

the data is collected, use it to set up the annotation border.

2577 \cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4

2878 {

2879 \exp_args:Nf __pdfannot_backend_generic_aux:nnnn

2880 { \dim_eval:n {#1} } {#2} {#3} {#4}

2881 }

2ss2 \cs_new_protected:Npn __pdfannot_backend_generic_aux:nnnn #1#2#3#4
2883 {

2884 \box_move_down:nn {#3}

2885 { \hbox:n { __kernel_backend_postscript:n { pdf.save.ll } } }
2886 \box_move_up:nn {#2}

2887 {

2888 \hbox:n

2889 {

2890 \dim_horizontal:n {#1}

2801 __kernel_backend_postscript:n { pdf.save.ur }

2892 \dim_horizontal:n { -#1 }

2893 }

2894 }

2895 \int_gincr:N \g__pdfannot_backend_int

2896 __kernel_backend_postscript:e

2897 {

2898 mark

2899 /_objdef { pdf.annot \int_use:N \g__pdfannot_backend_int }
2900 pdf.rect

2901 #4 ~

2902 /ANN ~

2903 pdfmark

2904 }

2905 }

(End of definition for __pdfannot_backend_generic:nnnn and __pdfannot_backend_generic_aux:nnnn.)

76

__pdfannot_backend_last: Provide the last annotation we created: could get tricky of course if other packages are
loaded.

2006 \cs_new:Npn __pdfannot_backend_last:
207 { { pdf.annot \int_use:N \g__pdfannot_backend_int } }

(End of definition for __pdfannot_backend_last:.)

\g pdfannot backend link int To track annotations which are links.

20s \int_new:N \g__pdfannot_backend_link_int

(End of definition for \g__pdfannot_backend_link_int.)

\g pdfannot backend link dict t1 To pass information to the end-of-link function.
200 \tl_new:N \g__pdfannot_backend_link_dict_tl

(End of definition for \g__pdfannot_backend_link_dict_t1.)

\g_pdfamnot_backend link sf int Needed to save/restore space factor, which is needed to deal with the face we need a box.
2010 \int_new:N \g__pdfannot_backend_link_sf_int

(End of definition for \g__pdfannot_backend_link_sf_int.)

\g__pdfamnot_backend link math bool Needed to save/restore math mode.

2011 \bool_new:N \g__pdfannot_backend_link_math_bool

(End of definition for \g__pdfannot_backend_link_math_bool.)

\g pdfannot backend link bool ~Track link formation: we cannot nest at all.

2012 \bool_new:N \g__pdfannot_backend_link_bool

(End of definition for \g__pdfannot_backend_link_bool.)

\l_pdfannot backend breaklink pdfmark t1 Swappable content for link breaking.

2013 \t1l_new:N \1__pdfannot_backend_breaklink_pdfmark_tl
2014 \t1l_set:Nn \1__pdfannot_backend_breaklink_pdfmark_tl { pdfmark }

(End of definition for \1__pdfannot_backend_breaklink_pdfmark_tl.)

_pdfannot backend breaklink postscript:n To allow dropping material unless link breaking is active.

2015 \cs_new_protected:Npn __pdfannot_backend_breaklink_postscript:n #1 { }

(End of definition for __pdfannot_backend_breaklink_postscript:n.)

__pdfannot backend breaklink usebox:N Swappable box unpacking or use.

2016 \cs_new_eq:NN __pdfannot_backend_breaklink_usebox:N \box_use:N

(End of definition for __pdfannot_backend_breaklink_usebox:N.)

7

__pdfannot backend link begin goto:nnw

__pdfannot backend link begin user:mnw
__pdfannot_backend_link:nw
__pdfannot backend link aux:nw
__pdfannot backend link end:
__pdfannot backend link end aux:
__pdfannot backend link minima:
__pdfannot_backend link outerbox:n
__pdfannot backend link sf save:
__pdfannot backend link sf restore:

Links are created like annotations but with dedicated code to allow for adjusting the size
of the rectangle. In contrast to hyperref, we grab the link content as a box which can
then unbox: this allows the same interface as for pdfTEX.

Notice that the link setup here uses /Action not /A. That is because Distiller requires
this trigger word, rather than a “raw” PDF dictionary key (Ghostscript can handle either
form).

Taking the idea of evenboxes from hypdvips, we implement a minimum box height
and depth for link placement. This means that “underlining” with a hyperlink will
generally give an even appearance. However, to ensure that the full content is always
above the link border, we do not allow this to be negative (contrast hypdvips approach).
The result should be similar to pdfTEX in the vast majority of foreseeable cases.

The object number for a link is saved separately from the rest of the dictionary as
this allows us to insert it just once, at either an unbroken link or only in the first line of
a broken one. That makes the code clearer but also avoids a low-level PostScript error
with the code as taken from hypdvips.

Getting the outer dimensions of the text area may be better using a two-pass ap-
proach and \tex_savepos:D. That plus generic mode are still to re-examine.

2017 \cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2
2918 {

2919 __pdfannot_backend_link_begin:nw
2920 { #1 /Subtype /Link /Action << /S /GoTo /D (#2) >> }
2921 }

2022 \cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2
2023 { __pdfannot_backend_link_begin:nw {#1#2} }

2024 \cs_new_protected:Npn __pdfannot_backend_link_begin:nw #1

2925 {

2026 \bool_if:NF \g__pdfannot_backend_link_bool
2027 { __pdfannot_backend_link_begin_aux:nw {#1} }
2928 }

The definition of pdf .1link.dict here is needed as there is code in the PostScript headers
for breaking links, and that can only work with this available.

2020 \cs_new_protected:Npn __pdfannot_backend_link_begin_aux:nw #1

2930 {

2031 \bool_gset_true:N \g__pdfannot_backend_link_bool

2032 __kernel_backend_postscript:n

2933 { /pdf.link.dict (#1) def }

2034 \tl_gset:Nn \g__pdfannot_backend_link_dict_tl {#1}

2035 __pdfannot_backend_link_sf_save:

2936 \mode_if_math:TF

2937 { \bool_gset_true:N \g__pdfannot_backend_link_math_bool }
2038 { \bool_gset_false:N \g__pdfannot_backend_link_math_bool }
2039 \hbox_set:Nw \1__pdfannot_backend_content_box

2940 __pdfannot_backend_link_sf_restore:

2041 \bool_if:NT \g__pdfannot_backend_link_math_bool

2042 { \c_math_toggle_token }

2943 }

2014 \cs_new_protected:Npn __pdfannot_backend_link_end:

2945 {

2046 \bool_if:NT \g__pdfannot_backend_link_bool

2047 { __pdfannot_backend_link_end_aux: }
2948 3

2000 \cs_new_protected:Npn __pdfannot_backend_link_end_aux:

78

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2976

2977

2978

2979

2980

2981

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

}

\bool_if:NT \g__pdfannot_backend_link_math_bool
{ \c_math_toggle_token }
__pdfannot_backend_link_sf_save:
\hbox_set_end:
__pdfannot_backend_link_minima:
\hbox_set:Nn \1__pdfannot_backend_model_box { Gg }
\exp_args:Ne __pdfannot_backend_link_outerbox:n

{
\int_if_odd:nTF { \value { page } }
{ \oddsidemargin }
{ \evensidemargin }
}

\box_move_down:nn { \box_dp:N \1__pdfannot_backend_content_box }

{ \hbox:n { __kernel_backend_postscript:n { pdf.save.linkll } } }
__pdfannot_backend_breaklink_postscript:n { pdf.bordertracking.begin }
__pdfannot_backend_breaklink_usebox:N \1__pdfannot_backend_content_box
__pdfannot_backend_breaklink_postscript:n { pdf.bordertracking.end }
\box_move_up:nn { \box_ht:N \1__pdfannot_backend_content_box }

{

\hbox:n
{ __kernel_backend_postscript:n { pdf.save.linkur } }
}
\int_gincr:N \g__pdfannot_backend_int
\int_gset_eq:NN \g__pdfannot_backend_link_int \g__pdfannot_backend_int
__kernel_backend_postscript:e
{
mark
/_objdef { pdf.annot \int_use:N \g__pdfannot_backend_link_int }
\g__pdfannot_backend_link_dict_tl \c_space_tl
pdf.rect
/ANN ~ \1__pdfannot_backend_breaklink_pdfmark_t1l
}
__pdfannot_backend_link_sf_restore:
\bool_gset_false:N \g__pdfannot_backend_link_bool

\cs_new_protected:Npn __pdfannot_backend_link_minima:

{

\hbox_set:Nn \1__pdfannot_backend_model_box { Gg }
__kernel_backend_postscript:e

{
/pdf.linkdp.pad ~
\dim_to_decimal:n

{
\dim_max:nn
{
\box_dp:N \1__pdfannot_backend_model_box
- \box_dp:N \1__pdfannot_backend_content_box

}

{ Opt }
3 o~

pdf.pt.dvi ~ def
/pdf.linkht.pad ~
\dim_to_decimal:n

79

3004 {

3005 \dim_max:nn

3006 {

3007 \box_ht:N \1__pdfannot_backend_model_box
3008 - \box_ht:N \1__pdfannot_backend_content_box
3009 }

3010 { Opt }

3011 } ~

3012 pdf.pt.dvi ~ def

3013 }

3014 }

5015 \cs_new_protected:Npn __pdfannot_backend_link_outerbox:n #1

3016 {

3017 __kernel_backend_postscript:e

3018 {

3019 /pdf . outerbox

3020 [

3021 \dim_to_decimal:n {#1} ~

3022 \dim_to_decimal:n { -\box_dp:N \1__pdfannot_backend_model_box } ~
3023 \dim_to_decimal:n { #1 + \textwidth } ~

3024 \dim_to_decimal:n { \box_ht:N \1__pdfannot_backend_model_box }
3025]

3026 [exch { pdf.pt.dvi } forall] def

3027 /pdf.baselineskip ~

3028 \dim_to_decimal:n { \tex_baselineskip:D } ~ dup ~ 0 ~ gt
3029 { pdf.pt.dvi ~ def }

3030 { pop ~ pop b

3031 ifelse

3032 }

3033 }

5032 \cs_new_protected:Npn __pdfannot_backend_link_sf_save:

3035 {

3036 \int_gset:Nn \g__pdfannot_backend_link_sf_int

3037 {

3038 \mode_if_horizontal:TF

3039 { \tex_spacefactor:D }

3040 {0}

3041 }

3042 }

502 \cs_new_protected:Npn __pdfannot_backend_link_sf_restore:

3044 {

3045 \mode_if_horizontal:T

3046 {

3047 \int_compare:nNnT \g__pdfannot_backend_link_sf_int > { 0 }
3048 { \int_set:Nn \tex_spacefactor:D \g__pdfannot_backend_link_sf_int }
3049 }

3050 }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)

Hooks to allow link breaking: something will be needed in format mode at some
stage. At present this code is disabled, pending a decision to activate.
3051 \use_none:nnn

3052 \cs_if_exist:NT \hook_gput_code:nnn

3053 {

80

3054 \hook_gput_code:nnn { build/column/after } { backend }

3055 {

3056 \box_if_empty:NF \1_shipout_box

3057 {

3058 \vbox_set:Nn \1_shipout_box

3059 {

3060 __kernel_backend_postscript:n

3061 {

3062 pdf.globaldict /pdf.brokenlink.rect ~ known
3063 { pdf.bordertracking.continue }

3064 if

3065 }

3066 \vbox_unpack_drop:N \1_shipout_box

3067 __kernel_backend_postscript:n

3068 { pdf.bordertracking.endpage }

3069 }

3070 }

3071 }

3072 \tl_set:Nn \1__pdfannot_backend_breaklink_pdfmark_tl { pdf.pdfmark }
3073 \cs_set_eq:NN __pdfannot_backend_breaklink_postscript:n

3074 __kernel_backend_postscript:n

3075 \cs_set_eq:NN __pdfannot_backend_breaklink_usebox:N \hbox_unpack:N
3076 }

_pdfannot backend link last: The same as annotations, but with a custom integer.

5077 \cs_new:Npn __pdfannot_backend_link_last:
s07s { { pdf.annot \int_use:N \g__pdfannot_backend_link_int } }

(End of definition for __pdfannot_backend_link_last:.)

_ pdfannot backend link margin:n Convert to big points and pass to PostScript.

5079 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1

3080 {

3081 __kernel_backend_postscript:e

3082 {

3083 /pdf.linkmargin { \dim_to_decimal:n {#1} ~ pdf.pt.dvi } def
3084 }

3085 }

(End of definition for __pdfannot_backend_link_margin:n.)

__pdfannot_backend_link_on:

__pdfannot_backend link off: ;5 \cs_new_protected:Npn __pdfannot_backend_link_on: { }
5057 \cs_new_protected:Npn __pdfannot_backend_link_off: { }

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)
3088 </dvips>

81

__pdfannot _backend generic:nnnn

__pdfannot_backend_last:

__pdfannot backend link begin goto:nnw
__pdfannot backend link begin user:mnw
__pdfannot backend link begin:nmnw
__pdfannot backend link end:

7.2 LudlgX and pdfTEX backend

3089

(xluatex | pdftex)

Simply pass the raw data through, just dealing with evaluation of dimensions.

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

\cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4
{
(*luatex)
\tex_pdfextension:D annot ~
(/luatex)
(xpdftex)
\tex_pdfannot:D
(/pdftex)
width ~ \dim_eval:n {#1} ~
height ~ \dim_eval:n {#2} ~
depth ~ \dim_eval:n {#3} ~
{#4}
}

(End of definition for __pdfannot_backend_generic:nnnn.)

A tiny amount of extra data gets added here; we use e-type expansion to get the space
in the right place and form. The “extra” space in the LuaTgX version is required as it is
consumed in finding the end of the keyword.

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

\cs_new:Npe __pdfannot_backend_last:

{
\exp_not:N \int_value:w
(*luatex)
\exp_not:N \tex_pdffeedback:D lastannot ~
(/luatex)
(xpdftex)
\exp_not:N \tex_pdflastannot:D
(/pdftex)
\c_space_tl 0 ~ R
}

(End of definition for __pdfannot_backend_last:.)

Links are all created using the same internals.

3114

3115

3116

3117

3118

3119

3120

3121

3122

31

N

3

3124

3125

3126

3127

3128

3129

\cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2
{ __pdfannot_backend_link_begin:nnnw {#1} { goto~name } {#2} }
\cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2

{ __pdfannot_backend_link_begin:nnnw {#1} { user } {#2} }
\cs_new_protected:Npn __pdfannot_backend_link_begin:nnnw #1#2#3
{
(*luatex)
\tex_pdfextension:D startlink ~
(/luatex)
(xpdftex)
\tex_pdfstartlink:D
(/pdftex)
attr {#1}
#2 {#3}
}
\cs_new_protected:Npn __pdfannot_backend_link_end:

82

3130 {

3131 (*Iuatex)

3132 \tex_pdfextension:D endlink \scan_stop:
3133 (/Iuatex)

3134 <* pdftex)

3135 \tex_pdfendlink:D
3136 (/pdftex)
3137 }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)

\ pdfannot backend link last: Formatted for direct use.

3138 \cs_new:Npe __pdfannot_backend_link_last:

3139 {

3140 \exp_not:N \int_value:w

3141 (*Iuatex)

3142 \exp_not:N \tex_pdffeedback:D lastlink ~

3143 (/Iuatex)
3144 (*pdftex)

3145 \exp_not:N \tex_pdflastlink:D
3146 (/pdftex)

3147 \c_space_tl 0 ~ R

3148 }

(End of definition for __pdfannot_backend_link_last:.)

_pdfannot backend link margin:n A simple task: pass the data to the primitive.

3140 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1

3150 {
3151 (*Iuatex)
3152 \tex_pdfvariable:D linkmargin

3153 (/Iuatex)
3154 (*pdftex)

3155 \tex_pdflinkmargin:D

3156 (/pdftex)

3157 \dim_eval:n {#1} \scan_stop:
3158 }

(End of definition for __pdfannot_backend_link_margin:n.)

__pdfannot_backend_link_on: Separate definitions for the two engines.

__pdfannot_backend link off: ;5 \cs_new_protected:Npn __pdfannot_backend_link_on:

s60 (kluatex)

s.60 { \tex_pdfextension:D linkstate 0 ~ }
3162 </|uatex)

3163 (*pdftex)

3164 { \tex_pdfrunninglinkon:D }

3165 </pdftex>

s166 \cs_new_protected:Npn __pdfannot_backend_link_off:
3167 (*Iuatex)

sies { \tex_pdfextension:D linkstate 1 ~ }
3169 (/Iuatex)

3170 (*pdftex)

siz1 { \tex_pdfrunninglinkoff:D }

3172 (/pdftex)

83

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)

3173 (/Iuatex ‘ pdftex)

7.3 dvipdfmx backend

sia (xdvipdfmx | xetex)

__pdfannot_backend:n A generic function for the backend PDF specials

__pdfannot_backend:e \cs_new_protected:Npe __pdfannot_backend:n #1
si7. { __kernel_backend_literal:n { pdf: #1 } }
s177 \cs_generate_variant:Nn __pdfannot_backend:n { e }

(End of definition for __pdfannot_backend:n.)

\g__pdfannot_backend_int Annotations are objects: but made with a separate tracker integer.

3176 \int_new:N \g__pdfannot_backend_int

(End of definition for \g__pdfannot_backend_int.)

\ pdfannot backend generic:nnnn Simply pass the raw data through, just dealing with evaluation of dimensions.
3179 \cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4

3180 {

3181 \int_gincr:N \g__pdfannot_backend_int
3182 __pdfannot_backend:e

3183 {

3184 ann ~ @pdfannot \int_use:N \g__pdfannot_backend_int \c_space_tl
3185 width ~ \dim_eval:n {#1} ~

3186 height ~ \dim_eval:n {#2} ~

3187 depth ~ \dim_eval:n {#3} ~

3188 << /Type /Annot #4 >>

3189 }

3190 }

(End of definition for __pdfannot_backend_generic:nnnn.)

__pdfannot_backend_last:

3101 \cs_new:Npn __pdfannot_backend_last:
3192 { @pdfannot \int_use:N \g__pdfannot_backend_int }

(End of definition for __pdfannot_backend_last:.)

\g pdfannot backend link int To track annotations which are links.
3193 \int_new:N \g__pdfannot_backend_link_int

(End of definition for \g__pdfannot_backend_link_int.)

\ pdfannot backend link begin goto:mnw ~ All created using the same internals.
__pdfannot_backend link begin user:nmv \cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2
__pdfannot backend link begin:in 305 {
__pdfannot backend link end: 3196 __pdfannot_backend_link_begin:n

3197 { #1 /Subtype /Link /A << /S /GoTo /D (#2) >> }
3198 }
3199 \cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2
3200 { __pdfannot_backend_link_begin:n {#1#2} }
5200 \cs_new_protected:Npe __pdfannot_backend_link_begin:n #1

84

3202 {
3203 \int_gincr:N \exp_not:N \g__pdfannot_backend_int

3204 \int_gset_eq:NN \exp_not:N \g__pdfannot_backend_link_int
3205 \exp_not:N \g__pdfannot_backend_int

3206 __pdfannot_backend:e

3207 {

3208 bann ~

3209 @Opdfannot

3210 \exp_not:N \int_use:N \exp_not:N \g__pdfannot_backend_link_int
3211 \c_space_t1

3212 <<

3213 /Type /Annot

3214 #1

3215 >>

3216 }

3217 3

3218 \cs_new_protected:Npn __pdfannot_backend_link_end:
32190 { __pdfannot_backend:n { eann } }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)

_pdfamnot_backend link last: Available using the backend mechanism with a suitably-recent version.

220 \cs_new:Npn __pdfannot_backend_link_last:
3221 { @Opdfannot \int_use:N \g__pdfannot_backend_link_int }

(End of definition for __pdfannot_backend_link_last:.)

_pdfannot_backend link margin:n Pass to dvipdfmx.

3222 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1
3223 { __kernel_backend_literal:e { dvipdfmx:config~g~ \dim_eval:n {#1} } }

(End of definition for __pdfannot_backend_link_margin:n.)

__pdfannot_backend_link_on:

__pdfannot_backend link off: 55, \cs_new_protected:Npn __pdfannot_backend_link_on: { __pdfannot_backend:n { link } }
3225 \cs_new_protected:Npn __pdfannot_backend_link_off: { __pdfannot_backend:n { nolink } }

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)

3226 (/dvipdfmx | xetex)

7.4 dvisvgm backend
3207 (*dvisvgm)

__pdfannot_backend generic:nnnn

3226 \cs_new_protected:Npn __pdfannot_backend_generic:nnnn #1#2#3#4 { }

(End of definition for __pdfannot_backend_generic:nnnn.)

__pdfannot_backend_last:
3220 \cs_new:Npn __pdfannot_backend_last: { }

(End of definition for __pdfannot_backend_last:.)

85

__pdfannot backend link begin goto:nnw

__pdfannot backend link begin user:mnw
__pdfannot_backend link begin:nnnw
__pdfannot backend link end:

__pdfannot_backend link last:

__pdfannot backend link margin:n

__pdfannot_backend_link_on:
__pdfannot backend link off:

3230 \cs_new_protected:Npn __pdfannot_backend_link_begin_goto:nnw #1#2 { }
3251 \cs_new_protected:Npn __pdfannot_backend_link_begin_user:nnw #1#2 { }
3232 \cs_new_protected:Npn __pdfannot_backend_link_begin:nnnw #1#2#3 { }
3235 \cs_new_protected:Npn __pdfannot_backend_link_end: { }

(End of definition for __pdfannot_backend_link_begin_goto:nnw and others.)

3231 \cs_new:Npe __pdfannot_backend_link_last: { }

(End of definition for __pdfannot_backend_link_last:.)

3235 \cs_new_protected:Npn __pdfannot_backend_link_margin:n #1 { }

(End of definition for __pdfannot_backend_link_margin:n.)

For handling places like headers.

256 \cs_new_protected:Npn __pdfannot_backend_link_on: { }
3237 \cs_new_protected:Npn __pdfannot_backend_link_off: { }

(End of definition for __pdfannot_backend_link_on: and __pdfannot_backend_link_off:.)

3235 (/dvisvgm)

7.5 Transitional code

This block is temporary: we have moved the backend functions here to a dedicated prefix.
To facilitate that, we turn off DocStrip substitution and handle things manually.

3239 <@@=>

240 \cs_new_eq:NN __pdf_backend_annotation:nnnn __pdfannot_backend_generic:nnnn
221 \cs_new_eq:NN __pdf_backend_annotation_last: __pdfannot_backend_last:
3222 \clist_map_inline:nn

3243 {

3244 begin_goto:nnw ,
3245 begin_user:nnw ,
3246 begin:nnnw s
3247 end: s
3248 last: ,
3249 margin:n

3250 }

3251 { \cs_new_eq:cc { __pdf_backend_link_ #1 } { __pdfannot_backend_link_ #1 } }

252 (/package)

86

__opacity_backend_select:n
__opacity_backend_fill:n
__opacity_backend_stroke:n
__opacity_backend:nnn
__opacity_backend_reset:
__opacity_backend reset fill:
__opacity backend reset stroke:

8 I3backend-opacity implementation

253 (*package)
3251 (@@=opacity)

Although opacity is not color, it needs to be managed in a somewhat similar way:
using a dedicated stack if possible. Depending on the backend, that may not be possible.
There is also the need to cover fill/stroke setting as well as more general running opacity.
It is easiest to describe the value used in terms of opacity, although commonly this is
referred to as transparency.

3255 (*dvips)

No stack so set values directly. The need to deal with Distiller and Ghostscript separately
means we use a common auxiliary: the two systems require different PostScript for
transparency. This is of course not quite as efficient as doing one test for setting all
transparency, but it keeps things clearer here. Thanks to Alex Grahn for the detail on
testing for GhostScript.

5256 \cs_new_protected:Npn __opacity_backend_select:n #1

3257 {

3258 __opacity_backend:nnn {#1} { fill } { ca }
3250 __opacity_backend:nnn {#1} { stroke } { CA }
3260 }

3261 \cs_new_protected:Npn __opacity_backend_fill:n #1
3262 {

3263 __opacity_backend:nnn

3264 { #l }

3265 { fill }

3266 { cat’

3267 }

520 \cs_new_protected:Npn __opacity_backend_stroke:n #1
3269 {

3270 __opacity_backend:nnn

3271 { #1 }

3272 { stroke }

3273 { CA }

3274 }

3275 \cs_new_protected:Npn __opacity_backend:nnn #1#2#3
3276 {

3277 __kernel_backend_postscript:n

3278 {

3279 product ~ (Ghostscript) ~ search

3280 {

261 pop ~ pop ~ pop ~

3282 #1 ~ .set #2 constantalpha

3283 }

3284 {

3285 pop ~

3286 mark ~

3287 /#3 ~ #1

3288 /SetTransparency ~

3289 pdfmark

290 }

3201 ifelse

87

3203 F

3201 \cs_new_protected:Npn __opacity_backend_reset:

3295 {

3296 __opacity_backend_reset_£ill:

3207 __opacity_backend_reset_stroke:

3298 }

3200 \cs_new_protected:Npn __opacity_backend_reset_£fill:
3300 {

3301 __opacity_backend:nnn

3302 { 1 }

3303 { fill }

3304 { cal}

3305 }

3300 \cs_new_protected:Npn __opacity_backend_reset_stroke:
3307 {

3308 __opacity_backend:nnn

3309 { 1 }

3310 { stroke }

3311 { CA }

3312 }

(End of definition for __opacity_backend_select:n and others.)
3313 </dvips>

ssu (xdvipdfmx | luatex | pdftex | xetex)

\c_opacity backend stack int Set up a stack, where that is applicable.
3315 \bool_lazy_and:nnT
s3:6 { \cs_if_exist_p:N \pdfmanagement_if_active_p: }
3317 { \pdfmanagement_if_active_p: }

3318 {

519 (xluatex | pdftex)

3320 __kernel_color_backend_stack_init:Nnn \c__opacity_backend_stack_int
3321 { page ~ direct } { /opacity 1 ~ gs }

5322 (/luatex | pdftex)

3323 \pdfmanagement_add:nnn { Page / Resources / ExtGState }

3324 { opacity 1 } { << /ca ~ 1 /CA ~ 1 >> }

3325 }

(End of definition for \c__opacity_backend_stack_int.)

\1__opacity_backend_fill_t1 We use t1 here for speed: at the backend, this should be reasonable. Both need to start
\lopacity backend stroke t1 off fully opaque.
3326 \tl_new:N \1__opacity_backend_fill_tl
3327 \t1l_new:N \1__opacity_backend_stroke_tl
332 \t1l_set:Nn \1__opacity_backend_fill_tl { 1 }
3320 \t1l_set:Nn \1__opacity_backend_stroke_tl { 1 }

(End of definition for \1__opacity_backend_fill_tl and \1__opacity_backend_stroke_t1.)

__opacity_backend_select:n Much the same as color.

__opacity_backend reset: 3330 \cs_new_protected:Npn __opacity_backend_select:n #1
__opacity backend reset fill: 333 {
__opacity backend reset stroke: 3332 \tl_set:Nn \1__opacity_backend_fill_t1 {#1}

3333 \tl_set:Nn \1__opacity_backend_stroke_tl {#1}

88

3334 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
3335 { opacity #1 }

3336 { << /ca ~ #1 /CA ~ #1 >> }

5337 (*dvipdfmx | xetex)

3338 __kernel_backend_literal_pdf:n

5330 (/dvipdfmx | xetex)

5300 (xluatex | pdftex)

3341 __kernel_color_backend_stack_push:nn \c__opacity_backend_stack_int
332 (/luatex | pdftex)

3343 { /opacity #1 ~ gs }

3344 }

335 \cs_new_protected:Npn __opacity_backend_reset:

3346 {

3347 (*dvipdfmx | xetex>

3348 __kernel_backend_literal_pdf:n

3349 { /opacityl ~ gs }

3350 (/dvipdfmx | xetex>
3351 (xluatex | pdftex)

3352 __kernel_color_backend_stack_pop:n \c__opacity_backend_stack_int
3353 (/Iuatex ‘ pdftex)
3354 }

3355 \cs_new_eq:NN __opacity_backend_reset_fill: __opacity_backend_reset:
3356 \cs_new_eq:NN __opacity_backend_reset_stroke: __opacity_backend_reset:

(End of definition for __opacity_backend_select:n and others.)

__opacity_backend_fill:n For separate fill and stroke, we need to work out if we need to do more work or if we can
__opacity_backend_stroke:n stick to a single setting.

__opacity backend fill stroke:mn .55, \cs_new_protected:Npn __opacity_backend_fill:n #1

3358 {

3359 \exp_args:Nno __opacity_backend_fill_stroke:nn

3360 { #1 }

3361 { \1__opacity_backend_stroke_tl }

3362 }

5363 \cs_new_protected:Npn __opacity_backend_stroke:n #1

3364 {

3365 \exp_args:No __opacity_backend_fill_stroke:nn

3366 { \1__opacity_backend_fill_tl }

3367 { #1 }

3368 }

5360 \cs_new_protected:Npn __opacity_backend_fill_stroke:nn #1#2
3370 ‘[

3371 \str_if_eq:nnTF {#1} {#2}

3372 { __opacity_backend_select:n {#1} }

3373 {

3374 \tl_set:Nn \1__opacity_backend_fill_tl1 {#1}

3375 \tl_set:Nn \1__opacity_backend_stroke_tl {#2}

3376 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
3377 { opacity.fill #1 }

3378 { << Jca ~ #1 >> }

3379 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
3380 { opacity.stroke #2 }

3361 { << /CA ~ #2 >> }

3382 (xdvipdfmx | xetex)

89

__opacity_backend_select:n
__opacity backend fill stroke:nn
__opacity_backend_reset:
__opacity_backend reset fill:
__opacity backend reset stroke:

__opacity_backend_select:n
__opacity_backend_fill:n
__opacity_backend_stroke:n
__opacity_backend:nn
__opacity_backend_reset:
__opacity backend reset fill:

__opacity backend reset stroke:

3383 __kernel_backend_literal_pdf:n
3384 (/dvipdfmx | xetex)
335 (xluatex | pdftex)

3386 __kernel_color_backend_stack_push:nn \c__opacity_backend_stack_int
3387 (/Iuatex ‘ pdftex)

3388 { /opacity.fill #1 ~ gs /opacity.stroke #2 ~ gs }

3389 }

3390 }

(End of definition for __opacity_backend_fill:n, __opacity_backend_stroke:n, and __opacity_-
backend_fill_stroke:nn.)

Redefine them to stubs if pdfmanagement is either not loaded or deactivated.

3301 \bool_lazy_and:nnF
3302 { \cs_if_exist_p:N \pdfmanagement_if_active_p: }
3303 { \pdfmanagement_if_active_p: }

3394 {

3395 \cs_gset_protected:Npn __opacity_backend_select:n #1 { }

3396 \cs_gset_protected:Npn __opacity_backend_fill_stroke:nn #1#2 { }

3397 \cs_gset_protected:Npn __opacity_backend_reset: { }

3398 \cs_gset_eq:NN __opacity_backend_reset_fill: __opacity_backend_reset:
3399 \cs_gset_eq:NN __opacity_backend_reset_stroke: __opacity_backend_reset:
3400 }

(End of definition for __opacity_backend_select:n and others.)
301 {/dvipdfmx | luatex | pdftex | xetex)

3402 (*dvisvgm)

Once again, we use a scope here. There is a general opacity function for SVG, but that
is of course not set up using the stack.

3403 \cs_new_protected:Npn __opacity_backend_select:n #1

s200 { __opacity_backend:nn {#1} { } }

31005 \cs_new_protected:Npn __opacity_backend_fill:n #1

s06 { __opacity_backend:nn {#1} { fill- } }

3207 \cs_new_protected:Npn __opacity_backend_stroke:n #1

sws { __opacity_backend:nn {#1} { stroke- } }

3400 \cs_new_protected:Npn __opacity_backend:nn #1#2

sa0 { __kernel_backend_scope:e { #2 opacity = " #1 " } }

3111 \cs_new_protected:Npn __opacity_backend_reset: { }

3112 \cs_new_eq:NN __opacity_backend_reset_fill: __opacity_backend_reset:
3415 \cs_new_eq:NN __opacity_backend_reset_stroke: __opacity_backend_reset:

(End of definition for __opacity_backend_select:n and others.)
3414 (/dvisvgm)
3415 (/package)

8.1 Font handling integration

In LuaTEX we want to use these functions also for transparent fonts to avoid interference
between both uses of transparency.

sa6 (*lua)

90

First we need to check if pdfmanagement is active from Lua.

3217 local pdfmanagement_active do

3418 local pdfmanagement_if_active_p = token.create’pdfmanagement_if_active_p:’
3419 local cmd = pdfmanagement_if_active_p.cmdname

3420 if cmd == ’undefined_cs’ then

3421 pdfmanagement_active = false

3422 else

3423 token.put_next (pdfmanagement_if_active_p)

3424 pdfmanagement_active = token.scan_int() ~= 0

3425 end

3426 end

3427
228 1f pdfmanagement_active and luaotfload and luaotfload.set_transparent_colorstack then
3429 luaotfload.set_transparent_colorstack(function() return token.create’c__opacity_backend_st

3430

131 local transparent_register = {

3432 token.create’pdfmanagement_add:nnn’,
3433 token.new(0, 1),

3434 ’Page/Resources/ExtGState’,

3435 token.new(0, 2),

3436 token.new(0, 1),

3437 20

3438 token.new(0, 2),

3439 token.new(0, 1),

3440 ’<</ca 7,

3441 AN

3442 ’/CA 7,

3443 7,

3444 I>>0

3445 token.new(0, 2),

3446 }

3447 luatexbase.add_to_callback(’luaotfload.parse_transparent’, function(value)
3448 value = (octet * -1):match(value)

3449 if not value then

3450 tex.error’Invalid transparency value’
3451 return

3452 end

3453 value = value:sub(1, -2)

3454 local result = ’opacity’ .. value

3455 tex.runtoks (function()

3456 transparent_register[6], transparent_register[10], transparent_register[12] = result,
3457 tex.sprint (-2, transparent_register)
3458 end)

3450 return ’/’ .. result .. ’ gs’

10 end, ’13opacity’)

3161 end

3462 </Iua>

9 I3backend-header implementation

263 (*dvips & header)

color.sc Empty definition for color at the top level.

91

TeXcolorseparation

separation

pdf.globaldict

pdf.cvs
pdf.dvi.pt
pdf.pt.dvi
pdf.rect.ht

pdf.linkmargin
pdf.linkdp.pad
pdf.linkht.pad

pdf.rect
pdf.save.1ll

pdf .save.ur
pdf.save.linkll
pdf .save.linkur
pdf.1llx

pdf.1lly

pdf .urx

pdf .ury

3160 /color.sc { } def

(End of definition for color.sc.)

Support for separation/spot colors: this strange naming is so things work with the color
stack.

ss65 TeXDict begin

266 /TeXcolorseparation { setcolor } def

3467 end

(End of definition for TeXcolorseparation and separation.)

A small global dictionary for backend use.
3468 true setglobal

2160 /pdf .globaldict 4 dict def
170 false setglobal

(End of definition for pdf.globaldict.)

Small utilities for PostScript manipulations. Conversion to DVI dimensions is done here
to allow for Resolution. The total height of a rectangle (an array) needs a little maths,
in contrast to simply extracting a value.

s /pdf.cvs { 65534 string cvs } def

2472 /pdf.dvi.pt { 72.27 mul Resolution div } def

a7z /pdf.pt.dvi { 72.27 div Resolution mul } def

/pdf .rect.ht { dup 1 get neg exch 3 get add } def

3474
(End of definition for pdf.cvs and others.)

Settings which are defined up-front in SDict.
sa75 /pdf.linkmargin { 1 pdf.pt.dvi } def
s76 /pdf.linkdp.pad { 0 } def

sa77 /pdf.linkht.pad { 0 } def

(End of definition for pdf.linkmargin, pdf.linkdp.pad, and pdf.linkht.pad.)

Functions for marking the limits of an annotation/link, plus drawing the border. We
separate links for generic annotations to support adding a margin and setting a minimal
size.

3478 /pdf.rect

a0 { /Rect [pdf.1llx pdf.lly pdf.urx pdf.ury] } def

ss0 /pdf .save.1ll

3481 {

3482 currentpoint

3483 /pdf.1lly exch def
3484 /pdf.11x exch def
3485 }

3486 def

ss7 /pdf . save.ur

3488 {

3489 currentpoint

3490 /pdf.ury exch def
3401 /pdf .urx exch def
3492 }

3493 def

92

pdf .dest.anchor
pdf.dest.x
pdf.dest.y
pdf.dest.point
pdf .dest2device
pdf.dev.x
pdf.dev.y
pdf . tmpa
pdf . tmpb
pdf.tmpc
pdf . tmpd

2004 /pdf .save.linkll

3495 {

3496 currentpoint

3497 pdf.linkmargin add
3498 pdf.linkdp.pad add
3499 /pdf.1ly exch def
3500 pdf.linkmargin sub
3501 /pdf.11x exch def
3502 }

3503 def

3500 /pdf . save.linkur

3505 {

3506 currentpoint

3507 pdf.linkmargin sub
3508 pdf.linkht.pad sub
3509 /pdf.ury exch def
3510 pdf.linkmargin add
3511 /pdf .urx exch def
3512 T

3513 def

(End of definition for pdf.rect and others.)

For finding the anchor point of a destination link. We make the use case a separate
function as it comes up a lot, and as this makes it easier to adjust if we need additional
effects. We also need a more complex approach to convert a coordinate pair correctly
when defining a rectangle: this can otherwise be out when using a landscape page.
(Thanks to Alexander Grahn for the approach here.)

;514 /pdf .dest.anchor

3515 {

3516 currentpoint exch

3517 pdf.dvi.pt 72 add

3518 /pdf .dest.x exch def
3519 pdf.dvi.pt

3520 vsize 72 sub exch sub
3521 /pdf .dest.y exch def
3522 }

3523 def

3524 /pdf.dest.point
3505 { pdf.dest.x pdf.dest.y } def
3526 /pdf .dest2device

3527 {

3528 /pdf.dest.y exch def
3529 /pdf.dest.x exch def
3530 matrix currentmatrix
3531 matrix defaultmatrix
3532 matrix invertmatrix
3533 matrix concatmatrix
3534 CVX execC

3535 /pdf.dev.y exch def
3536 /pdf .dev.x exch def
3537 /pdf .tmpd exch def
3538 /pdf.tmpc exch def
3539 /pdf .tmpb exch def

93

3540 /pdf .tmpa exch def

3541 pdf.dest.x pdf.tmpa mul

3542 pdf.dest.y pdf.tmpc mul add
3543 pdf.dev.x add

3544 pdf.dest.x pdf.tmpb mul

3545 pdf.dest.y pdf.tmpd mul add
3546 pdf.dev.y add

3547 }

3548 def

(End of definition for pdf.dest.anchor and others.)

pdf.bordertracking To know where a breakable link can go, we need to track the boundary rectangle. That
pdf.bordertracking.begin can be done by hooking into a and x operations: those names have to be retained. The
pdf.bordertracking.end boundary is stored at the end of the operation. Special effort is needed at the start and
pdf.leftboundary end of pages (or rather galleys), such that everything works properly.
pdf.rightboundary ., /pdf.bordertracking false def
pdf.brokenlink.rect s /pdf.bordertracking.begin
pdf .brokenlink.skip 351 {

pdf .brokenlink.dict 3552 SDict /pdf.bordertracking true put
pdf .bordertracking.endpage 353 SDict /pdf.leftboundary undef
pdf .bordertracking.continue % SDict /pdf.rightboundary undef

pdf .originx 3555 /a where

pdf.originy o t
3557 /a
3558 {
3559 currentpoint pop
3560 SDict /pdf.rightboundary known dup
3561 {
3562 SDict /pdf.rightboundary get 2 index 1t
3563 { not }
3564 if
3565 }
3566 if
3567 { pop }
3568 { SDict exch /pdf.rightboundary exch put }
3569 ifelse
3570 moveto
3571 currentpoint pop
3572 SDict /pdf.leftboundary known dup
3573 {
3574 SDict /pdf.leftboundary get 2 index gt
3575 { not }
3576 if
3577 }
3578 if
3579 { pop }
3580 { SDict exch /pdf.leftboundary exch put }
3581 ifelse
3582 }
3583 put
3584 }
3585 if
3586 }

94

3587 def
s /pdf .bordertracking.end

&

3589 {

3590 /a where { /a { moveto } put } if

3501 /x where { /x { 0 exch rmoveto } put } if
3502 SDict /pdf.leftboundary known

3593 { pdf.outerbox O pdf.leftboundary put }
3504 if

3595 SDict /pdf.rightboundary known

3596 { pdf.outerbox 2 pdf.rightboundary put }
3597 if

3508 SDict /pdf.bordertracking false put

3599 ¥

3600 def

300 /pdf.bordertracking.endpage

3602 {

3603 pdf.bordertracking

3604 {

3605 pdf .bordertracking.end

3606 true setglobal

3607 pdf.globaldict

3608 /pdf .brokenlink.rect [pdf.outerbox aload pop] put
3600 pdf.globaldict

3610 /pdf .brokenlink.skip pdf.baselineskip put
3611 pdf.globaldict

3612 /pdf .brokenlink.dict

3613 pdf.link.dict pdf.cvs put

3614 false setglobal

3615 mark pdf.link.dict cvx exec /Rect

3616 [

3617 pdf.1lx

3618 pdf.1lly

3619 pdf.outerbox 2 get pdf.linkmargin add
3620 currentpoint exch pop

3621 pdf.outerbox pdf.rect.ht sub pdf.linkmargin sub
3622]

3623 /ANN pdf.pdfmark

3624 }

3625 if

3626

3627 def

5028 /pdf .bordertracking.continue

3629 {

3630 /pdf .link.dict pdf.globaldict

3631 /pdf .brokenlink.dict get def

3632 /pdf .outerbox pdf.globaldict

3633 /pdf .brokenlink.rect get def

3634 /pdf .baselineskip pdf.globaldict

3635 /pdf .brokenlink.skip get def

3636 pdf.globaldict dup dup

3637 /pdf .brokenlink.dict undef

3638 /pdf .brokenlink.skip undef

3639 /pdf .brokenlink.rect undef

3640 currentpoint

95

pdf .breaklink

pdf .breaklink.write
pdf.count
pdf.currentrect

3641 /pdf.originy exch def

3642 /pdf .originx exch def

3643 /a where

3644 {

3645 /a

3646 {

3647 moveto

3648 SDict

3649 begin

3650 currentpoint pdf.originy ne exch
3651 pdf.originx ne or

3652 {

3653 pdf.save.linkll

3654 /pdf 1ly

3655 pdf.1lly pdf.outerbox 1 get sub def
3656 pdf .bordertracking.begin
3657 }

3658 if

3659 end

3660 }

3661 put

3662 }

3663 if

3664 /x where

3665 {

3666 /X

3667 {

3668 0 exch rmoveto

3669 SDict

3670 begin

3671 currentpoint

3672 pdf.originy ne exch pdf.originx ne or
3673 {

3674 pdf .save.linkll

3675 /pdf 1ly

3676 pdf.1lly pdf.outerbox 1 get sub def
3677 pdf .bordertracking.begin
3678 }

3679 if

3680 end

3681 }

3682 put

3683 }

3684 if

3685 }

3686 def

(End of definition for pdf.bordertracking and others.)

Dealing with link breaking itself has multiple stage. The first step is to find the Rect entry
in the dictionary, looping over key—value pairs. The first line is handled first, adjusting
the rectangle to stay inside the text area. The second phase is a loop over the height of
the bulk of the link area, done on the basis of a number of baselines. Finally, the end of
the link area is tidied up, again from the boundary of the text area.

96

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

/pdf .breaklink

{

pop

counttomark 2 mod 0 eq

{

counttomark /pdf.count exch def

{

pdf.

count 0 eq { exit } if

counttomark 2 roll
1 index /Rect eq

{

dup 4 array copy
dup dup
1 get
pdf.outerbox pdf.rect.ht
pdf.linkmargin 2 mul add sub
3 exch put
dup
pdf.outerbox 2 get
pdf.linkmargin add
2 exch put
dup dup
3 get
pdf.outerbox pdf.rect.ht
pdf.linkmargin 2 mul add add
1 exch put
/pdf.currentrect exch def
pdf .breaklink.write
{
pdf.currentrect
dup
pdf.outerbox 0 get
pdf.linkmargin sub
0 exch put
dup
pdf.outerbox 2 get
pdf.linkmargin add
2 exch put
dup dup
1 get
pdf .baselineskip add
1 exch put
dup dup
3 get
pdf .baselineskip add
3 exch put
/pdf.currentrect exch def
pdf.breaklink.write
¥
1 index 3 get
pdf.linkmargin 2 mul add
pdf.outerbox pdf.rect.ht add
2 index 1 get sub
pdf .baselineskip div round cvi 1 sub

97

3741 exch

3742 repeat

3743 pdf.currentrect

3744 dup

3745 pdf.outerbox 0 get
3746 pdf.linkmargin sub
3747 0 exch put

3748 dup dup

3749 1 get

3750 pdf .baselineskip add
3751 1 exch put

3752 dup dup

3753 3 get

3754 pdf .baselineskip add
3755 3 exch put

3756 dup 2 index 2 get 2 exch put
3757 /pdf .currentrect exch def
3758 pdf .breaklink.write
3759 SDict /pdf.pdfmark.good false put
3760 exit

3761 }

3762 { pdf.count 2 sub /pdf.count exch def }
3763 ifelse

3764 }

3765 loop

3766 }

3767 if

3768 /ANN

3769 }

3770 def

s /pdf .breaklink.write

3772 {

3773 counttomark 1 sub

3774 index /_objdef eq

3775 {

3776 counttomark -2 roll

3777 dup wcheck

3778 {

3779 readonly

3780 counttomark 2 roll

3781 }

3782 { pop pop }

3783 ifelse

3784 }

3785 if

3786 counttomark 1 add copy

3787 pop pdf.currentrect

3788 /ANN pdfmark

3789 }

3790 def

(End of definition for pdf.breaklink and others.)

pdf.pdfmark The business end of breaking links starts by hooking into pdfmarks. Unlike hypdvips,
pdf.pdfmark.good we avoid altering any links we have not created by using a copy of the core pdfmarks
pdf .outerbox
pdf .baselineskip
pdf .pdfmark.dict

98

function. Only mark types which are known are altered. At present, this is purely ANN
marks, which are measured relative to the size of the baseline skip. If they are more than
one apparent line high, breaking is applied.

;701 /pdf . pdfmark

3792 {

3793 SDict /pdf.pdfmark.good true put

3794 dup /ANN eq

3795 {

3796 pdf .pdfmark.store

3797 pdf .pdfmark.dict

3798 begin

3799 Subtype /Link eq

3800 currentdict /Rect known and
3801 SDict /pdf.outerbox known and
3802 SDict /pdf.baselineskip known and
3803 {

3804 Rect 3 get

3805 pdf.linkmargin 2 mul add
3806 pdf.outerbox pdf.rect.ht add
3807 Rect 1 get sub

3808 pdf .baselineskip div round cvi O gt
3809 { pdf .breaklink }

3810 if

3811 }

3812 if

3813 end

3814 SDict /pdf.outerbox undef

3815 SDict /pdf.baselineskip undef

3816 currentdict /pdf.pdfmark.dict undef
3817 ¥

3818 if

3819 pdf .pdfmark.good

3820 { pdfmark }

3821 { cleartomark }

3822 ifelse

3823 }

3824 def

3825 /pdf .pdfmark.store

3826 {

3827 /pdf .pdfmark.dict 65534 dict def

3828 counttomark 1 add copy

3829 pop

3830 {

3831 dup mark eq

3832 {

3833 pop

3834 exit

3835 }

3836 {

3837 pdf.pdfmark.dict

3838 begin def end

3839 }

3840 ifelse

3841 }

99

3842 loop
3843 }
3844 def

(End of definition for pdf.pdfmark and others.)
3845 (/dvips & header)

100

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols \1__box_backend_cos_fp 294
N\ 1137 __box_backend_rotate:Nn
246, 246, 294, 294, 351, 351, 430, 430
A __box_backend_rotate_aux:Nn 246,
\AtBeginDvi 56 247, 248, 294, 295, 296, 351, 352, 353
__box_backend_scale:Nnn
B 263, 263, 322, 322, 366, 366, 443, 443
bool commands: \1__box_backend_sin_fp 294
\bool_gset_false:N
........ 1223, 1242, 1265, 1287, C
1303, 1412, 1664, 1700, 2938, 2984 clist commands:
\bool_gset_true:N \clist_map_function:nN
1221, 1290, 1410, 1679, 2931, 2937 1311, 1443, 1707
\bool_if:NTF 66, 596, 1233, \clist_map_inline:nn 3242
1237, 1253, 1256, 1260, 1271, 1278, color internal commands:
1282, 1294, 1298, 1423, 1428, 1433, __color_backend:nnn
1638, 1683, 1812, 1864, 1866, 2005, 1045, 1060, 1068, 1074
2050, 2052, 2926, 2941, 2946, 2951 \g__color_backend_colorant_prop .
\bool_if:nTF 2429, 2610, 2798 562, 581, 584, 604, 845
\bool_lazy_and:nnTF __color_backend_devicen_-
............ 809, 2157, 3315, 3391 colorants:n 563,563, 765, 903
\bool_lazy_any:nTF 1852, 2040 __color_backend_devicen_-
\bool_new:N 1224, 1291, colorants:w 563, 571, 578, 586
1413, 1680, 1802, 1968, 2911, 2912 __color_backend_devicen -
\bool_set_false:N init:non
1807, 1825, 1964, 1984, 2075, 2225 752, 752, 870, 870, 1095, 1095
\bool_set_true:N 1824, 1992 __color_backend_devicen_init:w .
box commands: 870, 879, 908, 912
\box_dp:N __color_backend_fill:n
. 235, 237, 285, 287, 342, 344, 391, . 949, 949, 951,
393, 395, 397, 2963, 2996, 2997, 3022 952, 953, 975, 976, 978, 980, 981,
\box_ht:N 237, 287, 344, 395, 1000, 1009, 1010, 1012, 1014, 1015,
397, 1879, 2116, 2968, 3007, 3008, 3024 1026, 1035, 1036, 1038, 1040, 1041
\box_if_empty:NTF 3056 __color_backend_fill_cmyk:n ...
\box_move_down:nn 2884, 2963 L. 949, 951,
\box_move_up:nn 2246, 2886, 2968 975, 975, 1009, 1009, 1035, 1035, 1047
\box_new:N 2874, 2875 __color_backend_fill_devicen:nn
\box_set_dp:Nn 1771 959,
\box_set_ht:Nn 1770 969, 999, 1003, 1025, 1029, 1089, 1091
\box_set_wd:Nn 299, 1769 __color_backend_fill_gray:n 949,
\box_use:N 242, 260, 952, 975, 977, 1009, 1011, 1035, 1037
274, 290, 317, 331, 347, 363, 375, __color_backend_fill_reset: 971,
426, 440, 459, 1363, 1571, 1772, 2916 971, 1005, 1005, 1031, 1031, 1093, 1093
\box_wd:N 236, 244, __color_backend_fill_rgb:n 949,
286, 292, 343, 349, 392, 394, 1878, 2115 953, 975, 979, 1009, 1013, 1035, 1039
box internal commands: __color_backend_fill_separation:nn
__box_backend_clip:N 959, 959, 969, 999, 999, 1003,
224, 224, 279, 279, 336, 336, 380, 380 1025, 1025, 1029, 1089, 1089, 1091

101

\1__color_backend_fill t1
.............. 525, 537, 983, 997
__color_backend_iccbased_-
device:nnn 932, 932
__color_backend_iccbased_-
initinnn L.
...... 771, 771, 914, 914, 1095, 1096
__color_backend_init_resource:n
....... 806, 806, 835, 906, 930, 945
__color_backend_reset:
506, 521, 529, 541, 545, 550,
971, 972, 1005, 1006, 1031, 1049, 1093
__color_backend_rgb:w 1062
__color_backend_select:n
........... 506, 507, 509, 511,
513, 514, 545, 545, 547, 548, 549, 591
__color_backend_select:nn
....... 529, 530, 532, 534, 535, 802
color_backend_select_cmyk:n ..
....... 506, 506, 529, 529, 545, 547
__color_backend_select_devicen:nn
....... 590, 592, 774, 775, 796, 804
__color_backend_select_gray:n ..
. 506, 508, 529, 531, 545, 548, 555
__color_backend_select_iccbased:nn
....... 593, 593, 778, 778, 796, 805
__color_backend_select_named:n .
.............. 506, 510, 552, 552
__color_backend_select_rgb:n ...
....... 506, 512, 529, 533, 545, 549
__color_backend_select_separation:nn
.............. 590, 590, 592,
774, 774, 775, 796, 797, 801, 804, 805
__color_backend_separation_-

\

init:n 594, 675, 688
__color_backend_separation_-
init:nn 823, 833, 837
__color_backend_separation_-
init:nnn 594, 629, 650
__color_backend_separation_-
init:nnnn 594, 652, 664
__color_backend_separation_-
init:nnnnn L. 594,

594, 615, 708, 776, 776, 823, 823, 863
__color_backend_separation_-

init:nw 594, 679, 690, 704
__color_backend_separation_-

init:w 594, 666, 681, 686
__color_backend_separation_-

init_/DeviceCMYK:nnn 594
__color_backend_separation_-

init_/DeviceGray:nnn 594
__color_backend_separation_-

init_/DeviceRGB:nnn 594

102

__color_backend_separation_-

. 594, 600, 616

__color_backend_separation_-
init_CIELAB:nnn
........... 594, 706, 776, 823, 848

__color_backend_separation_-

init_aux:nnnnnn

init_CIELAB:nnnnnn Yt
__color_backend_separation_-
init_count:n 594, 653, 656

__color_backend_separation_-
init_count:w ... 594, 657, 658, 662
__color_backend_separation_-
init_Device:Nn
........... 594, 638, 640, 642, 643
\1__color_backend_stack_int .
........... 467, 539, 542, 984, 996
__color_backend_stroke:n
............... 949, 954, 956,
957, 958, 975, 988, 990, 992, 993, 1002
__color_backend_stroke_cmyk:n ..
...................... 949,
956, 975, 987, 1009, 1019, 1045, 1045
__color_backend_stroke_devicen:nn
...................... 959,
970, 999, 1004, 1025, 1030, 1089, 1092
__color_backend_stroke_gray:n ..
..................... 949,
957, 975, 989, 1009, 1021, 1045, 1051
__color_backend_stroke_gray_-
aux:in 1045, 1055, 1059
__color_backend_stroke_reset:
...................... 971,
972, 1005, 1006, 1031, 1032, 1093, 1094
__color_backend_stroke_rgb:n ...
...................... 949,
958, 975, 991, 1009, 1023, 1045, 1061
color_backend_stroke_rgb:w . ..
.................... 1045, 1063
__color_backend_stroke_separation:nn
959, 964, 970, 999, 1001, 1004,
1025, 1027, 1030, 1089, 1090, 1092
\1__color_backend_stroke_tl .
.............. 525, 538, 985, 995
\g__color_model_int 601, 610, 758
786, 835, 841, 842, 896, 897, 906, 930
\c__color_model_range_ CIELAB_tl
.............. 713, 748, 859, 866

\

COlOr.SC ... i 3464
cs commands:

\cs_generate_variant:Nn .. 62, 65,
170, 181, 212, 218, 615, 1169, 1580
2019, 2086, 2106, 2273, 2288, 2351,
2561, 2574, 2684, 2699, 2729, 3177

\cs_gset:Npe 2441, 2445, 2803, 2808

\cs_gset_eq:NN 3398, 3399
\cs_gset_protected:Npn
............... 3395, 3396, 3397

.......... 27,49, 2635, 2661, 3052
\cs_if_exist_p:N 810, 3316, 3392
\cs_if_exist_use:NTF 38, 628
\cs_new:Npe

563, 2575, 2586, 2653, 3103, 3138, 3234
\cs_new:Npn 578, 637, 639

641, 643, 650, 656, 658, 664, 681,

688, 690, 908, 1316, 1448, 1711

1881, 2119, 2263, 2280, 2352, 2354,

2447, 2448, 2530, 2531, 2543, 2562

2563, 2666, 2692, 2730, 2732, 2811,

2812, 2824, 2825, 2830, 2831, 2836

2837, 2906, 3077, 3191, 3220, 3229
\cs_new_eq:NN 46,

56, 58, 547, 548, 549, 592, T75,

804, 805, 951, 952, 953, 956, 957,

958, 969, 970, 971, 972, 1003, 1004,

1005, 1006, 1029, 1030, 1031, 1091,

1092, 1093, 1168, 1372, 1373, 1378

1379, 1579, 1581, 1582, 1588, 1782

1783, 1795, 1796, 1819, 1820, 1887

1888, 1889, 1912, 1937, 1949, 1950

1958, 1959, 1960, 1981, 1987, 1988

1989, 2059, 2069, 2070, 2071, 2212

2213, 2220, 2221, 2230, 2260, 2261,

2262, 2265, 2281, 2693, 2916, 3240,

3241, 3251, 3355, 3356, 3412, 3413
\cs_new_protected:Npe

594, 1074, 2625, 2682, 3175, 3201
\cs_new_protected:Npn
. 47,53, 60, 63, 71, 77, 82, 84,

88, 98, 108, 118, 128, 137, 146, 156,

168, 171, 173, 175, 179, 184, 193,

203, 213, 224, 246, 248, 263, 279,

294, 296, 322, 336, 351, 353, 366,

380, 430, 443, 470, 484, 494, 506,

508, 510, 512, 514, 521, 529, 531,

533, 535, 541, 545, 550, 552, 590,

593, 616, 706, 752, 771, 774, 776,

777, 778, 797, 801, 806, 823, 837,

848, 870, 914, 932, 949, 954, 959,

964, 975, 977, 979, 981, 987, 989,

991, 993, 999, 1001, 1009, 1011,

1013, 1015, 1019, 1021, 1023, 1025

1027, 1032, 1035, 1037, 1039, 1041,

1045, 1051, 1059, 1061, 1063, 1089

1090, 1094, 1095, 1096, 1170, 1176,

1181, 1183, 1185, 1193, 1201, 1210

1220, 1222, 1225, 1227, 1244, 1249,

1267, 1289, 1292, 1305, 1318, 1323

103

1325, 1327, 1329, 1331, 1333, 1335
1337, 1342, 1347, 1374, 1376, 1380
1385, 1390, 1400, 1409, 1411, 1414,
1416, 1418, 1420, 1425, 1430, 1435
1437, 1450, 1455, 1457, 1459, 1461,
1463, 1465, 1467, 1469, 1488, 1512
1518, 1530, 1542, 1554, 1561, 1583
1589, 1594, 1599, 1610, 1620, 1630
1632, 1634, 1636, 1667, 1669, 1674,
1676, 1678, 1681, 1702, 1713, 1726
1728, 1730, 1732, 1734, 1736, 1738
1740, 1742, 1750, 1758, 1784, 1803
1821, 1836, 1841, 1849, 1882, 1895
1913, 1923, 1939, 1952, 1961, 1970
1982, 1990, 1995, 2010, 2020, 2063
2072, 2078, 2084, 2087, 2094, 2107
2112, 2120, 2133, 2167, 2198, 2199
2201, 2203, 2205, 2211, 2214, 2222
2228, 2231, 2233, 2244, 2271, 2274,
2276, 2278, 2282, 2289, 2306, 2311,
2316, 2321, 2331, 2336, 2344, 2356
2382, 2387, 2415, 2427, 2439, 2443
2449, 2451, 2455, 2478, 2492, 2502
2513, 2532, 2564, 2597, 2608, 2614,
2642, 2676, 2678, 2685, 2687, 2690
2694, 2700, 2705, 2710, 2712, 2714,
2722, 2734, 2756, 2761, 2794, 2796
2801, 2806, 2813, 2815, 2819, 2820
2821, 2822, 2823, 2826, 2827, 2828
2829, 2832, 2833, 2834, 2835, 2838
2839, 2842, 2861, 2868, 2877, 2882
2915, 2917, 2922, 2924, 2929, 2944,
2949, 2986, 3015, 3034, 3043, 3079
3086, 3087, 3090, 3114, 3116, 3118
3129, 3149, 3159, 3166, 3179, 3194,
3199, 3218, 3222, 3224, 3225, 3228
3230, 3231, 3232, 3233, 3235, 3236
3237, 3256, 3261, 3268, 3275, 3294,
3299, 3306, 3330, 3345, 3357, 3363
3369, 3403, 3405, 3407, 3409, 3411

\cs_set_eq:NN 3073, 3075
\cs_set_protected:Npn 2171
D
dim commands:
\dim_compare:nNnTF 2147, 2152
\dim_compare_p:nNn 2158, 2159

\dim_eval:n

2385, 2488, 2489, 2490, 2759,

2850, 2851, 2854, 2880, 3098, 3099
3100, 3157, 3185, 3186, 3187, 3223
\dim_gset:Nn 2863, 2864

\dim_horizontal:n
2395, 2402, 2773, 2792, 2890, 2892

\dim_max:nn 2994, 3005

\dim_set:Nn
1878, 1879, 2115, 2116, 2143, 2144
\dim_set_eq:NN 2209

\dim_to_decimal:n .. 391, 392, 393
394, 395, 397, 1592, 1597, 1603,
1604, 1605, 1606, 1615, 1616, 1617
1708, 1727, 2253, 2254, 2992, 3003
3021, 3022, 3023, 3024, 3028, 3083

\dim_to_decimal_in_bp:n

235, 236, 237, 285, 286, 287,
342, 343, 344, 1189, 1190, 1197,
1198, 1205, 1206, 1214, 1215, 1216
1313, 1317, 1321, 1383, 1388, 1394,
1395, 1396, 1404, 1405, 1445, 1449,
1453, 1712, 1789, 1790, 1791, 1792
1975, 1976, 1977, 1978, 2034, 2035
2036, 2037, 2238, 2239, 2240, 2241

\dim_vertical:n 2391, 2398, 2765, 2776

\dim_zero:N 2141, 2142

\c_max_dim

2143, 2144, 2147, 2152, 2158, 2159

draw internal commands:

__draw_backend_add_to_path:n ...
..................... 1589,
1591, 1596, 1601, 1612, 1620, 1635

__draw_backend_begin:

1170, 1170, 1374, 1374, 1583, 1583

__draw_backend_box_use:Nnnnn . ..

1347, 1347, 1561, 1561, 1758, 1758
__draw_backend_cap_butt:
1305, 1325, 1437, 1457, 1702, 1730
__draw_backend_cap_rectangle: ..
1305, 1329, 1437, 1461, 1702, 1734
__draw_backend_cap_round:
1305, 1327, 1437, 1459, 1702, 1732
__draw_backend_clip:
1225, 1289, 1414, 1430, 1634, 1678

__draw_backend_closepath:
................ 1225, 1225,
1246, 1414, 1414, 1634, 1634, 1671

__draw_backend_closestroke: .

1225, 1244, 1414, 1418, 1634, 1669

__draw_backend_curveto:nnnnnn . .

1185, 1210, 1380, 1390, 1589, 1610

__draw_backend_dash:n
............ 1305, 1311, 1316
1437, 1443, 1448, 1702, 1707, 1711

__draw_backend_dash_aux:nn ..
............... 1702, 1706, 1713

__draw_backend_dash_pattern:nn .

1305, 1305, 1437, 1437, 1702, 1702

__draw_backend_discardpath:

1225, 1292, 1414, 1435, 1634, 1681

104

__draw_backend_end:
1170, 1176, 1374, 1376, 1583, 1588
__draw_backend_evenodd_rule: ...
1220, 1220, 1409, 1409, 1630, 1630
__draw_backend_fill:
1225, 1249, 1414, 1420, 1634, 1674
__draw_backend_fillstroke:
1225, 1267, 1414, 1425, 1634, 1676
__draw_backend_join_bevel:
1305, 1335, 1437, 1467, 1702, 1740
__draw_backend_join_miter:
1305, 1331, 1437, 1463, 1702, 1736
__draw_backend_join_round:
1305, 1333, 1437, 1465, 1702, 1738
__draw_backend_lineto:nn
1185, 1193, 1380, 1385, 1589, 1594
__draw_backend_linewidth:n
1305, 1318, 1437, 1450, 1702, 1726
__draw_backend_literal:n
1168, 1168, 1169, 1172, 1173, 1174,
1178, 1179, 1182, 1184, 1187, 1195
1203, 1212, 1226, 1229, 1230, 1231,
1232, 1235, 1241, 1251, 1258, 1264,
1269, 1274, 1275, 1276, 1277, 1280,
1286, 1296, 1302, 1307, 1320, 1324,
1326, 1328, 1330, 1332, 1334, 1336
1339, 1344, 1349, 1350, 1351, 1352
1353, 1354, 1355, 1356, 1357, 1361,
1362, 1364, 1365, 1366, 1367, 1368
1372, 1372, 1373, 1382, 1387, 1392
1402, 1415, 1417, 1419, 1422, 1427
1432, 1436, 1439, 1452, 1456, 1458
1460, 1462, 1464, 1466, 1468, 1514,
1579, 1579, 1580, 1641, 1660, 1686
__draw_backend_miterlimit:n .
1305, 1323, 1437, 1455, 1702, 1728
__draw_backend_moveto:nn
1185, 1185, 1380, 1380, 1589, 1589
__draw_backend_nonzero_rule: ...
1220, 1222, 1409, 1411, 1630, 1632
__draw_backend_path:n
....... 1634, 1636, 1668, 1675, 1677
\g__draw_backend_path_int 1649, 1666
\g__draw_backend_path_tl
1589, 1645, 1661, 1663, 1690, 1699
__draw_backend_rectangle:nnnn . .
1185, 1201, 1380, 1400, 1589, 1599
__draw_backend_scope_begin: 1181
1181, 1375, 1378, 1378, 1581, 1581
__draw_backend_scope_end: 1181,
1183, 1377, 1378, 1379, 1581, 1582
__draw_backend_shift:nn
1337, 1342, 1469, 1512, 1742, 1750

__draw_backend_stroke: 1225, 1227,
1247, 1414, 1416, 1634, 1667, 1672
__draw_backend_transform:nnnn . .
........ 1337, 1337, 1358, 1359,
1360, 1469, 1469, 1742, 1742, 1761
__draw_backend_transform_-
aux:nnnn 1469, 1483, 1488
__draw_backend_transform_-
decompose :nnnnN 1482, 1517, 1518
__draw_backend_transform_-
decompose_auxi:nnnnN

\fp_evalin
. 247, 256, 269, 270, 295, 312, 327
329, 352, 361, 372, 373, 437, 452,
453, 1056, 1069, 1070, 1071, 1495,
1500, 1501, 1508, 1523, 1524, 1525
1526, 1535, 1536, 1537, 1538, 1547,
1548, 1549, 1550, 2375, 2475, 2752

\fp_new:N 320, 321
\fp_set:Nn 300, 303
\fp_use:N 306, 310, 315
\fp_zero:N 302

............... 1517, 1522, 1530
__draw_backend_transform_-
decompose_auxii:nnnnN G
............... 1517, 1534, 1542 graphics commands:
__draw_backend_transform_-
decompose_auxiii:nnnnN

\c_zero_fp 254, 301, 307, 359, 1493, 1506

\1_graphics_search_ext_seq
........... 1781, 1799, 1947, 2131
--------------- 1517, 1546, 1554 graphics internal commands:

\g__draw_draw_clip_bool .. 1225, 1634 \1__graphics_attr_tl 1801,

\g__draw_draw_eor_bool 1808, 1826, 1838, 1845, 1847, 1885

1220, 1237, 1253, 1260, 1271, __graphics_backend_dequote:w . ..
1282, 1298, 1409, 1423, 1428, 1433 1803, 1844, 1881

\g__draw_draw_path_int 1634 \1__graphics_backend_dir_str . 1890
E \1__graphics_backend_ext_str . 1890
__graphics_backend_get_pagecount:n
\errmeésage R (%8 %' ? lZQ§71§%6,§;§571939
\evensidemargin 2961 2058, 2059, 2120, 2120, 2265, 2265
exp commands: . .
\exp_args:Ne 598, \--graphics_backend_getbb_auxi:n

........... 1803, 1817, 1834, 1836

)52, 833, 1843, 1901, 1903, 192
652, 833, 1843, 1901, 1903, 1927, __graphics_backend_getbb_-

1929, 2318, 2333, 2384, 2758, 2957

\exp_args:Nf 1310, 1442, 2879 auxi:nl 2063, 2067, 2076, 2078
\exp:args:Nne i... ’2725 __gragaics_backend_getbbT—)
\exp_args:NNf 247, 295, 352 aux11}n """" 1803, 1839, 1841
\exp_args:Nno 3359 __gragylcs_backendigetbb_—)
\exp_args:No 3365 auxii:nol 2063, 2081, 2084, 2086
\exp_not:N 565, __graphics_backend_getbb_-

auxiii:n 1803, 1843, 1849
__graphics_backend_getbb_-
auxiii:nNnn . 2063, 2082, 2085, 2087
__graphics_backend_getbb_-
2063, 2090, 2094, 2106
__graphics_backend_getbb_-
auxv:nNnn 2063, 2091, 2098, 2107
__graphics_backend_getbb_-

571, 572, 573, 598, 600, 601, 604,
605, 610, 2577, 2579, 2582, 2588,
2590, 2593, 2630, 2631, 2637, 2638
2657, 2662, 3105, 3107, 3110, 3140,
3142, 3145, 3203, 3204, 3205, 3210
\exp_not:n 48, 96, 116, 154,
922, 2309, 2314, 2378, 2547, 2548,
2562, 2563, 2703, 2708, 2719, 2738

auxiv:nnNnn .

\ExplBackendFileDate 1 auxvi:mhon 2110, 2112
__graphics_backend_getbb_bmp:n .
F 1949, 1960, 2063, 2071

__graphics_backend_getbb_eps:n .
............ 1782, 1782, 1890,

file commands:
\file_compare_timestamp:nNnTF . 1915

\file_parse_full_name:nNNN 1897, 1925 1895, 1912, 1949, 1949, 2212, 2212
\fmtversion 51 __graphics_backend_getbb_eps:nm
fp commands: 1890
\fp_compare:nNnTF __graphics_backend_getbb_eps:nn
254, 301, 307, 359, 1493, 1506, 1556 1901, 1913

105

__graphics_backend_getbb_jpeg:n
............... 1803, 1819,
1949, 1958, 2063, 2069, 2214, 2220

__graphics_backend_getbb_jpg:n .
1803, 1803, 1819, 1820, 1949, 1952,
1958, 1959, 1960, 2063, 2063, 2069
2070, 2071, 2214, 2214, 2220, 2221

__graphics_backend_getbb_-
pagebox:w 2063, 2102, 2119

__graphics_backend_getbb_pdf:n .
............ 1803, 1821, 1921,
1949, 1961, 2063, 2072, 2222, 2222

__graphics_backend_getbb_png:n .
................ 1803, 1820,
1949, 1959, 2063, 2070, 2214, 2221

__graphics_backend_getbb_ps:n . .
................ 1782, 1783,
1890, 1912, 1949, 1950, 2212, 2213

__graphics_backend_getbb_svg:n .
.................... 2133, 2133

__graphics_backend_getbb_svg_-
auxi:nNn ... 2133, 2149, 2154, 2167

__graphics_backend_getbb_svg_-
auxii:w 2133, 2171, 2193, 2198

__graphics_backend_getbb_svg_-
auxiii:Nw 2133, 2181, 2199

__graphics_backend_getbb_svg_-
auxiv:Nw 2133, 2184, 2201

__graphics_backend_getbb_svg_-
auxv:Nw 2133, 2185, 2203

__graphics_backend_getbb_svg_-
auxvi:Nn 2133, 2200, 2202, 2204, 2205

__graphics_backend_getbb_svg_-
auxvii:w 2133, 2207, 2211

__graphics_backend_include:nn ..
........... 2228, 2229, 2232, 2233

__graphics_backend_include_-
auxi:n 1970, 1985, 1993, 1995

__graphics_backend_include_-
auxii:nn ... 1970, 1997, 2010, 2019

__graphics_backend_include_-
auxiii:nn 1970, 2017, 2020

__graphics_backend_include_-
bmp:n 1970, 1988

__graphics_backend_include_-
dequote:w 2244, 2255, 2263

__graphics_backend_include_-

EPSIM ... 1784,
1784, 1795, 1890, 1923, 1937,
1970, 1970, 1981, 2228, 2228, 2230

__graphics_backend_include_-
jpeg:n . 1882, 1887, 1987, 2244, 2261

__graphics_backend_include_-

Jpgim .. 1882,

106

1882, 1887, 1888, 1889, 1970,
1982, 1987, 1988, 1989, 2244, 2262
__graphics_backend_include_-
jpseg:n 1970
__graphics_backend_include_-
pdf:in L 1882,
1888, 1927, 1970, 1990, 2228, 2231
__graphics_backend_include_-
POZIN .« ottt
1882, 1889, 1970, 1989, 2244, 2260
__graphics_backend_include_ps:n
................ 1784, 1795,
1890, 1937, 1970, 1981, 2228, 2230
__graphics_backend_include_-
svg:n .. 2244, 2244, 2260, 2261, 2262
\1__graphics_backend_name_str . 1890
__graphics_bb_restore:nTF
............... 1838, 2109, 2135
__graphics_bb_save:n 1847, 2117, 2162
\1__graphics_decodearray_str .
................ 1810, 1811,
1823, 1856, 1862, 1863, 1963, 2003
2004, 2044, 2048, 2049, 2074, 2224
__graphics_extract_bb:n
........... 1956, 1965, 2218, 2226
\1__graphics_final_name_str .. 1920
__graphics_get_pagecount:n ..
............... 1796, 2059, 2265
\1__graphics_interpolate_bool . ..
........ 1812, 1825, 1854, 1866
1964, 2005, 2042, 2052, 2075, 2225
\1__graphics_llx_dim
....... 1789, 1975, 2034, 2141, 2238
\1__graphics_1lly_dim
....... 1790, 1976, 2035, 2142, 2239
\1__graphics_page_int 1805, 1829,
1830, 1871, 1872, 1954, 2001, 2002
2028, 2029, 2065, 2080, 2081, 2216
\1__graphics_pagebox_tl ... 1806
1828, 1873, 1874, 1955, 1999, 2000
2030, 2032, 2066, 2089, 2090, 2217
\1__graphics_pdf_str
1814, 1815, 1831, 1832, 1857, 1868
__graphics_read_bb:n
1782, 1783, 1949, 1950, 2212, 2213
\1__graphics_tmp_box
1876, 1878, 1879, 2114, 2115, 2116
\1__graphics_tmp_dim 2208, 2209
\1__graphics_tmp_ior
........... 2137, 2138, 2145, 2164
\g__graphics_track_int
............... 1969, 2022, 2023
\1__graphics_transgroup_bool
........ 1802, 1807, 1824, 1855,

1864, 1968, 1984, 1992, 2043, 2050
\1__graphics_urx_dim
1791, 1878, 1977, 2036, 2115

2143, 2147, 2150, 2158, 2240, 2253
\1__graphics_ury_dim
1792, 1879, 1978, 2037, 2116, 2144,

2152, 2155, 2159, 2241, 2246, 2254

group commands:

\group_begin: 190, 209
\group_end: 198
H
hbox commands:
\hbox:n 2248, 2392, 2399
2766, 2777, 2885, 2888, 2964, 2970
\hbox_overlap_right:n 242,

274, 290, 331, 347, 375, 459, 1363, 1571
\hbox_set:Nn 1876, 2114, 2956, 2988

\hbox_set:Nw 2939
\hbox_set_end: 2954
\hbox_unpack:N 3075

hook commands:

\hook_gput_code:nnn 54, 3052, 3054

I

int commands:

\int_compare:nNnTF 1829, 1871, 2001,
2028, 2080, 2417, 2628, 2656, 3047
\int_const:Nn
....... 472, 1845, 1942, 2023, 2122
\int_eval:n 492, 502, 648, 657, 670
672, 676, 689, 2441, 2445, 2606,
2631, 2638, 2651, 2795, 2803, 2808
\int_gincr:N 216,
382, 1640, 1685, 2022, 2279, 2346,
2691, 2724, 2895, 2973, 3181, 3203
\int_gset:Nn 191, 210, 2522, 3036

\int_gset_eq:NN 199, 2974, 3204
\int_if_exist:NTF 2012
\int_if_odd:nTF 2959
\int_max:nn 2124

\int_new:N 182, 183, 429, 467, 1666
1969, 2876, 2908, 2910, 3178, 3193

\int_set:Nn 3048
\int_set_eq:NN 187, 206
\int_step_function:nnnN 674
\int_use:N 384,

415, 601, 610, 758, 786, 835, 841,
842, 896, 897, 906, 930, 1643, 1649
1656, 1688, 1696, 1830, 1872, 1885,
1943, 2002, 2015, 2027, 2029, 2125,
2348, 2353, 2726, 2731, 2899, 2907
2978, 3078, 3184, 3192, 3210, 3221

107

\int_value:w
....... 2577, 2588, 2606, 3105, 3140
1805, 1954, 2065, 2216

\int_zero:N ...

ior commands:

\ior_close:N 2164

\ior_if_eof:NTF 2138

\ior_map_break: 2160

\ior_open:Nn 2137

\ior_str_map_inline:Nn 2145
K

kernel internal commands:

__kernel_backend_align_begin:
............ 71, 71, 227, 251, 266
__kernel_backend_align_end: .
............ 71, 77, 241, 259, 273
__kernel_backend_first_shipout:n
....... 49, 53, 56, 58, 68, 598, 2844
\g__kernel_backend_header_bool ..

__kernel_backend_literal:n ..
...... 46, 46, 47, 48, 61, 64, 69,
73, 80, 83, 85, 169, 172, 174, 176,
180, 356, 369, 516, 522, 546, 551,
618, 754, 798, 950, 955, 961, 966,
1017, 1043, 1477, 1478, 1479, 1490
1497, 1503, 1568, 1573, 1786, 1972
2014, 2024, 2235, 2250, 2683, 2795
2799, 2804, 2809, 2846, 3176, 3223
__kernel_backend_literal_page:n
.................. 108, 108,
118, 171, 171, 2677, 2679, 2814, 2816
__kernel_backend_literal_pdf:n .
....... 88, 88, 98, 168, 168, 170,
282, 339, 1372, 1373, 3338, 3348, 3383
__kernel_backend_literal_ -
postscript:n 60,
60, 62, 74, 75, 79, 228, 229, 231,
232, 240, 252, 267, 1168, 2419, 2431
__kernel_backend_literal_svg:n .
. 179, 179, 181, 186, 197, 205, 215
383, 385, 402, 780, 1579, 1762, 1773
__kernel_backend_matrix:n
146, 146, 156, 304, 325, 1472, 1565
__kernel_backend_postscript:n ..
.............. 63, 63, 65, 518,
1020, 1022, 1024, 1028, 2272, 2323
2338, 2358, 2392, 2399, 2885, 2891,
2896, 2932, 2964, 2971, 2975, 2989
3017, 3060, 3067, 3074, 3081, 3277
__kernel_backend_scope:n
184, 213, 218, 412, 417, 1048,
1076, 1586, 1631, 1633, 1653, 1693

1715, 1727, 1729, 1731, 1733, 1735
1737, 1739, 1741, 1744, 1752, 3410
__kernel_backend_scope_begin:
82, 82, 128, 128, 173, 173, 184, 184,
226, 250, 265, 281, 298, 324, 338,
355, 368, 1378, 1563, 1581, 1585, 1760
__kernel_backend_scope_begin:n .
....... 184, 203, 212, 404, 432, 445
__kernel_backend_scope_end: ...
............. 82, 84, 128, 137,
173, 175, 184, 193, 243, 261, 275,
291, 318, 332, 348, 364, 376, 427,
441, 460, 1379, 1575, 1582, 1588, 1774
\g__kernel_backend_scope_int
182, 189, 191, 196, 200, 208, 210, 216
\1__kernel_backend_scope_int
.............. 182, 188, 201, 207
\g__kernel_clip_path_int
380, 1640, 1643, 1656, 1685, 1688, 1696
__kernel_color_backend_stack_-
init:Non 470, 470, 3320
__kernel_color_backend_stack_-
pop:m 484, 494, 542, 3352
__kernel_color_backend_stack_-
push:inn
484, 484, 539, 984, 996, 3341, 3386
__kernel_dependency_version_-

check:Nn 1
__kernel_dependency_version_-
check:nn 27, 29
__kernel_file_name_quote:n .
.................... 1903, 1929
L

lua commands:

\lua_load_module:n 1162

__opacity_backend_£fill_stroke:nn
3357, 3359, 3365, 3369, 3391, 3396
\1__opacity_backend_fill_tl
........... 3326, 3332, 3366, 3374
__opacity_backend_reset:
................ 3256, 3294,
3330, 3345, 3355, 3356, 3391, 3397
3398, 3399, 3403, 3411, 3412, 3413
__opacity_backend_reset_fill:
............ 3256, 3296, 3299,
3330, 3355, 3391, 3398, 3403, 3412
__opacity_backend_reset_stroke:
........... 3256, 3297, 3306,
3330, 3356, 3391, 3399, 3403, 3413
__opacity_backend_select:n ..
............ 3256, 3256, 3330,
3330, 3372, 3391, 3395, 3403, 3403
\c__opacity_backend_stack_int ...
........... 3315, 3341, 3352, 3386
__opacity_backend_stroke:n
3256, 3268, 3357, 3363, 3403, 3407
\1__opacity_backend_stroke_tl ...
........... 3326, 3333, 3361, 3375

P

pdf commands:

\pdf_object_if_exist:nTF 850, 916, 934
\pdf_object_new:n
........... 841, 852, 896, 918, 936
\pdf_object_ref:n
....... 798, 865, 929, 944, 962, 967
\pdf_object_ref_last:
.............. 818, 843, 846, 902
\pdf_object_unnamed_write:nn .
.............. 825, 872, 928, 943
\pdf_object_write:nnn
........... 842, 853, 897, 919, 937

\MessageBreak 40 Pdf internal commands:
mode commands: __pdf_backend:n

\mode_if_horizontal:TF ... 3038, 3045 2682, 2682, 2684, 2686, 2688, 2702
\mode_if _math:TF 2936 2707, 2716, 2736, 2768, 2769, 2779

__pdf_backend_annotation:nnnn 3240

msg commands:

\msg_error:nnn 556, 2139 __pdf_backend_annotation_last: 3241
\msg_new:nnn 558 __pdf_backend bdc:nn 2449, 2449,
2676, 2676, 2813, 2813, 2838, 2838
(@) __pdf_backend_catalog_gput:nn ..
\oddsidemargin 2960 . 2274, 2274,

2492, 2492, 2685, 2685, 2821, 2821
__pdf_backend_compress_objects:n
................ 2415, 2427,
2597, 2608, 2794, 2796, 2832, 2833
__pdf_backend_compresslevel:n ..
................ 2415, 2415,
2597, 2597, 2794, 2794, 2832, 2832

opacity internal commands:
__opacity_backend:nn
....... 3403, 3404, 3406, 3408, 3409
__opacity_backend:nnn 3256, 3258,
3259, 3263, 3270, 3275, 3301, 3308
__opacity_backend_fill:n
3256, 3261, 3357, 3357, 3403, 3405

108

__pdf_backend_destination:nn . ..
............... 2356, 2356,
2455, 2455, 2734, 2734, 2819, 2819

__pdf_backend_destination:nnnn .

2356, 2382,
2455, 2478, 2734, 2756, 2819, 2820

__pdf_backend_destination_-
QUXINNNN

2356, 2384, 2387, 2734, 2758, 2761

__pdf_backend_emc: . 2449, 2451,
2676, 2678, 2813, 2815, 2838, 2839

__pdf_backend_info_gput:nn .

2274, 2276,
2492, 2502, 2685, 2687, 2821, 2822

__pdf_backend_objcompresslevel:n

2597, 2611, 2612, 2614

__pdf_backend_object_id:n

2278, 2281,
2513, 2531, 2690, 2693, 2823, 2825

\g__pdf_backend_object_int

2279, 2346, 2348,
2353, 2522, 2691, 2724, 2726, 2731

__pdf_backend_object_last:
............... 2352, 2352,
2575, 2575, 2730, 2730, 2823, 2830

__pdf_backend_object_new:

2278, 2278,
2513, 2513, 2690, 2690, 2823, 2823

__pdf_backend_object_now:nn ..
2344, 2344, 2351, 2564, 2564, 2574,
2722, 2722, 2729, 2823, 2828, 2829

\g__pdf_backend_object_prop

.................... 2512, 2689
__pdf_backend_object_ref:n ..
2278, 2280, 2281, 2285, 2513, 2530,
2690, 2692, 2693, 2697, 2823, 2824
__pdf_backend_object_write:nn ..
2532, 2541, 2543, 2572, 2823
__pdf_backend_object_write:nnn .
2282, 2282, 2288, 2532, 2532, 2561,
2694, 2694, 2699, 2823, 2826, 2827
__pdf_backend_object_write_-
2282, 2306, 2694, 2700
__pdf_backend_object_write_-
aux:nnn 2282, 2284, 2289, 2347
__pdf_backend_object_write_-
dict:nn . 2282, 2311, 2694, 2705
__pdf_backend_object_write_-
fstream:nn 2282, 2316, 2694, 2710
__pdf_backend_object_write_-
2319, 2321
__pdf_backend_object_write_-
stream:nn .. 2282, 2331, 2694, 2712

array:nn

fstream:nnn

109

__pdf_backend_object_write_-
stream:nnn 2282, 2334, 2336
__pdf_backend_object_write_-
stream:nnnn . 2694, 2711, 2713, 2714
__pdf_backend_pageobject_ref:n .
2354, 2354,
2586, 2586, 2732, 2732, 2823, 2831
__pdf_backend_pagesize_gset:nn .
2842, 2842, 2861, 2861, 2868, 2868
__pdf_backend_pdfmark:n
2271, 2271, 2273, 2275, 2277, 2291,
2308, 2313, 2359, 2403, 2450, 2452
__pdf_backend_version_major: ...
2441, 2447, 2447, 2653, 2653,
2803, 2804, 2811, 2811, 2836, 2836
__pdf_backend_version_major_-
gset:n 2439, 2439
2625, 2625, 2801, 2801, 2834, 2834
__pdf_backend_version_minor: ...
2445, 2447, 2448, 2653, 2666,
2808, 2809, 2811, 2812, 2836, 2837
__pdf_backend_version_minor_-
gset:n 2439, 2443,
2625, 2642, 2801, 2806, 2834, 2835
__pdf_exp_not_i:nn
2532, 2551, 2556, 2562
__pdf_exp_not_ii:nn
2532, 2552, 2557, 2563

.baselineskip 3791
.bordertracking 3549
.bordertracking.begin 3549
.bordertracking.continue 3549
.bordertracking.end 3549
.bordertracking.endpage 3549
.breaklink 3687
.breaklink.write 3687
.brokenlink.dict 3549
.brokenlink.rect 3549
.brokenlink.skip 3549
count ... 3687
.currentrect 3687
CCVS e e 3471
.dest.anchor 3514
.dest.point 3514
dest.x ... 3514
dest.y . 3514
dest2device 3514
dev.X L 3514
dev.y ... 3514
dviopt Lo 3471
.globaldict 3468
.leftboundary 3549
.linkdp.pad 3475
.linkht.pad 3475

pdf.linkmargin 3475
pdf.11x 3478
pdf.1ly ... 3478
pdf.originx 3549
pdf.originy 3549
pdf.outerbox 3791
pdf.pdfmark 3791
pdf.pdfmark.dict 3791
pdf.pdfmark.good 3791
pdf.pt.dvi L 3471
pdf.rect 3478
pdf.rect.ht 3471
pdf .rightboundary 3549
pdf.save.linkll 3478
pdf.save.linkur 3478
pdf.save.11l 3478
pdf.save.ur 3478
pdf.tmpa 3514
pdf.tmpb L. 3514
pdf.tmpc L. 3514
pdf.tmpd 3514
pdf.urx ... L oL 3478
pdf.ury ... 3478
pdfannot internal commands:
__pdfannot_backend:n 3175, 3175,

3177, 3182, 3206, 3219, 3224, 3225
\1__pdfannot_backend_breaklink_-
pdfmark_tl 2913, 2981, 3072
__pdfannot_backend_breaklink_-
postscript:n
....... 2915, 2915, 2965, 2967, 3073
__pdfannot_backend_breaklink_-
usebox:N 2916, 2916, 2966, 3075
\1__pdfannot_backend_content_box
2874,
2939, 2963, 2966, 2968, 2997, 3008
__pdfannot_backend_generic:nnnn
2877, 2877, 3090,
3090, 3179, 3179, 3228, 3228, 3240
__pdfannot_backend_generic_-
aux:nnnn 2877, 2879, 2882
\g__pdfannot_backend_int
2876, 2895, 2899, 2907, 2973, 2974,
3178, 3181, 3184, 3192, 3203, 3205
__pdfannot_backend_last:
2906, 2906, 3103,
3103, 3191, 3191, 3229, 3229, 3241
__pdfannot_backend_link:nw 2917
__pdfannot_backend_link_aux:nw 2917
__pdfannot_backend_link_begin:n
3194, 3196, 3200, 3201
__pdfannot_backend_link_-
begin:nnnw
3114, 3115, 3117, 3118, 3230, 3232

110

__pdfannot_backend_link_-
begin:nw 2919, 2923, 2924
__pdfannot_backend_link_begin_-
.............. 2927, 2929
__pdfannot_backend_link_begin_-
goto:nnw 2917, 2917,
3114, 3114, 3194, 3194, 3230, 3230
__pdfannot_backend_link_begin_-
user :nnw 2917, 2922,
3114, 3116, 3194, 3199, 3230, 3231
\g__pdfannot_backend_link_bool ..
....... 2912, 2926, 2931, 2946, 2984
\g__pdfannot_backend_link_dict_-
2909, 2934, 2979
__pdfannot_backend_link_end: ...
2917, 2944,
3114, 3129, 3194, 3218, 3230, 3233
__pdfannot_backend_link_end_-
aux: 2917, 2947, 2949
\g__pdfannot_backend_link_int ...
................ 2908, 2974,
2978, 3078, 3193, 3204, 3210, 3221
__pdfannot_backend_link_last:
3077, 3077,
3138, 3138, 3220, 3220, 3234, 3234
__pdfannot_backend_link_-
margin:n 3079, 3079,
3149, 3149, 3222, 3222, 3235, 3235
\g__pdfannot_backend_link_math_-
bool ... 2911, 2937, 2938, 2941, 2951
__pdfannot_backend_link_minima:
............... 2917, 2955, 2986
__pdfannot_backend_link_off: ...
3086, 3087,
3159, 3166, 3224, 3225, 3236, 3237
__pdfannot_backend_link_on: .
3086, 3086,
3159, 3159, 3224, 3224, 3236, 3236
__pdfannot_backend_link_-
outerbox:n 2917, 2957, 3015
\g__pdfannot_backend_link_sf_int
2910, 3036, 3047, 3048
__pdfannot_backend_link_sf_-
restore: 2917, 2940, 2983, 3043
__pdfannot_backend_link_sf_-
save: 2917, 2935, 2953, 3034
\1__pdfannot_backend_model_box ..
2875
2956, 2988, 2996, 3007, 3022, 3024

aux:nw

pdfmanagement commands:

\pdfmanagement_add:nnn

815, 3323, 3334, 3376, 3379

\pdfmanagement_if_active_p: R
810, 811, 3316, 3317, 3392, 3393

peek commands:
\peek_meaning:NTF
\peek_remove_spaces:n

prg commands:
\prg_replicate:nn

2180, 2183
2178

195, 646, 667, 677, 878

prop commands:

\prop_gput:Nnn 604, 845
\prop_if_in:NnTF 581
\prop_item:Nn 584
\prop_new:N 562, 2512, 2689
\ProvidesExplFile 2
Q
quark commands:
\quark_if_recursion_tail_stop:n 580
\gq_recursion_stop 573
\q_recursion_tail 572
S
scan commands:
\scan_stop: 131, 140,

502, 2208, 2211, 2476, 2490, 2606,
2623, 2631, 2638, 2651, 3132, 3157
scan internal commands:
\s__color_stop
657, 658, 662, 666, 679, 682
686, 690, 704, 879, 908, 912, 1062, 1064
\s__graphics_stop
1844, 1881, 2173, 2188,
2195, 2199, 2201, 2203, 2255, 2263

separation 3465

seq commands:
\seq_set_from_clist:Nn
1781, 1799, 1947, 2131

shipout commands:
\1_shipout_box

skip commands:
\skip_horizontal:n

str commands:
\c_hash_str
\c_percent_str
\str_case:nn
\str_case:nnTF
\str_convert_pdfname:n
\str_if_empty:NTF
\str_if_empty_p:N
\str_if_eq:nnTF

..... 3056, 3058, 3066
244, 292, 349

415, 1649, 1656, 1696
1082, 1083, 1084
884, 2295, 2545
2363, 2464, 2741
605, 625, 834
1814, 1831
1857
554, 784, 1475, 3371
1892, 1893, 1894

\str_new:N

\str_tail:N 1906, 1932
sys commands:

\sys_if_shell:TF 1890

\sys_shell now:n 1917

T
TEX and ETEX 2 commands:
\@ifl@tOr 49, 51
\special 2
tex commands:
\tex_afterassignment:D 2207
\tex_baselineskip:D 3028
\tex_endinput:D 44

\tex_global:D
2599, 2616, 2630, 2637, 2644
\tex_immediate:D
1851, 2535, 2538, 2567, 2570

\tex_luatexversion:D 2628, 2656
\tex_pageheight:D 2864
\tex_pagewidth:D 2863
\tex_pdfannot:D 3096
\tex_pdfcatalog:D 2498
\tex_pdfcolorstack:D 490, 500
\tex_pdfcolorstackinit:D 478
\tex_pdfcompresslevel:D 2604
\tex_pdfdest:D 2461, 2484
\tex_pdfendlink:D 3135
\tex_pdfextension:D 91, 101, 111,

121, 131, 140, 149, 159, 487, 497,

2458, 2481, 2495, 2505, 2516, 2535
2567, 3093, 3121, 3132, 3161, 3168
\tex_pdffeedback:D
475, 2524, 2579, 2590, 3107, 3142

\tex_pdfinfo:D 2508
\tex_pdflastannot:D 3110
\tex_pdflastlink:D 3145
\tex_pdflastobj:D 2527, 2582
\tex_pdflastximage:D 1846, 1877
\tex_pdflastximagepages:D 1943
\tex_pdflinkmargin:D 3155

\tex_pdfliteral:D ... 94, 104, 114, 124
\tex_pdfmajorversion:D
2635, 2637, 2661, 2662

\tex_pdfminorversion:D ... 2649, 2673
\tex_pdfobj:D 2519, 2538, 2570
\tex_pdfobjcompresslevel:D 2621
\tex_pdfpageref:D 2593
\tex_pdfrefximage:D 1877, 1884
\tex_pdfrestore:D 143
\tex_pdfrunninglinkoff:D 3171
\tex_pdfrunninglinkon:D 3164
\tex_pdfsave:D 134
\tex_pdfsetmatrix:D 152, 162
\tex_pdfstartlink:D 3124
\tex_pdfvariable:D 2601,

2618, 2630, 2646, 2657, 2670, 3152

\tex_pdfximage:D 1851, 1941
\tex_spacefactor:D 3039, 3048
\tex_special:D 46

\tex_the:D 1846, 2657, 2662, 2668 \tl_new:N . ..o 525,

\tex_vss:D 2393, 2400, 2771, 2790 526, 1629, 1801, 2909, 2913, 3326, 3327
\tex_XeTeXpdffile:D 2076 \tl_set:Nn . 527, 528, 537, 538, 983,
\tex_XeTeXpdfpagecount:D 2125 995, 1808, 1826, 1920, 2914, 3072,
\tex_XeTeXpicfile:D 2067 3328, 3329, 3332, 3333, 3374, 3375
TeXcolorseparation 3465 \tl_to_str:n 2172, 2194
\textwidth 3023 \tl_use:N 745, 858
tl commands: token commands:
\c_space_tl \c_math_toggle_token 2942 2952
306, 311, 314, 567, 572, 610,
713, 787, 997, 1625, 1788, 1789, U
1790, 1791, 1974, 1975, 1976, 1977, use commands:
2029, 2032, 2034, 2035, 2036, 2037, \use:N 43, 2304, 2696, 2725
2102, 2237, 2238, 2239, 2240, 2584, \use:n 58, 813, 839,
2595, 2979, 3112, 3147, 3184, 3211 894, 1053, 1066, 1310, 1442, 1520,
\tl_clear:N 1806, 1823, 1532, 1544, 1704, 2096, 2169, 2191
1955, 1963, 2066, 2074, 2217, 2224 \use_none:n 1721
\tl_gclear:N 1663, 1699 \use_none:nnn 3051
\tl_gset:Nn 1622, 2934
\tl_if_blank:nTF 480, 565, \%
661, 678, 685, 703, 829, 911, 2101, 2176 \value 2959
\tl_if_empty:NTF . 1625, 1810, 1862, vbox commands:
1873, 1999, 2003, 2030, 2048, 2089 \vbox_set:Nn 3058
\tl_if_empty:nTF 923, 1719 \vbox_to_zero:n 2389, 2396, 2763, 2774
\tl_if_empty_p:N 1856, 2044 \vbox_unpack_drop:N 3066

112

	I Implementation
	1 l3backend-basics implementation
	1.1 dvips backend
	1.2 LuaTeX and pdfTeX backends
	1.3 dvipdfmx backend
	1.4 dvisvgm backend

	2 l3backend-box implementation
	2.1 dvips backend
	2.2 LuaTeX and pdfTeX backends
	2.3 dvipdfmx/XeTeX backend
	2.4 dvisvgm backend

	3 l3backend-color implementation
	3.1 The color stack
	3.1.1 Common code
	3.1.2 LuaTeXand pdfTeX

	3.2 General color
	3.2.1 dvips-style
	3.2.2 LuaTeX and pdfTeX
	3.2.3 dvipmdfx/XeTeX

	3.3 Separations
	3.4 Fill and stroke color
	3.5 Font handling integration

	4 l3backend-draw implementation
	4.1 dvips backend
	4.2 LuaTeX, pdfTeX, dvipdfmx and XeTeX
	4.2.1 Drawing

	4.3 dvisvgm backend

	5 l3backend-graphics implementation
	5.1 dvips backend
	5.2 LuaTeX and pdfTeX backends
	5.3 dvipdfmx backend
	5.4 XeTeX backend
	5.5 dvisvgm backend

	6 l3backend-pdf implementation
	6.1 dvips backend
	6.1.1 Catalogue entries
	6.1.2 Objects
	6.1.3 Destinations
	6.1.4 Structure
	6.1.5 Marked content

	6.2 LuaTeX and pdfTeX backend
	6.2.1 Destinations
	6.2.2 Catalogue entries
	6.2.3 Objects
	6.2.4 Structure
	6.2.5 Marked content

	6.3 dvipdfmx backend
	6.3.1 Catalogue entries
	6.3.2 Objects
	6.3.3 Destinations
	6.3.4 Structure
	6.3.5 Marked content

	6.4 dvisvgm backend
	6.4.1 Destinations
	6.4.2 Catalogue entries
	6.4.3 Objects
	6.4.4 Structure

	6.5 PDF Page size (media box)

	7 l3backend-pdfannot implementation
	7.1 dvips backend
	7.2 LuaTeX and pdfTeX backend
	7.3 dvipdfmx backend
	7.4 dvisvgm backend
	7.5 Transitional code

	8 l3backend-opacity implementation
	8.1 Font handling integration

	9 l3backend-header implementation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	S
	T
	U
	V

