ltx-talk — A class for typesetting presentations*

Joseph Wright!
Released 2026-02-18

Contents

I Itx-talk — Overall set up

1 Itx-talk implementation
1.1 Setup o o e
1.2 Additions for expl3
1.3 Extra variants L e
1.4 Scratch space
1.5 Option handling L
1.6 Setting up e
1.7 Math support
1.8 Font selection
1.9 Text scripts o o L e
1.10 Hyperlinks oo o
1.11 Tagging o o o o e e

IT Itx-talk-color — Color definitions

1 Itx-talk-color implementation
1.1 Existing definitions L e
1.2 Document (and interface) commands
1.3 Color definition
1.4 Semantic colors

IIT Itx-talk-decode — Decoding overlay specs

1 Itx-talk-decode implementation

IV ltx-talk-frame — The structure of frames

*This file describes v0.4.6, last revised 2026-02-18.
TE-mail: josephQtexdev.net

—

N O OO U W W ==

mailto:joseph@texdev.net

\%

1

VI

VII

1

IX

Itx-talk-frame implementation

1.1 Slides in frames e
1.2 Counters i i e e e e e
1.3 Frameoptions e
1.4 Tagging for headers oo .
1.5 Wallpaper o
1.6 The frame environment Lo

Itx-talk-frame — The structure of frames
Itx-talk-frame-structure implementation

1.1 Columns
1.2 Floats
1.3 Footnotes o

Itx-talk-mode — Modes

ltx-talk-mode implementation

Itx-talk-overlay — Overlays

Itx-talk-overlay implementation

1.1 Utilities e e e e e
1.2 Opacity utilities o
1.3 Action commands and environments
1.4 Non-action commands and environments
1.5 Fixed-size areas e e e
1.6 Adding overlays to existing commands

VIII Itx-talk-required — “Required” definitions

ltx-talk-required implementation

1.1 Standard design settings Lo
1.2 List support e e
Itx-talk-structure — Structural commands

Itx-talk-structure implementation

1.1 Frame title e
1.2 Sectioning
1.3 Tableof contents
1.4 Block environments L. o L e
1.5 Lists o o e e
1.6 Theorems, efc. e

ii

30

30
30
33
34

36

36

37

37
37
38
38
42
43
45

48
48

48
49

X ltx-talk-title — Title pages

1 Itx-talk-title implementation

Index

iii

61

61

65

Part I
Itx-talk — Overall set up

1 Itx-talk implementation

Start the DocStrip guards.
1 (*class)
Identify the internal prefix.
. (e@=talk)

1.1 Set up

Identify the package and give the over all version information.

s \ProvidesExplClass {ltx-talk} {2026-02-18} {0.4.6%}
« {A class for typesetting presentations}

Get the right type of message.

s \prop_gput:Nnn \g_msg_module_name_prop { talk } { ltx-talk }
¢ \prop_gput:Nnn \g_msg_module_type_prop { talk } { Class }

Require the latest IATEX structures.

7 \IfFormatAtLeastF { 2025-11-01 }

s {

9 \msg_new:nnnn { ltx-talk } { kernel-too-old }

10 { The~ltx-talk~class~requires~LaTeX~2025-11-0O1~or~later. }

11 {

12 You~have~tried~to~use~the~1ltx-talk~class~with~a~LaTeX~kernel~release~
13 prior~to~2025-11-01;~the~required~functionality~is~missing.

14 }

15 \msg_fatal:nn { ltx-talk } { kernel-too-old }

6}

17 \NeedsDocumentMetadata
Warn if not an engine that is tested.

1z \bool_lazy_or:nnF

19 { \sys_if_engine_luatex_p: }

0 { \sys_if_engine_pdftex_p: }

21 {

2 \msg_new:nnn { ltx-talk } { unsupported-engine }
23 {

24 The~engine~"\c_sys_engine_str"~

25 is~not~supported~by~the~ltx-talk~class.

26 }

27 \msg_warning:nn { ltx-talk } { unsupported-engine }
28 }

1.2 Additions for expl3

Like \vcoffin_set:Nnn, so should be an easy enough addition.

20 \cs_gset_protected:Npn \vbox_set_to_wd:Nnn #1#2#3

30 {

31 \tex_setbox:D #1 \tex_vbox:D

32 {

33 \tex_hsize:D __box_dim_eval:n {#2}

34 \color_group_begin: #3 \par \color_group_end:
35 T

36 \box_dp:N #1 __box_dim_eval:n {#2}

7}

56 \cs_gset_protected:Npn \vbox_set_to_wd:Nnw #1#2
39 {

40 \cs_set_protected:Npn __box_set_to_wd:

a1 { \box_wd:N #1 __box_dim_eval:n {#2} }
" \tex_setbox:D #1 \tex_vbox:D

43 \c_group_begin_token

44 \tex_hsize:D __box_dim_eval:n {#2}

45 \group_insert_after:N __box_set_to_wd:
46 \color_group_begin:

47 }

Some things from xbox that would be useful.

25 \cs_gset_protected:Npn \rule:nnn #1#2#3

49 {

50 \tex_vrule:D

51 height \dim_eval:n {#2} \exp_stop_f:
52 depth \dim_eval:n {#3} \exp_stop_f:
53 width \dim_eval:n {#1} \exp_stop_f:
54 \scan_stop:

55 }

Some extensions are needed to opacity support: this should only be here for a short
period.

56 \cs_gset_protected:Npn \opacity_begin:n #1

s7 { __opacity_select:nN {#1} __opacity_backend_begin:n }
53 \cs_gset_protected:Npn \opacity_end:

5o { __opacity_backend_end: }

e \AddToHook { begindocument }

61 {

62 \cs_gset_protected:Npe __opacity_backend_begin:n #1
63 {

64 \bool_lazy_any:nTF

65 {

66 { \sys_if_engine_pdftex_p: }
67 { \sys_if_engine_luatex_p: }
68 { \sys_if_engine_xetex_p: }

69 }

70 {

71 \tl_set:Nn \exp_not:N \1__opacity_backend_fill_tl {#1}
72 \tl_set:Nn \exp_not:N \1__opacity_backend_stroke_tl {#1}
73 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
74 { opacity #1 }

75 { << /ca ~ #1 /CA ~ #1 >> }

76 \sys_if_engine_xetex:TF
77 { __kernel_backend_literal_pdf:n }

78 {

79 __kernel_color_backend_stack_push:nn
80 \exp_not:N \c__opacity_backend_stack_int
81 }

82 { /opacity #1 ~ gs }

83 }

84 {

85 __opacity_backend:nnn {#1} { fill } { ca }
86 __opacity_backend:nnn {#1} { stroke } { ca }
87 }

88 }

89 \cs_gset_protected:Npe __opacity_backend_end:

90 {

01 \bool_lazy_any:nTF

92 {

93 { \sys_if_engine_pdftex_p: }

94 { \sys_if_engine_luatex_p: }

95 { \sys_if_engine_xetex_p: }

96 }

97 { __opacity_backend_reset: }

98 {

99 __opacity_backend_reset_fill:

100 __opacity_backend_reset_stroke:

101 }

102 }

103 }

1.3 Extra variants

104 \cs_generate_variant:Nn \clist_set:Nn { cv }

105 \cs_generate_variant:Nn \hook_gput_code:nnn { nne }
106 \exp_args_generate:n { nVv }

7 \cs_generate_variant:Nn \color_select:n { V }

s \cs_generate_variant:Nn \dim_compare:nNnTF { v }

109 \cs_generate_variant:Nn \dim_compare_p:nNn { vNv }
110 \cs_generate_variant:Nn \dim_max:nn { v }

111 \cs_generate_variant:Nn \str_replace_all:Nnn { NnV }
112 \cs_generate_variant:Nn \text_purify:n { v }

113 \cs_generate_variant:Nn \vbox_to_ht:nn { v }

1.4 Scratch space

__talk_tmp:w For one-off processing.
112 \cs_new_protected:Npn __talk_tmp:w { }

(End of definition for __talk_tmp:w.)

\1__talk_tmp_box
115 \box_new:N \1__talk_tmp_box

(End of definition for \1__talk_tmp_box.)

\1__ta1k_tmp_t1
116 \tl_new:N \1__talk_tmp_tl

(End of definition for \1__talk_tmp_t1.)

1.5 Option handling

\1__talk_aspect_ratio_str
\1__talk_fontsize dim ;; \keys_define:nn { talk }

\1__talk_frame_title_bool {
\1__talk_mode_str 1w aspect-ratio .str_set:N =

120 \1__talk_aspect_ratio_str ,
121 font-size .dim_set:N =
122 \1__talk_fontsize_dim ,
123 frame-title-arg .bool_set:N =
124 \1__talk_frame_title_bool ,
125 handout .code:n =
126 { \str_set:Nn \1__talk_mode_str { handout } } ,
127 handout .value_forbidden:n = true ,
128 mode .choices:nn =
129 { handout , projector }
130 { \str_set:NV \1__talk_mode_str \1_keys_choice_tl }
131 }

(End of definition for \1__talk_aspect_ratio_str and others.)
Scope for options.

132 \keys_define:nn { talk }

133 {

134 aspect-ratio .usage:n = load ,
135 font-size .usage:n = load ,
136 frame-title-arg .usage:n = load ,
137 mode .usage:n = load
138 }

Compatibility keys for classical font size setting.
130 \clist_map_inline:nn { 10pt , 11lpt , 12pt }

o {

141 \keys_define:nn { talk }

142 {

143 #1 .meta:n = { font-size = #1 } ,
144 #1 .value_forbidden:n = true ,

145 #1. usage:n = load

146 ¥

147 }

Initial values.
s \keys_set:nn { talk }

149 {

150 aspect-ratio = 16:9 s
151 font-size = 1ipt s
152 frame-title-arg = false ,
153 mode = projector
154 }

155 \ProcessKeyOptions [talk]

1.6 Setting up

Load the font size setup if available, otherwise fall back on scaling.

156 \file_if_exist_input:nF { size \dim_to_decimal:n \1__talk_fontsize_dim .clo }

157 {

158 \file_input:n { sizel0.clo }

150 \RequirePackage { relsize }

160 \hook_gput_code:nne { begindocument } { talk }

161 { \exp_not:N \relsize { \fp_eval:n { \1__talk_fontsize_dim / 10pt } } }
162 }

\c__talk_paper_height_dim As geometry is being used to set the paper size with no previous value, we have to use
\c__talk_paper_width_dim the optional argument rather than waiting to apply \geometry.

163 \dim_const:Nn \c__talk_paper_height_dim { 100mm }

164 \use:e

165 {

166 \cs_set_protected:Npn \exp_not:N __talk_tmp:w

167 #1 \tl_to_str:n { : } #2 \tl_to_str:n { : } #3 \exp_not:N \g_stop
168 {

169 \dim_const:Nn \exp_not:N \c__talk_paper_width_dim
170 {

171 \exp_not:N \fp_to_dim:n

172 { (#1 / #2) * \exp_not:N \c__talk_paper_height_dim }
173 }

174 T

175 \exp_not:N __talk_tmp:w \1__talk_aspect_ratio_str
176 \tl_to_str:n { : } 100 \exp_not:N \g_stop

177 }

178 \use:e

179 {

180 \exp_not:N \RequirePackage

181 [

182 papersize =

183 {

184 \dim_use:N \c__talk_paper_width_dim |,

185 \dim_use:N \c__talk_paper_height_dim

186 } o,

187 tmargin = 10mm ,

188 bmargin = 8mm ,

189 Imargin = 10mm ,

190 rmargin = 10mm ,

101 headheight = 10mm ,

192 headsep = 2mm ,

193 footskip = 6mm

194 1

195 { geometry }

196 }

(End of definition for \c__talk_paper_height_dim and \c__talk_paper_width_dim.)
Turn off justification

107 \raggedright

\textsubscript@offset
\textsubscript@space
\textsuperscript@offset
\textsuperscript@space

1.7 Math support

We always require amsmath: this is forced anyway by unicode-math for LuaTX.
s \RequirePackage { amsmath }

1.8 Font selection

The aim here is to minimize change from the standard font setup but at the same time
provide a sans-serif default. Since beamer was released, better sans-serif math mode fonts
have become available. For OpenType engines,requiring (lua-)unicode-math is the most
sensible approach; we also load mathtools as that has to be before unicode-math. The
New Computer Modern font provides a reasonable initial set of glyphs. It comes with
a wrapper package, but that does various other things: if the user wants these, they
can choose to load themselves. For 8-bit engines, switching the text font to be sans-serif
is easy. For math mode, the sansmathfonts package does a good job: here, using the
package rather than adjusting directly is the sensible option.

100 \sys_if_engine_opentype:TF

200 {

201 \RequirePackage { fontspec }

202 \RequirePackage { mathtools }

203 \sys_if_engine_luatex:TF

204 {

205 \RequirePackage { lua-unicode-math }
206 \tagpdfsetup { math / mathml / luamml / load = true }
207 }

208 { \RequirePackage { unicode-math } }

209 \setmainfont { NewCMSans10-Regular.otf }
210 \setsansfont { NewCMSans10-Regular.otf }
211 \setmathfont { NewCMSansMath-Regular.otf }
212 }

213 {

214 \RequirePackage { sansmathfonts }

215 \RequirePackage [nomath] { lmodern }

216 \cs_set_eq:NN \rmdefault \sfdefault

217 }

1.9 Text scripts

Newer kernel releases allow us to use real text sub- and superscripts: we set up the
appropriate data here.

Offset values as in ConTEXt, no additional spacing added after script items.

215 \cs_set_nopar:Npn \textsubscript@offset { 0.48ex }
219 \cs_set_nopar:Npn \textsubscript@space { }

220 \cs_set_nopar:Npn \textsuperscript@offset { 0.86ex }
»1 \cs_set_nopar:Npn \textsuperscript@space { }

N

(End of definition for \textsubscript@offset and others. These functions are documented on page
?7.)

1.10 Hyperlinks

\thepage We define \thepage here: this is checked for by hyperref so has to come early.
2> \cs_new:Npn \thepage { \@arabic \c@page }
(End of definition for \thepage. This variable is documented on page 77.)
A requirement.

225 \RequirePackage { hyperref }
24 \hypersetup { hidelinks }
1.11 Tagging

We need to extend the standard tagging model to work with slides and so on.
25 \tagpdfsetup

226 {

227 role / user-NS = 1ltx-talk s
208 role / new-tag = frame / Sect s
229 role / new-tag = frametitle / H4
230 }

251 (/class)

Part 11
Itx-talk-color — Color definitions

1 Itx-talk-color implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (00=talk)

The aim here is to test how well 13color can support the range of color functions that
are needed for a presentation. As such, this is very much experimental, but deliberately
so. In particular, there is an important question about the need for global colors: used
throughout beamer but otherwise not widely encountered. At the same time, there is a
need to work with packages that expect color to be managed in a predictable way: pgf
in particular makes use of xcolor internal as part of color management.
Currently, colors defined using xcolor will be passed on to [3color provided \DocumentMetadata
is active. As that is a requirement in any case for ltx-talk, some of the setup is relatively
easy to do.

1.1 Existing definitions
5 \RequirePackage { xcolor }

\stdcolor Save the document commands.

\stdmathcolor , \NewCommandCopy \stdcolor \color
\stdtextcolor 5 \NewCommandCopy \stdmathcolor \mathcolor
s \NewCommandCopy \stdtextcolor \textcolor

(End of definition for \stdcolor, \stdmathcolor, and \stdtextcolor. These functions are documented
on page 77.)

1.2 Document (and interface) commands

7 \cs_generate_variant:Nn \color_select:n { e }

¢ \cs_generate_variant:Nn \color_select:nn { ne }
o \cs_generate_variant:Nn \color_math:nn { e }

10 \cs_generate_variant:Nn \color_math:nnn { ne }

\color Add the overlay specification and use I3color.

\mathcolor 11 \RenewDocumentCommand \color { D <> { all } om }
\textcolor 1 {

__talk_if_overlay:nT {#1}

14 {

15 \IfNoValueTF {#2}

16 { \color_select:e {#3} }

17 { \color_select:ne {#2} {#3} }

18 }

19 \ignorespaces

20 }

1 \RenewDocumentCommand \mathcolor { D <> { all } om +m }

22 {

23 __talk_if_overlay:nT {#1}

24 {

25 \IfNoValueTF {#2}

2 { \color_math:en {#3} {#4} }

27 { \color_math:nen {#2} {#3} {#4} }
28 }

0}

30 \RenewDocumentCommand \textcolor { D <> { all } om +m }
ETR |

32 __talk_if_overlay:nT {#1}

33 {

34 \mode_leave_vertical:

35 \group_begin:

36 \IfNoValueTF {#2}

37 { \color_select:e {#3} }

38 { \color_select:ne {#2} {#3} }

39 #4

40 \group_end:

41 }

42 }

(End of definition for \color, \mathcolor, and \textcolor. These functions are documented on page
?7.)

\pagecolor Here, the definition is different: we directly use the shipout hook.
__talk _pagecolor:n , \RenewDocumentCommand \pagecolor { D <> { all } o m }

44 {

a5 __talk_if_overlay:nT {#1}

46 {

47 \IfNoValueTF {#2}

a8 { __talk_pagecolor:n { {#3} } }

49 { __talk_pagecolor:n { [{#2} 1 {#3} } }
50 }

51 }

52 \cs_new_protected:Npn __talk_pagecolor:n #1

53 {

54 \AddToHook { shipout / background }

55 {

56 \color #1

57 \put (Ocm, -\paperheight)

58 { \rule { \paperwidth } { \paperheight } }
59 }

60 }

(End of definition for \pagecolor and __talk_pagecolor:n. This function is documented on page 77.)

\stdset@color

\stdreset@color , \cs_set_eq:NN \stdset@color \set@color
o> \cs_set_eq:NN \stdreset@color \reset@color

(End of definition for \stdset@color and \stdreset@color. These functions are documented on page
27.)
\set@color Part of code-level interface for color: simply use the expl3 version of the same idea.

\reset@color ; \cs_set_eq:NN \set@color \color_ensure_current:
6+ \cs_set_eq:NN \reset@color __color_backend_reset:

(End of definition for \set@color and \reset@color. These functions are documented on page 77.)

1.3 Color definition

\DeclareColor Provide a single interface here: as the data will be passed to 13color in any case, there is
not too much to do.

s \NewDocumentCommand \DeclareColor { m o m }

66 {

67 \IfNoValueTF {#2}

68 { \colorlet {#1} {#3} }

69 { \definecolor {#1} {#2} {#3} }
70 }

(End of definition for \DeclareColor. This function is documented on page 77?.)

1.4 Semantic colors

Pick up the standard colors from beamer.

71 \DeclareColor { alert } [RGB] { 200, 0, O }
> \DeclareColor { example } { green!50!black }
73 \DeclareColor { structure } [rgb] { 0.2, 0.2, 0.7 }

4+ (/class)

~

10

\1__talk_decode_overlays_bool

\g__talk_pauses_int
\c@pauses
\thepauses

\1__talk_decode_pure_bool

\1__talk_decode_step_bool

\1__talk_decode_arg_str

\l__talk_decode_overlays clist
\1__talk_decode_overlays_str

\1__talk_decode_action_str

Part II1
Itx-talk-decode — Decoding overlay
specs

1 Itx-talk-decode implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (ee=talk)

The result from decoding: are we on the current slide. This may well be better handled
by moving to a TF signature: to be explored.

s \bool_new:N \1__talk_decode_overlays_bool

(End of definition for \1__talk_decode_overlays_bool.)

The automatically-incremented value for the relative overlay value.

4 \int_new:N \g__talk_pauses_int
s \cs_new_eq:NN \c@pauses \g__talk_pauses_int
6 \cs_new:Npn \thepauses { \Qarabic \g__talk_pauses_int }

(End of definition for \g__talk_pauses_int, \c@pauses, and \thepauses. These variables are docu-
mented on page 77.)

Tracks whether only mode specifications were given.
7 \bool_new:N \1__talk_decode_pure_bool

(End of definition for \1__talk_decode_pure_bool.)

Tracks whether to step \g__talk_pauses_int.
¢ \bool_new:N \1__talk_decode_step_bool

(End of definition for \1__talk_decode_step_bool.)

For error usage.

o \str_new:N \1__talk_decode_arg_str

(End of definition for \1__talk_decode_arg_str.)

The decoded overlay specification: will have only absolute slide numbers present, poten-
tially along with ranges.

10 \clist_new:N \1__talk_decode_overlays_clist
11 \str_new:N \1__talk_decode_overlays_str

(End of definition for \1__talk_decode_overlays_clist and \1__talk_decode_overlays_str.)

The action which is active, if any.

12 \str_new:N \1__talk_decode_action_str

(End of definition for \1__talk_decode_action_str.)

11

\1__talk_decode_actions_bool For the actions versions of overlay tracking.
\l__talk decode actions clist |, \bool _new:N \1__talk_decode actions_bool
\1__talk_decode_actions_str 1. \clist_new:N \1__talk_decode_actions_clist
15 \str_new:N \1__talk_decode_actions_str

(End of definition for \1__talk_decode_actions_bool, \1__talk_decode_actions_clist, and \1__-
talk_decode_actions_str.)

__talk_decode_parse:n First a simple check for an entirely blank argument: if that’s the case, there is no addi-
tional overlay to consider. Then deal with any category code issues before looping over

blocks divided by | tokens.

16 \cs_new_protected:Npn __talk_decode_parse:n #1

17 { \exp_args:Ne __talk_decode_parse_auxi:n {#1} }
15 \cs_new_protected:Npn __talk_decode_parse_auxi:n #1

__talk_decode_parse_auxi:
__talk_decode_parse_auxii:

= B B B

__talk_decode_parse:

19 {

20 \str_clear:N \1__talk_decode_action_str

21 \bool_lazy_or:nnTF

2 { \tl_if_blank_p:n {#1} }

23 { \str_if_eq_p:nn {#1} { all } }

% { \bool_set_true:N \1__talk_decode_overlays_bool }
25 {

2% \str_set:Nn \1__talk_decode_arg_str {#1}

27 \bool_set_false:N \1__talk_decode_actions_bool
28 \bool_set_false:N \1__talk_decode_overlays_bool
29 \bool_set_true:N \1__talk_decode_pure_bool

30 \str_clear:N \1__talk_decode_overlays_str

31 \str_clear:N \1__talk_decode_actions_str

32 \exp_args:No __talk_decode_parse_auxii:n { \1__talk_decode_arg_str }
3 }

34 }

Stepping the value assigned to + is done in the outer loop, as within one overlay expression
it always takes the same value. If the amsmath \ifmeasuring@ flag is on, the overlay
counter is not advanced.

55 \cs_new_protected:Npn __talk_decode_parse_auxii:n #1

36 {

37 \bool_set_false:N \1__talk_decode_step_bool

38 __talk_decode_parse:w #1 | \g_recursion_tail | \gq_recursion_stop
39 \bool_if:NT \1__talk_decode_step_bool

40 {

41 \legacy_if:nF { measuring@ }

a2 { \int_gincr:N \g__talk_pauses_int }

43 }

44 ¥

The end-of-loop test here covers the case where the active mode is not mentioned at all
in the specification.

25 \cs_new_protected:Npn __talk_decode_parse:w #1 |

w6 {

a7 \quark_if_recursion_tail_stop_do:nn {#1}

48 {

49 \bool_lazy_and:nnT

50 { \str_if_empty_p:N \1__talk_decode_overlays_str }
51 { ! \1__talk_decode_pure_bool }

12

52 { \bool_set_true:N \1__talk_decode_overlays_bool }

53 }

54 \exp_args:Ne __talk_decode_mode:n
55 { \tl_trim_spaces:n {#1} }

56 __talk_decode_parse:w

57 }

(End of definition for __talk_decode_parse:n and others.)

\c__talk_modes_clist The possible modes: detokenized as that is applied up-front in decoding.

53 \clist_const:Ne \c__talk_modes_clist

59 {

60 \tl_to_str:n { handout } ,
61 \tl_to_str:n { projector }
62 ¥

(End of definition for \c__talk_modes_clist.)

__talk_decode_mode:n Check if the mode is known and current. If we find an action but have no overlay details,
__talk_decode_mode:w they are filled in with a *.

__talk_decode_mode_aux:n g \cs_new_protected:Npe __talk_decode_mode:n #1

64 {

65 \clist_if_in:NnTF \exp_not:N \c__talk_modes_clist {#1}
66 {

67 \exp_not:N \str_if_eq:VnT

68 \exp_not:N \1__talk_mode_str {#1}

69 { \bool_set_true:N \exp_not:N \1__talk_decode_overlays_bool }
70 }

71 {

72 \exp_not:N __talk_decode_mode:w #1 \tl_to_str:n { : : }
73 \exp_not:N \g_stop

74 }

75 }

7% \use:e

77 {

78 \cs_new_protected:Npe \exp_not:N __talk_decode_mode:w
79 #1 \token_to_str:N :

80 #2 \token_to_str:N :

81 #3 \exp_not:N \g_stop

2 }

83 {

84 \exp_not:N \tl_if_blank:nTF {#2}

85 {

86 \exp_not:N __talk_decode_mode:nn

87 { \tl_to_str:n { projector } } {#1}

89 { \exp_not:N __talk_decode_mode:nn {#1} {#2} }

90 ¥

o1 \cs_new_protected:Npn __talk_decode_mode:nn #1#2

R §

03 \str_if_eq:VnTF \1__talk_mode_str {#1}

94 {

95 __talk_decode_action:n {#2}

96 \str_if_empty:NT \1__talk_decode_overlays_str

13

__talk_decode_action:n
__talk_decode_action:w

__talk_decode_overlays:nn
__talk_decode_overlays:nN
\@_decode_overlay_+:nw
__talk_decode_overlay_.:nw
__talk decode overlay aux:nlN
__talk_decode_overlay_offset:nNnlN
__talk decode overlay offset:nlin

97 { __talk_decode_overlays:nn { overlays } { * } }
98 }

99 {

100 \tl_if_blank:nF {#2}

101 { \bool_set_false:N \1__talk_decode_pure_bool }
102 }

103 }

(End of definition for __talk_decode_mode:n, __talk_decode_mode:w, and __talk_decode_mode_-
aux:n.)

Here, we have two valid possibilities: no action specification at all, or from the known
list. If we don’t find one of those outcomes, we can issue an error.

104 \cs_new_protected:Npe __talk_decode_action:n #1

105 {

106 \exp_not:N __talk_decode_action:w

107 #1 \tl_to_str:n { @ @ } \exp_not:N \g_stop

108

109 \use e

110 {

111 \cs_new_protected:Npn \exp_not:N __talk_decode_action:w
112 #1 \tl_to_str:n { @ } #2 \tl_to_str:n { @ } #3 \exp_not:N \g_stop
113 }

114 {

115 \tl_if_blank:nTF {#2}

116 { __talk_decode_overlays:nn { overlays } {#1} }

117 {

118 \cs_if_exist:cTF { __talk_action_ #1 :N }

119 {

120 \bool_set_false:N \1__talk_decode_pure_bool

121 \str_set:Nn \1__talk_decode_action_str {#1}

1% \tl_if blank:nF {#2}

123 { __talk_decode_overlays:nn { actions } {#2} }
124 }

125 {

126 \msg_error:nnV { talk } { bad-action-spec }

127 \1__talk_decode_arg_str

128 }

129 ¥

130 }

(End of definition for __talk_decode_action:n and __talk_decode_action:w.)

The loop here needs to replace all + and . characters by the current automatic value,
allowing for any offsets. Stepping the value assigned here is done in the outer loop (see
above).

131 \cs_new_protected:Npn __talk_decode_overlays:nn #1#2

132 {

133 __talk_decode_overlays:nN {#1} #2 \g_recursion_tail \g_recursion_stop

134 __talk_decode_check:n {#1}

135 }

136 \cs_new_protected:Npn __talk_decode_overlays:nN #1#2
137 {

138 \quark_if_recursion_tail_stop:N #2

14

139 \cs_if_exist_use:cF { __talk_decode_overlay_ #2 :nw }

140 {

141 \str_put_right:cn { 1__talk_decode_ #1 _str } {#2}
142 __talk_decode_overlays:nN

143 }

144 {#1}

s}

146 \cs_new_protected:cpn { __talk_decode_overlay_+:nw } #1
147 {

148 \bool_set_true:N \1__talk_decode_step_bool

149 __talk_decode_overlay_aux:nNN {#1} 1

150 }

151 \cs_new_protected:cpn { __talk_decode_overlay_.:nw } #1

152 { __talk_decode_overlay_aux:nNN {#1} 0 }

The look-ahead for an offset to a relative specification. If the end-of-loop is reached,
the value still needs to be inserted: to share auxiliaries, that is done by using the same
function as elsewhere, so the end-of-loop markers are re-inserted. Otherwise, there is a
check to see if the next token is a (.

153 \cs_new_protected:Npn __talk_decode_overlay_aux:nNN #1#2#3
154 {

155 \quark_if_recursion_tail_stop_do:Nn #3

156 {

157 __talk_decode_overlay_offset:nNn {#1} #2 { 0 }

158 \q_recursion_tail \q_recursion_stop

159 }

160 \token_if_eq_meaning:NNTF #3 (%)

161 { __talk_decode_overlay_offset:nNnN {#1} #2 { } }

162 { __talk_decode_overlay_offset:nNn {#1} #2 { 0 } #3 }
163 }

For the end of an offset, any valid overlay specification must have a closing), so this time
the end-of-loop case is an error. Otherwise simply collect up tokens until the closing) is
found.

164 \cs_new_protected:Npn __talk_decode_overlay_offset:nNnN #1#2#3#4

165 {

166 \quark_if_recursion_tail_stop_do:Nn #4

167 {

168 \msg_error:nnV { talk } { bad-action-spec }
169 \1__talk_decode_arg_str

170 } % (

171 \token_if_eq_meaning:NNTF #4)

172 { __talk_decode_overlay_offset:nNn {#1} #2 {#3} }

173 { __talk_decode_overlay_offset:nNnN {#1} #2 {#3#4} }
174 }

Overlay values can never be negative: this is enforced here.

175 \cs_new_protected:Npn __talk_decode_overlay_offset:nNn #1#2#3
176 {

177 \str_put_right:ce { 1__talk_decode_ #1 _str }

178 { \int_max:nn { 0 } { #3 + \g__talk_pauses_int + #2 } }
179 __talk_decode_overlays:nN {#1}

180 }

(End of definition for __talk_decode_overlays:nn and others. This function is documented on page
?7.)

15

__talk_decode_check:n
__talk_decode_check:nw
__talk decode_check single:mn

__talk_decode_check_range:nmn

At this stage we have a fully “written out” overlay specification, and need to work out if
the current slide is included. We need to look at each entry in the comma-separated list
to sort this out. First we filter out the case of a *, then it’s a question of working out
whether each entry is a single number or a range, and if the latter, whether it’s open at
either the start or the end.

151 \cs_new_protected:Npn __talk_decode_check:n #1

182 {

183 \clist_set:cv { 1__talk_decode_ #1 _clist } { 1__talk_decode_ #1 _str }

184 \clist_if_in:cnTF { 1__talk_decode_ #1 _clist } { * }

185 { \bool_set_true:c { 1__talk_decode_ #1 _bool } }

186 {

187 \clist_map_inline:cn { 1__talk_decode_ #1 _clist }

188 { __talk_decode_check:nw {#1} O ##1 - - \q_stop }

189 }

190 }

If #4 is empty, both of the “filler” - tokens were consumed: we have a single value.

Otherwise there is a range: the setup above ensures that there will be a starting value in
all cases due to the leading 0, but there may not be an end one.

101 \cs_new_protected:Npn __talk_decode_check:nw #1#2 - #3 - #4 \qg_stop
192 {

103 \tl_if_empty:nTF {#4}

104 { __talk_decode_check_single:nn {#1} {#2} }

195 {

196 \tl_if_blank:nTF {#3}

107 { __talk_decode_check_range:nnn {#1} {#2} { \c_max_int } }
198 { __talk_decode_check_range:nnn {#1} {#2} {#3} }
199 }

200 }

201 \cs_new_protected:Npn __talk_decode_check_single:nn #1#2

202 {

203 \int_compare:nNnTF \g__talk_slide_int = {#2}

204 { \bool_set_true:c { 1__talk_decode_ #1 _bool } }

205 {

206 \int_compare:nNnT {#2} > \g__talk_slide_int

207 { \bool_gset_true:N \g__talk_slide_continue_bool }
208 }

209 }

TODO: In the following we might want to add a check whether the range was given with
#2 being smaller than #3, to be decided upon.

210 \cs_set_protected:Npn __talk_decode_check_range:nnn #1#2#3

211 {

212 \int_compare:nNnF \g__talk_slide_int > {#3}

213 {

214 \int_compare:nNnTF \g__talk_slide_int < {#2}

215 { \bool_gset_true:N \g__talk_slide_continue_bool }
216 {

217 \bool_set_true:c { 1__talk_decode_ #1 _bool }

218 \bool_lazy_and:nnT

219 { \int_compare_p:nNn \g__talk_slide_int < {#3} }
220 { \int_compare_p:nNn {#3} < \c_max_int }

221 { \bool_gset_true:N \g__talk_slide_continue_bool }
222 \clist_map_break:

16

225 }

(End of definition for __talk_decode_check:n and others.)

226 \msg_new:nnnn { talk } { bad-action-spec }
27 { Bad~overlay~specification~"#1". }

228 {

229 The~overlay~specification~given~doesn't~follow~the~pattern~described~in~
230 the~1ltx-talk~manual:~it~has~been~ignored.

231 }

232 (/class)

17

\g__talk_slide_continue_bool

\1__talk_slide_box

\g__talk_slide_int
\c@slide
\theslide

__talk_slide:nn
__talk_slide_aux:n

Part IV
Itx-talk-frame — The structure of
frames

1 Itx-talk-frame implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (e@=talk)

1.1 Slides in frames

Currently, each slide in a frame will produce a separate page in the output (unless the
slide is suppressed entirely). Material is then hidden on some pages by using opacity. An
alternative approach would be to use Optional Content Groups to have a similar effect on
one page per frame. However, whilst that would be relatively clear for appear/disappear
effects, it would be much less straight-forward for partial transparency, etc., plus would
depend more heavily on viewer support. At a future stage we may wish to revisit this.

Tracks whether the frame continues after the current slide.

5 \bool_new:N \g__talk_slide_continue_bool

(End of definition for \g__talk_slide_continue_bool.)

4+ \box_new:N \1__talk_slide_box

(End of definition for \1__talk_slide_box.)

The slide number inside the current frame: needed to know which overlays are active.
We also provide IXTEX counter-style access.

s \int_new:N \g__talk_slide_int

6 \cs_new_eq:NN \c@slide \g__talk_slide_int

7 \cs_new:Npn \theslide { \@arabic \c@slide }

(End of definition for \g__talk_slide_int, \c@slide, and \theslide. These variables are documented
on page 77.)
Required to know which is the last slide in a frame for tagging.

¢ \property_new:nnnn { slides } { now } { 1 } { \int_use:N \g__talk_slide_int }

Each slide is parsed inside simple set up, the only complexity being if we are handling
fragile frames. There, all \obeyedline in the grabbed tokens need to be turned back into
~~M before rescanning: this ensures that any verbatim grabbing in the frame still works.
The strange business with setting the continuation boolean is needed as otherwise we get
an infinite loop if there is an overlay specification for the frame itself. Tagging should
not of itself force slide continuation, so the global boolean is reset for the tagged slide.

9 \cs_new_protected:Npn __talk_slide:nn #1#2
10 {

18

39

40

41

42

43

44

}

\group_begin:

\tl_

{

}

\property_ref:ee { frame

set:Ne \1__talk_tmp_tl

{ slides }

\str_if_eq:VnTF \1__talk_frame_tagging str { n }
{ \str_set:NV \1__talk_frame_tagging str \1__talk_tmp_tl }

{

}

\str_replace_all:NnV \1__talk_frame_tagging_str { ,n }

\1__talk_tmp_tl

\str_replace_all:NnV \1__talk_frame_tagging str { ,~n }

\1__talk_tmp_tl

\int_gzero:N \g__talk_slide_int
\RenewCommandCopy \frame __talk_latexe_frame:n
\bool_do_while:Nn \g__talk_slide_continue_bool

{

}

\property_record:ee { frame .

{

\int_gincr:N \g__talk_slide_int
\bool_gset_false:N \g__talk_slide_continue_bool
__talk_if_overlay:nT {#1}

{
__talk_slide_begin:
__talk_if_overlay:VTF \1__talk_frame_tagging_str
{
\bool_gset_false:N \g__talk_slide_continue_bool
__talk_frame_tag:n
}
{
\bool_gset_false:N \g__talk_slide_continue_bool
__talk_frame_notag:n
}
{
\bool_if:NTF \1__talk_frame_verb_bool
{ __talk_slide_aux:n }
{ \use:n }
{#2}
}
__talk_slide_end:
}

slides }

\group_end:

\cs_new_protected:Npn __talk_slide_aux:n #1

{

\group_begin:

\cs_set:Npn \obeyedline { ~~J }
\use:e
{
\group_end:

}

\tl_retokenize:n {#1}

19

\int_use:N \g__talk_frame_int }

\int_use:N \g__talk_frame_int }

65 }

(End of definition for __talk_slide:nn and __talk_slide_aux:n.)
The very last frame will not be recorded by the above, so we have to add to the hook
at the very end of the run.
6 \AddToHook { enddocument / afterlastpage }
o o
68 \property_record:ee { frame . \int_use:N \g__talk_frame_int }
60 { slides }
0}

\g__talk_frame_struct_int The tagging structure number for the slide: needed by the content placed outside of the
current box (for example the frame title).

7 \int_new:N \g__talk_frame_struct_int

(End of definition for \g__talk_frame_struct_int.)

__talk_slide_begin:

__talk_slide_end: 7 \cs_new_protected:Npn __talk_slide_begin:
73 {
74 \int_gzero:N \g__talk_pauses_int
75 \tl_gclear:N \g__talk_frame_title_tl
76 \tl_gclear:N \g__talk_frame_subtitle_tl
7 \box_gclear:N \g__talk_footnote_box
78 __talk_cnt_save:
79 \vbox_set:Nw \1__talk_slide_box
80 \tl_gclear:N \g__talk_onslide_tl
81 }
s> \cs_new_protected:Npn __talk_slide_end:
83 {
84 \tl_use:N \g__talk_onslide_tl
85 \vbox_set_end:
86 \bool_if:NT \g__talk_slide_continue_bool
87 { __talk_cnt_restore: }
88 \vbox_to_ht:nn { \textheight }
89 {
% \use:c { __talk_slide_align_ \1__talk_frame_alignment_tl :n }
o1 { \vbox_unpack_drop:N \1__talk_slide_box 1}
02 \box_if_empty:NF \g__talk_footnote_box
93 {
94 \footnoterule
95 \vbox_unpack_drop:N \g__talk_footnote_box
96 }
97 ¥
08 \clearpage
99 }

(End of definition for __talk_slide_begin: and __talk_slide_end:.)

__talk_slide_align_bottom:n A pretty standard abstraction: we make sure there are always two skips.

__talk_slide_align center:n \cs_new_protected:Npn __talk_slide_align_bottom:n #1
__talk slide align stretch:n 1o {
__talk_slide_align_top:n 1 \skip_vertical:n { Opt~plus~1fil }
103 #1

20

104 \skip_vertical:n { Opt }

105 }

w6 \cs_new_protected:Npn __talk_slide_align_center:n #1
107 {

108 \skip_vertical:n { Opt~plus~0.5fil }

100 #1

110 \skip_vertical:n { Opt~plus~0.5fil }

111 }

112 \cs_new_protected:Npn __talk_slide_align_stretch:n #1
113 {

114 \skip_vertical:n { Opt }

115 #1

116 \skip_vertical:n { Opt }

117 }

115 \cs_new_protected:Npn __talk_slide_align_top:n #1

119 {

120 \skip_vertical:n { Opt }

121 #1

122 \skip_vertical:n { Opt~plus~1fil }

123 }

(End of definition for __talk_slide_align_bottom:n and others.)

1.2 Counters

\1__talk_cnt_reset_seq As \stepcounter, etc., will increment at each overlay, there is a need to save and reset.
The list will be finalized at the end of the preamble, so the data storage is created at that
point. The starting point is counters created before the class is loaded (other than those
for lists, which reset “naturally”). Other cases are handled by adding to \newcounter.
124 \seq_new:N \1__talk_cnt_reset_seq
125 \seq_set_from_clist:Nn \1__talk_cnt_reset_seq

126 {

127 equation s

128 footnote ,

129 mpfootnote s

130 parentequation

131 }

132 \seq_map_inline:Nn \1__talk_cnt_reset_seq
133 {

134 \int_new:c { g__talk_saved_ #1 _int }
135 \int_gset_eq:cc { g__talk_saved_ #1 _int } { c@ #1 }
136 }

(End of definition for \1__talk_cnt_reset_seq.)

__talk_cnt_save: A simple save-and-restore pair.

__talk_cnt_restore: ., \cs_new_protected:Npn __talk_cnt_save:
138 {
139 \seq_map_inline:Nn \1__talk_cnt_reset_seq
140 { \int_gset_eq:cc { g__talk_saved_ ##1 _int } { c@ ##1 } }
141 }
12 \cs_new_protected:Npn __talk_cnt_restore:
143 {

144 \seq_map_inline:Nn \1__talk_cnt_reset_seq

21

145 { \int_gset_eq:cc { c@ ##1 } { g__talk_saved_ ##1 _int } }
146 }

(End of definition for __talk_cnt_save: and __talk_cnt_restore:.)

\@definecounter Track all counters for resetting.

\std@definecounter \cs_new_eq:NN \std@definecounter \@definecounter
us \cs_gset_protected:Npn \@definecounter #1

o {

150 \std@definecounter {#1}

151 \int_new:c { g__talk_saved_ #1 _int }

152 \seq_gput_right:Nn \1__talk_cnt_reset_seq {#1}
153 ¥

(End of definition for \@definecounter and \std@definecounter. These functions are documented on
page 77.)
1.3 Frame options

\1__talk_frame_alignment_tl
152 \tl_new:N \1__talk_frame_alignment_tl

(End of definition for \1__talk_frame_alignment_t1.)

\1__talk_action_spec_str
\1__talk_frame_tagging_str . \keys_define:nn { talk / frame }

156 {

157 action-spec .str_set:N

158 = \1__talk_action_spec_str ,

159 tag-slides .str_set:N

160 = \1__talk_frame_tagging_str ,

161 vertical-alignment .choices:nn =

162 { bottom , center , stretch , top }
163 {

164 \tl_set_eq:NN \1__talk_frame_alignment_tl
165 \1_keys_value_tl

166 }

167 }

16s \keys_set:nn { talk / frame }

169 {

170 action-spec = s

171 tag-slides =n s

172 vertical-alignment = center

173 }

(End of definition for \1__talk_action_spec_str and \1__talk_frame_tagging_str.)

1.4 Tagging for headers

__talk_header_tag_begin:n Generalized control for inserting material into the header area (which is otherwise outside
__talk_header_tag_begin:e of tagging).
__talk_header_tag_end: ,;, \cs_new_protected:Npn __talk_header_tag_begin:n #1
175 {

176 \tag_resume:n { header }

22

\1__talk_footelem_left_skip
\1__talk_footelem_right_skip
\1__talk_footelem_color_tl
\1__talk_footelem_font_tl

177 \tag_mc_end:

178 \tag_struct_begin:n {#1}
179 \tag_mc_begin:n { }

180 }

181 \cs_generate_variant:Nn __talk_header_tag_begin:n { e }
122 \cs_new_protected:Npn __talk_header_tag_end:

183 {

184 \tag_mc_end:

185 \tag_struct_end:

186 \tag_mc_begin:n { artifact }

187 \tag_suspend:
188 }

n { header }

(End of definition for __talk_header_tag_begin:n and __talk_header_tag_end:.)

1.5 Wallpaper

159 \NewTemplateType { footer-element } { 1 }
10 \DeclareTemplateInterface { footer-element } { talk } { 1 }

191 {

192 color : tokenlist ,

103 font : tokenlist = ,

104 left-hspace : length = Oem ,

195 right-hspace : length = Oem

196 }

107 \DeclareTemplateCode { footer-element } { talk } { 1 }
198 {

199 color = \1__talk_footelem_color_tl ,

200 font = \1__talk_footelem_font_tl ,

201 left-hspace = \1__talk_footelem_left_skip ,

202 right-hspace = \1__talk_footelem_right_skip

203 }

204 {

205 \tl_if_empty:nF {#1}

206 {

207 \hspace { \1__talk_footelem_left_skip }

208 \group_begin:

200 \tl_if_empty:NF \1__talk_footelem_color_tl
210 { \color_select:V \1__talk_footelem_color_tl }
211 \1__talk_footelem_font_tl

212 #1

213 \group_end:

214 \hspace { \1__talk_footelem_right_skip }

215 ¥

216 }

217 \DeclareInstance { footer-element date } { talk } {

215 \DeclareInstance
219 \DeclareInstance
20 \DeclareInstance
21 \DeclareInstance
222 \DeclareInstance
»3 \DeclareInstance

(End of definition for \1_

{

{ footer-element
{ footer-element
{ footer-element
{ footer-element
{ footer-element
{ footer-element

N o

}
author } { talk } {
title } { talk } { }

institute } { talk }
framenumber } { talk
{ totalframes } { talk

A A S A

_talk_footelem_left_skip and others.)

23

}

subtitle } { talk } { }

{1}
}{
P {

}
}

\1__talk_header_bg_tl Templates for the header area. The background always covers the full width, but the text
\1__talk_header_fg_tl area may be narrower. The setup here aims to avoid repeated kerns but also dealing with
\1__talk_header_font_tl complex conditionals, hence we always move to the edge of the paper first then adjust as
\1__talk_header_ht_dim required.
\1__talk_header_left_skip ,,, \NewTemplateType { header } { 0 }
\l__talk header frametitle bool 25 \DeclareTemplateInterface { header } { talk } { 0 }
\1__talk_header_right_skip 226 {

227 background-color : tokenlist,

208 color : tokenlist = structure ,
229 font : tokenlist = \normalfont ,
230 height : length = \Gm@tmargin + \headsep ,
231 left-hspace : skip = \Gm@lmargin ,

232 print-frame-title : boolean = true ,

233 right-hspace : skip = \Gm@rmargin

234 }

235 \DeclareTemplateCode { header } { talk } { 0 }

236 {

237 background-color = \1__talk_header_bg_tl ,
238 color = \1__talk_header_fg_ tl ,

239 font = \1__talk_header_font_t1l ,
240 height = \1__talk_header_ht_dim ,

241 left-hspace = \1__talk_header_left_skip ,
242 print-frame-title = \1__talk_header_frametitle_bool ,
243 right-hspace = \1__talk_header_right_skip
244 }

245 {

246 \noindent

247 __talk_wallpaper_hrule:Nnn

248 \1__talk_header_bg_tl

249 { \1__talk_header_ht_dim - \headsep }

250 { \headsep }

251 \skip_horizontal:n { \1__talk_header_left_skip }
252 \group_begin:

253 \tl_if_empty:NF \1__talk_header_fg_tl

254 { \color_select:V \1__talk_header_fg_tl }
255 \1__talk_header_font_tl

256 \bool_if:NT \1__talk_header_frametitle_bool
257 {

258 \ExpandArgs { nnV }

250 \UseInstance { frametitle } { header }
260 \g__talk_frame_title_tl

261 i

262 \group_end:

263 }

264 \DeclareInstance { header } { std } { talk } { }
265 \AddToHook { begindocument }

266 {

267 \DeclareInstanceCopy { header } { wallpaper } { std }
268 \EditInstance { header } { wallpaper }

269 { print-frame-title = false }

270 }

(End of definition for \1__talk_header_bg_tl and others.)

24

\1__talk_footer_bg_tl Templates for the footer area. Again the margins are handled in stages: here we do have
\1__talk_footer_fg_tl a box for the content so the right skip is used, and we avoid an overfull box by including
\1__talk_footer_font_tl consideration of the right margin of the page layout.
\1__talk_footer_order_clist ., \NewTemplateType { footer } { 0 }
\1__talk_footer_sep_tl .» \DeclareTemplateInterface { footer } { talk } { 0 }
\1__talk_footer_left_skip 2z {

\1__talk_footer_right_skip 2w background-color : tokenlist ,
275 color : tokenlist ,
276 element-order : commalist ,
277 font : tokenlist = \tiny ,
278 left-hspace : length = \Gm@lmargin ,
279 right-hspace : length = \Gm@rmargin ,
280 separator : tokenlist = \hfil
281 }
222 \DeclareTemplateCode { footer } { talk } { 0 }
283 {
284 background-color = \1__talk_footer_bg_tl ,
285 color = \1__talk_footer_fg_tl ,
286 element-order = \1__talk_footer_order_clist ,
287 font = \1__talk_footer_font_tl ,
288 left-hspace = \1__talk_footer_left_skip ,
289 right-hspace = \1__talk_footer_right_skip ,
290 separator = \1__talk_footer_sep_tl
201 ¥
292 {
203 \noindent
204 __talk_wallpaper_hrule:Nnn
205 \1__talk_footer_bg_tl
296 { \footskip }
207 { \Gm@bmargin - \footskip }
208 \skip_horizontal:n { \1__talk_footer_left_skip }
209 \vbox_set_to_wd:Nnn \1__talk_tmp_box
300 {
301 \paperwidth
302 - \1__talk_footer_left_skip
303 - \1__talk_footer_right_skip
304 }
305 {
306 \tl_if_empty:NF \1__talk_footer_fg_tl
307 { \color_select:V \1__talk_footer_fg_ tl }
308 \1__talk_footer_font_tl
300 \clist_pop:NNT \1__talk_footer_order_clist \1__talk_tmp_tl
310 {
311 \ExpandArgs { nVv } \Uselnstance { footer-element } \1__talk_tmp_tl
312 { @ __talk_metadata_name:n { \1__talk_tmp_tl } }
313 \clist_map_inline:Nn \1__talk_footer_order_clist
314 {
315 \tl_if_empty:cF { @ __talk_metadata_name:n { ##1 } }
316 {
317 \1__talk_footer_sep_tl
318 \ExpandArgs { nnv }
319 \UseInstance { footer-element } {##1}
320 { @ __talk_metadata_name:n { ##1 } }
301 3

25

323 }

324 \hfil

325 }

32 \box_use_drop:N \1__talk_tmp_box

327 \skip_horizontal:n { \1__talk_footer_right_skip - \Gm@rmargin }
328 }

320 \DeclareInstance { footer } { std } { talk } { }
330 \AddToHook { begindocument }

331 {

332 \DeclareInstanceCopy { footer } { wallpaper } { std }
333 \EditInstance { footer } { wallpaper }

334 { element-order = }

335 }

(End of definition for \1__talk_footer_bg_tl and others.)

__talk_metadata_name:n A simple auxiliary to shorten metadata names if appropriate. Full expansion is applied
as this avoids any issue with stored names.

53 \cs_new:Npn __talk_metadata_name:n #1

337 {

338 \tl_if_exist:cTF { @ short #1 }
339 { short #1 }

340 {#1}

341 ¥

(End of definition for __talk_metadata_name:n.)

__talk_wallpaper_hrule:Nnn A simple abstraction for the top and bottom rules on the page.
s \cs_new_protected:Npn __talk_wallpaper_hrule:Nnn #1#2#3

343 {

344 \skip_horizontal:n { -\Gm@lmargin }

345 \tl_if_empty:NF #1

346 {

347 \group_begin:

348 \color_select:V #1

349 \rule:nnn { \paperwidth } {#2} {#3}
350 \skip_horizontal:n { -\paperwidth }
351 \group_end:

352 }

353 }

(End of definition for __talk_wallpaper_hrule:Nnn.)

\ps@lain Install a standard header and footer template, and redefine the plain one as this will be
\ps@wallpaper used for frames without “wallpaper” which still need core links, etc. We also provide a
\ps@talk version that only shows the visual elements: this is deliberately using the same settings

as the main templates.

552 \cs_set_nopar:Npn \ps@plain

355 {

356 \cs_set_nopar:Npn \@oddhead
357 {

358 \hfil

359 }

26

360 \cs_set_nopar:Npn \@oddfoot { }
361 \cs_set_eq:NN \@evenhead \@oddhead

362 \cs_set_eq:NN \@evenfoot \Qoddfoot

363 }

564 \cs_set_nopar:Npn \ps@wallpaper

365 {

366 \cs_set_nopar:Npn \@oddhead

367 {

368 \UseInstance { header } { wallpaper }
360 \hfil

370 }

371 \cs_set_nopar:Npn \@oddfoot

372 {

373 \UseInstance { footer } { wallpaper }
374 \hfil

375 }

376 \cs_set_eq:NN \@evenhead \@oddhead

377 \cs_set_eq:NN \@evenfoot \Qoddfoot

378 }

s70 \cs_new_nopar:Npn \ps@talk

380 {

381 \cs_set_nopar:Npn \@oddhead

382 {

383 \UseInstance { header } { std }

384 \hfil

385 }

386 \cs_set_nopar:Npn \@oddfoot { \UseInstance { footer } { std } }
387 \cs_set_eq:NN \@evenhead \Qoddhead

388 \cs_set_eq:NN \@evenfoot \@oddfoot

389 }

a0 \pagestyle { talk }

(End of definition for \ps@plain, \ps@wallpaper, and \ps@talk. These functions are documented on
page ?7.)

1.6 The frame environment

\1__talk_frame_bool To track whether we are inside a frame or not.
300 \bool_new:N \1__talk_frame_bool

(End of definition for \1__talk_frame_bool.)

\g__talk_frame_tag bool To track when a frame is being tagged: mainly needed for the header (and as a result
global).

32 \bool_new:N \g__talk_frame_tag_bool

(End of definition for \g__talk_frame_tag_bool.)

\1__talk_frame_verb_bool Indicates that material was collected verbatim (and thus needs rescanning).
303 \bool_new:N \1__talk_frame_verb_bool

(End of definition for \1__talk_frame_verb_bool.)

27

\g__talk_frame_int The overall frame number, including I¥TEX counter-like access.

\c@frame ., \int_new:N \g__talk_frame_int
\theframe 3 \cs_new_eq:NN \c@frame \g__talk_frame_int
\@framenumber 3 \cs_new:Npn \theframe { \Qarabic \c@frame }
;07 \cs_new:Npn \@framenumber { \arabic { frame } }

(End of definition for \g__talk_frame_int and others. These variables are documented on page 77?.)

\@totalframes The total frames can be handled using the kernel properties.

30 \property_new:nnnn { totalframes } { shipout } { -1 }

s0 { \int_use:N \g__talk_frame_int }

200 \AddToHook { enddocument / afterlastpage }

201 { \property_record:nn { lastpage } { totalframes } }

202 \cs_new:Npn \@totalframes { \property_ref:nn { lastpage } { totalframes } }

(End of definition for \@totalframes. This variable is documented on page ?77.)

__talk_latexe_frame:n As we will need to re-define \frame but have it available inside frames, a copy is made
here.

203 \NewCommandCopy __talk_latexe_frame:n \frame

(End of definition for __talk_latexe_frame:n.)

__talk_frame_process:nn Here, the frame content is received as the argument.

204 \cs_new_protected:Npn __talk_frame_process:nn #1#2

405 {

406 \int_gincr:N \g__talk_frame_int

407 \bool_set_true:N \1__talk_frame_bool
408 __talk_slide:nn {#1} {#2}

409 }

(End of definition for __talk_frame_process:nn.)

__talk_frame_tag:n Wraps some content in tagging for a frame: we may have multiple of these in one logical
frame, but that is non-standard.

210 \cs_new_protected:Npn __talk_frame_tag:n #1

411 {

412 \tag_struct_begin:n { tag = frame }

413 \int_gset:Nn \g__talk_frame_struct_int { \tag_get:n { struct_num } }
414 \bool_gset_true:N \g__talk_frame_tag_bool

415 #1

416 \tag_struct_end:

417 }

(End of definition for __talk_frame_tag:n.)

__talk_frame_notag:n The alternative: turn off tagging and suppress the function that would tag the frame

title.

s1s \cs_new_protected:Npn __talk_frame_notag:n #1
419 {

420 \tag_mc_begin:n { artifact }

421 \tag_suspend:n { frame }

422 \bool_gset_false:N \g__talk_frame_tag_bool
423 #1

424 \par

28

425 \tag_resume:n { frame }
426 \tag_mc_end:

a7}

~

(End of definition for __talk_frame_notag:n.)

frame The definition for the frame and frame* environments: the exact interface at both the
framex document and code levels is still open.

128 \bool_if:NTF \1__talk_frame_title_bool

429 {

430 \RenewDocumentEnvironment { frame }

431 {D<>{all } = { action-spec } 0 { } +m +b }
432 {

433 \keys_set:nn { talk / frame } {#2}

434 \bool_set_false:N \1__talk_frame_verb_bool
435 __talk_frame_process:nn {#1} { \frametitle {#3} #4 }
436 }

437 {7

438 \NewDocumentEnvironment { framex* }

430 {D <> {all } = { action-spec } 0 { } +m c }
440 {

441 \keys_set:nn { talk / frame } {#2}

402 \bool_set_true:N \1__talk_frame_verb_bool
443 \tl_gset:Nn \g__talk_frame_title_t1l {#3}

444 \exp_args:Nne __talk_frame_process:nn {#1}
445 { \tl_to_str:n { \frametitle } \exp_not:n { {#3} #4 } }
446 }

447 { }

448 }

449 {

450 \RenewDocumentEnvironment { frame }

451 {ID<> {all } = { action-spec } '0 { } +b }
452 {

453 \keys_set:nn { talk / frame } {#2}

454 \bool_set_false:N \1__talk_frame_verb_bool
455 __talk_frame_process:nn {#1} {#3}

456 ¥

457 {1}

458 \NewDocumentEnvironment { framex }

450 { D <> {all } = { action-spec } '0{ 2} c }
460 {

461 \keys_set:nn { talk / frame } {#2}

462 \bool_set_true:N \1__talk_frame_verb_bool
463 __talk_frame_process:nn {#1} {#3}

464 }

465 {7

466 }

(End of definition for frame and frame*. These functions are documented on page 77.)

a7 {/class)

29

Part V
Itx-talk-frame — The structure of
frames

1 Itx-talk-frame-structure implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (ee=talk)

1.1 Columns

; \keys_define:nn { talk }
1 { columns .inherit:n = talk / column }

\1__talk_columns_wd_tl We store the requested width for columns in a t1 as this means that the key value will
make sense even if it depends on the current \textwidth.

s \keys_define:nn { talk / columns }

¢ { width .tl_set:N = \1__talk_columns_wd_tl }
7 \keys_set:nn { talk / columns }

¢ { width = \textwidth }

(End of definition for \1__talk_columns_wd_t1.)

\1__talk_column_int For tracking which column we are in, and allowing for nesting.

\g__talk_column_int o \int_new:N \1__talk_column_int
10 \int_new:N \g__talk_column_int

(End of definition for \1__talk_column_int and \g__talk_column_int.)

columns (env.) Columns are block-like environments so we start and end with a \par to ensure correct

tagging.

11 \NewDocumentEnvironment { columns } { D <> { all } 0 { } }
12 {

13 __talk_action_begin:n {#1}

14 \par

15 \int_set_eq:NN \1__talk_column_int \g__talk_column_int
16 \int_gzero:N \g__talk_column_int

17 \keys_set:nn { talk / columns } {#2}
18 \hbox_set_to_wd:Nnw \1__talk_tmp_box { \1__talk_columns_wd_tl }

19 \dim_set:Nn \textwidth { \1__talk_columns_wd_tl }

20 \dim_set_eq:NN \columnwidth \textwidth

21 \ignorespaces

2}

PERE |

2 \unskip

25 \hbox_set_end:

2 \box_use_drop:N \1__talk_tmp_box

27 \int_gset_eq:NN \g__talk_column_int \1__talk_column_int

30

28 \par
20 __talk_action_end:

30 }

\1__talk_column_alignment_tl
51 \keys_define:nn { talk / column }

32 {

33 b .meta:n =

34 { vertical-alignment = bottom 1} ,
35 b .value_forbidden:n = true ,

36 c .meta:n =

37 { vertical-alignment = center } ,
38 c .value_forbidden:n = true ,

39 t .meta:n =

40 { vertical-alignment = top } ,

41 t .value_forbidden:n = true ,

42 vertical-alignment .choices:nn =

43 { bottom , center , top }

44 {

45 \tl_set_eq:NN \1__talk_column_alignment_tl
46 \1_keys_value_t1l

47 }

48 }

2 \keys_set:nn { talk / column }

s {

51 vertical-alignment = center

2}

(End of definition for \1__talk_column_alignment_tl.)

\

_talk colum align botton:n Most of this will appear in the kernel in due course.
__talk_colum align center:m g \cs_new_protected:Npn __talk_column_align_bottom:n #1

__talk_column_align_top:n 54 { \vbox:n {#1} }

55 \cs_new_protected:Npn __talk_column_align_center:n #1

56 {

57 \check@mathfonts

58 \vbox_set:Nn \1__talk_tmp_box {#1}

59 \use:e

60 {

61 \box_set_ht:Nn \1__talk_tmp_box

62 {

63 \dim_eval:n

64 {

65 0.5 \box_ht:N \1__talk_tmp_box
66 + 0.5 \box_dp:N \1__talk_tmp_box
67 + (\1__talk_vcenter_offset_tl)
68 }

69 }

70 \box_set_dp:Nn \1__talk_tmp_box

71 {

7 \dim_eval:n

73 {

74 0.5 \box_ht:N \1__talk_tmp_box
75 + 0.5 \box_dp:N \1__talk_tmp_box

31

\1__talk_vcenter_offset_tl

column (env.)

76 - (\1__talk_vcenter_offset_tl)
77 }

79 }

80 \box_use_drop:N \1__talk_tmp_box

81 }

&2 \cs_new_protected:Npn __talk_column_align_top:n #1
s { \vbox_top:n {#1} }

(End of definition for __talk_column_align_bottom:n, __talk_column_align_center:n, and __-
talk_column_align_top:n.)

Vertical offset based on text mode values: done as a variable t1 so that a reset to math
mode parameters is possible.

82 \tl_new:N \1__talk_vcenter_offset_tl
g5 \tl_set:Nn \1__talk_vcenter_offset_tl
6 { (\fontcharht \font “\(- \fontchardp \font “\)) / 2 }

(End of definition for \1__talk_vcenter_offset_tl.)

A cut-down version of a minipage: we want to be clear on the semantic meaning. the
action is applied inside the box after starting horizontal mode to avoid spacing issues
when switching whatsits in and out.

37 \NewDocumentEnvironment { column } { D <> { all } 0 { }m }

88 {

89 \par

90 \int_gincr:N \g__talk_column_int

o1 \int_compare:nNnF \g__talk_column_int = 1
92 { \hfil }

93 \keys_set:nn { talk / column } {#2}

94 \vbox_set_to_wd:Nnw \1__talk_tmp_box {#3}
95 \dim_set:Nn \textwidth {#3}

96 \dim_set_eq:NN \columnwidth \textwidth
o7 \@parboxrestore

08 \leavevmode

99 \raggedright

100 __talk_action_begin:n {#1}

101 \ignorespaces

102 }

The \@ignore here means that any spaces after \end{column} are suppressed by a
\ignorespaces inserted by the kernel. The \par before __talk_action_end: is needed
as the group formed for actions would otherwise trap for example alignment changes.

103 {

104 \par

105 __talk_action_end:

106 \vbox_set_end:

107 \use:c { __talk_column_align_ \1__talk_column_alignment_tl :n }
108 { \vbox_unpack_drop:N \1__talk_tmp_box }

109 \par

110 \@ignoretrue

111 ¥

32

\1__talk_float_alignment_tl

\endfloatenv

figure (env.)
table (env.)

1.2 Floats

Well really “not floats at all” but the idea is clear.

We only worry about horizontal alignment here.
12 \tl_new:N \1__talk_float_alignment_tl

(End of definition for \1__talk_float_alignment_t1.)

A bit similar to the current approach to lists: we need a template at the start but
a common function at the end. The float-placement key is at present just there to
allow mopping up of any argument that is given by accident, hence maps to a temporary
variable.
1135 \NewTemplateType { floatenv } { 2 }
114 \DeclareTemplateInterface { floatenv } { talk } { 2 }

115 {

116 float-placement : tokenlist ,

117 horizontal-alignment : choice { left , center , right } = left
118 }

119 \DeclareTemplateCode { floatenv } { talk } { 2 }

120 {

121 float-placement = \1__talk_tmp_tl ,

122 horizontal-alignment =

123 {

124 left = \tl_set:Nn \1__talk_float_alignment_tl { flushleft } ,
125 center = \tl_set:Nn \1__talk_float_alignment_tl { center } ,
126 right = \tl_set:Nn \1__talk_float_alignment_tl { flushright }
127 }

s}

129 {

130 \SetTemplateKeys { floatenv } { talk } {#1}

131 \begin { minipage } { \columnwidth }

132 \begin { \1__talk_float_alignment_tl }

133 \cs_set_nopar:Npn \@captype {#2}

134 ¥

135 \DeclareInstance { floatenv } { std } { talk } { horizontal-alignment = left }

And the common end function.

136 \cs_new_protected:Npn \endfloatenv

137 {

138 \end { \1__talk_float_alignment_tl }
139 \end { minipage }

140 }

(End of definition for \endfloatenv. This function is documented on page 77.)

Unlike beamer, we allow for overlays for the environments as a whole.

141 \clist_map_inline:nn { figure , table }

142 {

143 \NewDocumentEnvironment {#1} { D <> { all } = { float-placement } 0 { } }
144 {

145 __talk_action_begin:n {##1}

146 \UselInstance { floatenv } { std } {##2} {#1}

147 }

148 {

33

149 \endfloatenv
150 __talk_action_end:

151 }

\cefigure The standard variables needed to make captions work (nothing for list of floats, as at
\thefigure present those are not offered).

\c@table \newcounter {#1}
\thetable s \tl_new:c { #1 name }
\figurename 1 \tl_set:ce { #1 name } { \text_titlecase_first:n {#1} }
\tableename 15 \tl_new:c { fnum@ #1 }
\fnum@figure 1% \tl_set:ce { fnum@ #1 }
\fnum@table { \exp_not:c { #1 name } \exp_not:N \nobreakspace \exp_not:c { the #1 } }
158 }

(End of definition for \cefigure and others. These variables are documented on page 77?.)
The spacing values needed for the standard function.

150 \newlength \abovecaptionskip

10 \newlength \belowcaptionskip

161 \setlength \abovecaptionskip { 7pt }

162 \setlength \belowcaptionskip { 7pt }

\@caption This is a copy of the kernel version of the function, but with writing to the list of whatever
file removed. It is very likely this needs to be reworked as a template, but that will likely
come from the kernel.

63 \cs_set_protected:Npn \@caption #1 [#2] #3

164 {

165 \par

166 \begingroup

167 \@parboxrestore

168 \if@minipage \@setminipage \fi

169 \normalsize

170 \@makecaption { \csname fnum@ #1 \endcsname } { \ignorespaces #3 }
171 \par

172 \endgroup

173 }

(End of definition for \@caption. This function is documented on page 77.)

1.3 Footnotes

\g__talk_footnote_box Holds footnotes as they are constructed.
174 \box_new:N \g__talk_footnote_box

(End of definition for \g__talk_footnote_box.)

\g talk footnote overlay seq For tracking the overlays to apply.

0.

175 \seq_new:N \g__talk_footnote_overlay_seq

(End of definition for \g__talk_footnote_overlay_seq.)

\stdfootnote
176 \NewCommandCopy \stdfootnote \footnote

(End of definition for \stdfootnote. This function is documented on page 77.)

34

\footnote

\@makefntext

Sort-of overlay aware!

177 \RenewDocumentCommand \footnote { D <> { all } o +m }

178 {

179 \seq_gpush:Nn \g__talk_footnote_overlay_seq {#1}
180 \IfNoValueTF {#2}

181 { \stdfootnote {#3} }

182 { \stdfootnote [{#2}] {#3} }

183 }

(End of definition for \footnote. This function is documented on page 77.)

This socket receives all of the footnote content: in the standard setup it would be an
insert. Hence this is the best place to grab the entire content. Notice that the footnote
rule is only inserted when the box is used, if it turns out it’s needed. The overlay code is
added here as it needs to be inside the box used to collect the footnotes but around all
of the content: currently there’s not a “tighter” place to target.

182 \NewSocketPlug { fntext / process } { talk }

185 {

186 \vbox_gset:Nn \g__talk_footnote_box

187 {

188 \vbox_unpack:N \g__talk_footnote_box

189 \seq_gpop_left:NN \g__talk_footnote_overlay_seq

190 \1__talk_tmp_tl

191 \exp_args:NV __talk_decode_parse:n \1__talk_tmp_tl

192 __talk_action_uncover:N \1__talk_decode_overlays_bool
193 #1

194 __talk_action_uncover_end:N \1__talk_decode_overlays_bool
195 }

196 }

17 \AssignSocketPlug { fntext / process } { talk }

Use a copy of the standard setup.

15 \cs_new_eq:NN \@makefntext \fnote_makefntext:n

(End of definition for \@makefntext. This function is documented on page 77.)

199 (/class)

35

Part V1
Itx-talk-mode — Modes

1 Itx-talk-mode implementation

Start the DocStrip guards.
1 (*class)
Identify the internal prefix.
. (e@=talk)

__talk_mode:nT A simplified version of \mode: only deal with the argument form, only check the entire
overlay spec as a string.
s \prg_new_protected_conditional:Npnn __talk_mode:n #1 { T }
4 {
5 \bool_lazy_or:nnTF
6 { \str_if_eq_p:nn {#1} { all } }
7 { \str_if_eq_p:Vn \1__talk_mode_str {#1} }
8 \prg_return_true:
0 \prg_return_false:

0}
(End of definition for __talk_mode:nT.)

\mode

11 \NewDocumentCommand \mode { D <> { all } +m }
12 { __talk_mode:nT {#1} {#2} }

(End of definition for \mode. This function is documented on page ?7.)

15 (/class)

36

Part VII
Itx-talk-overlay — Overlays

1 Itx-talk-overlay implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
> (0e=talk)

1.1 Utilities

__talk_if_overlay:nTF
__talk_if_overlay:VIF s \prg_new_protected_conditional:Npnn __talk_if_overlay:n #1 { T , F , TF }
__talk_overlay_arg:n . {

5 __talk_decode_parse:n {#1}

6 \bool_if:NTF \1__talk_decode_overlays_bool

7 \prg_return_true:

8 \prg_return_false:

9 }

10 \prg_generate_conditional_variant:Nnn __talk_if_overlay:n { V} { T , F , TF }

A macro processor variant of the check that always results in an N-type bool.

11 \cs_new_protected:Npn __talk_overlay_arg:n #1

PR |

13 __talk_if_overlay:nTF {#1}

14 { \cs_set:Npn \ProcessedArgument { \c_true_bool } }
15 { \cs_set:Npn \ProcessedArgument { \c_false_bool } }
6}

(End of definition for __talk_if_overlay:nTF and __talk_overlay_arg:n.)

\1__talk_shuffle_skip For tracking.
17 \skip_new:N \1__talk_shuffle_skip

(End of definition for \1__talk_shuffle_skip.)

__talk_shuffle_skip:n As opacity uses whatsits at present, we need to make sure that any spaces come after
them. This is done by “shuffling” the last skip past the opacity.

15 \cs_new_protected:Npn __talk_shuffle_skip:n #1

19 {

20 \skip_set_eq:NN \1__talk_shuffle_skip \tex_lastskip:D
21 \bool_lazy_and:nnTF

2 { ! \skip_if_eq_p:nn \1__talk_shuffle_skip { Opt } }
23 {

% \bool_lazy_or_p:nn

25 { \mode_if_horizontal_p: }

2% { \mode_if_vertical_p: }

27 T

28 {

29 \tex_unskip:D

37

__talk_opacity_begin:n
__talk_opacity_end:

__talk_action_alert:N

__talk_action_invisible:N
__talk action invisible end:N
__talk_action_visible:N
__talk_action_visible_end:N

30 #1
31 \mode_if_horizontal:TF

32 { \skip_horizontal:n }
33 { \skip_vertical:n }

34 \1__talk_shuffle_skip
35 }

36 {#1}

37 }

(End of definition for __talk_shuffle_skip:n.)

1.2 Opacity utilities

Currently, opacity is applies using whatsits at a low level. That means that to preserve
spacing, we need to insert no-op versions in various places. To do that and get correct
overlays, we need to track the current opacity. At present, this seems very ltx-talk-specific,
so is handled here with a few auxiliaries.

Simply tracking wrappers.

;s \cs_new_protected:Npn __talk_opacity_begin:n #1

30 { __talk_shuffle_skip:n { \opacity_begin:n {#1} } }
20 \cs_new_protected:Npn __talk_opacity_end:

2 { __talk_shuffle_skip:n { \opacity_end: } }

(End of definition for __talk_opacity_begin:n and __talk_opacity_end:.)

1.3 Action commands and environments

Commands that can be used as actions all have a common form (with one exception).
The common internal structure is used to enable them to be used as actions by looking
for the name __talk_action_(name):N.

At present a color selection.
2 \cs_new_protected:Npn __talk_action_alert:N #1

a o o

44 \bool_if:NTF #1

a5 { \color_select:n { alert } }
6 { \color_select:n { . } }

47 }

(End of definition for __talk_action_alert:N.)

Simply (un)hide unconditionally, overwriting any previous opacity.

25 \cs_new_protected:Npn __talk_action_invisible:N #1

w9 o

50 \bool_if:NTF #1

51 { __talk_opacity_begin:n { 0 } }
52 { __talk_opacity_begin:n { 1 } }
53 }

s+ \cs_new_protected:Npn __talk_action_invisible_end:N #1
ss { __talk_opacity_end: }

s6 \cs_new_protected:Npn __talk_action_visible:N #1

57 {

58 \bool_if:NTF #1

38

59 { __talk_opacity_begin:n { 1 } }

60 { __talk_opacity_begin:n { 0 } }

o}

o> \cs_new_protected:Npn __talk_action_visible_end:N #1
s { __talk_opacity_end: }

(End of definition for __talk_action_invisible:N and others.)

__talk_action_only:N Here, we simply throw away the content we do not want: this is done by typesetting in
__talk_action_only_end:N a disposable box.

e+ \cs_new_protected:Npn __talk_action_only:N #1

65 {

66 \bool_if:NF #1

67 { \vbox_set:Nw \1__talk_tmp_box }

68 }

e \cs_new_protected:Npn __talk_action_only_end:N #1
70 {

71 \bool_if:NF #1

7 { \vbox_set_end: }

73 }

(End of definition for __talk_action_only:N and __talk_action_only_end:N.)

\1__talk_uncover_hidden_fp Currently just an on-off, but that will change.

+ \NewTemplateType { hidden } { 0 }

s \DeclareTemplateInterface { hidden } { talk } { 0 }

7 { opacity : real = 0 }

7 \DeclareTemplateCode { hidden } { talk } { 0 }

7z { opacity = \1__talk_uncover_hidden_fp }

7o { __talk_opacity_begin:n { \1__talk_uncover_hidden_fp } }
s0 \DeclareInstance { hidden } { std } { talk } { }

~

(End of definition for \1__talk_uncover_hidden_£p.)

__talk_action_uncover:N Use the template: we may need to extend that to deal with the end-of-template case
__talk_action_uncover_end:N later.

st \cs_new_protected:Npn __talk_action_uncover:N #1

82 {

83 \bool_if:NTF #1

84 { __talk_opacity_begin:n { 1 } }
85 { \UseInstance { hidden } { std } }
86 }

&7 \cs_new_protected:Npn __talk_action_uncover_end:N #1
s { __talk_opacity_end: }

(End of definition for __talk_action_uncover:N and __talk_action_uncover_end:N.)

\invisible All generated automatically using the above implementations.

\uncover \clist_map_inline:nn { invisible , uncover , visible }

\visible o {
01 \ExpandArgs { cne } \NewDocumentCommand {#1}
92 { > { __talk_overlay_arg:n } D <> { all } +m }
93 {
94 \exp_not:c { __talk_action_ #1 :N } ##1
95 ##2

39

96 \exp_not:c { __talk_action_ #1 _end:N } ##1

97 }
(End of definition for \invisible, \uncover, and \visible. These functions are documented on page
?7.)

invisibleenv (env.) And the environment versions.

uncoverenv (env.) o \ExpandArgs { nnee } \NewDocumentEnvironment { #1 env }
visibleenv (env.) o { > { __talk_overlay_arg:n } D <> { all } }

100 { \exp_not:c { __talk_action_ #1 :N } ##1 }

101 { \exp_not:c { __talk_action_ #1 _end:N } ##1 }

102 ¥

\alert The \alert command requires a group to contain color, so is done separately even though
it still uses basically the same mechanism.
103 \NewDocumentCommand \alert { > { __talk_overlay_arg:n } D <> { all } +m }

104 {

105 \group_begin:

106 __talk_action_alert:N #1
107 #2

108 \group_end:

109 }

(End of definition for \alert. This function is documented on page ?7.)

alertenv (env.) As does the environment.
110 \NewDocumentEnvironment { alertenv } { > { __talk_overlay_arg:n } D <> { all } }
1w { __talk_action_alert:N #1 }
112 {3}

This code needs to be done manually as for the command version the content must be
entirely discarded. That can’t work for the environment version, which has to deal with
for example single items in a list (and so cannot be collected up verbatim and must use

a box).

113 \NewDocumentCommand \only { D <> { all } +m }

114 {
115 __talk_if_overlay:nT {#1}

116 {#2}
117 ¥

(End of definition for \only. This function is documented on page ?77.)

\only

The environment version could be done above, but it is clearer to keep this code entirely
separate from the rest.
115 \NewDocumentEnvironment { onlyenv } { > { __talk_overlay_ arg:n } D <> { all } }

1o { __talk_action_only:N #1 }
20 { __talk_action_only_end:N #1 }

onlyenv (env.)

\1__talk_saved_overlays_bool
\1__talk_saved_action_str ,,; \bool_new:N \1__talk_saved_overlays_bool

\1__talk_saved_actions_bool 1, \str_new:N \1__talk_saved_action_str
123 \bool_new:N \1__talk_saved_actions_bool

(End of definition for \1__talk_saved_overlays_bool, \1__talk_saved_action_str, and \1__talk_-
saved_actions_bool.)

40

\1__talk_overlay_all_bool

actionevarctdon)
__talk_action_begin:n
__talk_action_begin_aux:n
__talk_action_end:

122 \bool_new:N \1__talk_overlay_all_bool

(End of definition for \1__talk_overlay_all_bool.)

As we need data on not just overlays but also actions at the end of the environment, this
has to be done manually. To allow working with environments but also items, the code
needs to save data for the end function. The group is needed for cases where we are not
in a ITEX environment group. When an \onslide/\pause is active, it takes priority:
sorted by applying up-front. Actions can be skipped entirely if the overlay spec is simply
all, as there will never be any spacing issues, etc.

125 \NewDocumentCommand \action { D <> { all } +m }

126 {

127 \group_begin:

128 __talk_action_begin:n {#1}
129 #2

130 __talk_action_end:

131 \group_end:

132 }

133 \NewDocumentEnvironment { actionenv } { D <> { all } }
132 { __talk_action_begin:n {#1} }

135 { __talk_action_end: }

136 \cs_new_protected:Npn __talk_action_begin:n #1

137 {

138 \group_begin:

139 \str_if_eq:nnTF {#1} { all }

140 { \bool_set_true:N \1__talk_overlay_all_bool }
141 {

142 \bool_set_false:N \1__talk_overlay_all_bool
143 __talk_action_begin_aux:n {#1}

144 }

145 }

s \cs_new_protected:Npn __talk_action_begin_aux:n #1
147 {

148 __talk_decode_parse:n {#1}

149 \bool_set_eq:NN \1__talk_saved_overlays_bool
150 \1__talk_decode_overlays_bool

151 \str_set_eq:NN \1__talk_saved_action_str

152 \1__talk_decode_action_str

153 \bool_set_eq:NN \1__talk_saved_actions_bool

154 \1__talk_decode_actions_bool

155 \tl_if_empty:NTF \g__talk_onslide_tl

156 {

157 \bool_if:NTF \1__talk_decode_overlays_bool
158 {

159 \cs_if_exist_use:cF

160 { __talk_action_ \1__talk_decode_action_str :N }
161 { \use_none:n }

162 \1__talk_decode_actions_bool

163 }

164 { \UseInstance { hidden } { std } }

165 }

166 { __talk_action_invisible:N \c_true_bool }
167 }

41

165 \cs_new_protected:Npn __talk_action_end:

169 {

170 \bool_if:NF \1__talk_overlay_all_bool

171 {

172 \tl_if_empty:NTF \g__talk_onslide_t1l

173 {

174 \bool_if:NTF \1__talk_saved_overlays_bool

175 {

176 \cs_if_exist_use:cF

177 { __talk_action_ \1__talk_saved_action_str _end:N }
178 { \use_none:n }

179 \1__talk_saved_actions_bool

180 }

181 { __talk_opacity_end: }

182 }

183 { __talk_action_invisible_end:N \c_true_bool }
184 }

185 \group_end:

w6 F

(End of definition for \action and others. This function is documented on page 77.)

1.4 Non-action commands and environments

This section contains commands and environments that do not need to be made available
as actions.

\alt Simple wrappers around the internal switch.
187 \NewDocumentCommand \alt { D <> { all } +m +m }

188 {

189 __talk_if_overlay:nTF {#1}
190 {#2}

191 {#3}

192 }

(End of definition for \alt. This function is documented on page 77.)

\onslide Simply make transparent: this is done without grouping so we can work for example in
__talk_onslide:n tabular cells.

193 \NewDocumentCommand \onslide { D <> { all } }

194 {

195 __talk_onslide:n {#1}

196 \ignorespaces

197 }

10s \cs_new_protected:Npn __talk_onslide:n #1
199 {

200 \tl_use:N \g__talk_onslide_t1l

201 \tl_gclear:N \g__talk_onslide_tl

202 __talk_if_overlay:nF {#1}

203 {

204 __talk_opacity_begin:n { 0 }

205 \tl_gput_right:Nn \g__talk_onslide_tl
206 { __talk_opacity_end: }

207 }

208 }

42

(End of definition for \onslide and __talk_onslide:n. This function is documented on page ?77.)

\g__talk_onslide_t1l
200 \tl_new:N \g__talk_onslide_tl

(End of definition for \g__talk_onslide_tl.)

\temporal A tricky one: to separate the not-on-current-slide cases, the flag to continue is used.

210 \NewDocumentCommand \temporal { D <> { all } +m +m +m }
211 {

212 __talk_if_overlay:nTF {#1}

213 {#3}

214 {

215 \bool_if:NTF \g__talk_slide_continue_bool

216 {#4}

217 {#2}

29}
(End of definition for \temporal. This function is documented on page 77.)

\pause A thin wrapper.

220 \NewDocumentCommand \pause { o }

221 {

222 \legacy_if:nF { measuring@ }

223 {

204 \IfNoValueTF {#1}

225 { \int_gincr:N \g__talk_pauses_int }

226 { \int_gset:Nn \g__talk_pauses_int {#1} }

227 \exp_args:Ne __talk_onslide:n { \int_eval:n { \g__talk_pauses_int + 1 } - }
228 T

229 }

(End of definition for \pause. This function is documented on page 77.)

1.5 Fixed-size areas

__talk_overprint_begin:n A common auxiliary for overprinting, which starts off much the same for both
overlayarea and overprint.

230 \cs_new_protected:Npn __talk_overprint_begin:n #1

231 {

232 \par

233 \vbox_set_to_wd:Nnw \1__talk_tmp_box {#1}
234 \raggedright

235 \ignorespaces

236 }

(End of definition for __talk_overprint_begin:n.)

overlayarea (env.) An initial approach: quite similar to a column.

237 \NewDocumentEnvironment { overlayarea } { m m }
238 { __talk_overprint_begin:n {#1} }
239 {

240 \vbox_set_end:

43

241 \vbox_to_ht:nn {#2}

242 {

243 \box_use_drop:N \1__talk_tmp_box
244 \vfil

245 }

246 \par

247 ¥

\1__talk_overprint_int Track the overprints on a slide: as the slide forms a group, we do not need to worry about
resetting.

25 \int_new:N \1__talk_overprint_int
(End of definition for \1__talk_overprint_int.)

__talk_frame_overprint: To refer to the current overprint environment within the document: needed in the .aux
so avoids using non-letters.

20 \cs_new:Npn __talk_frame_overprint:

250 {

251 \int_to_Roman:n \g__talk_frame_int

252 \int_to_roman:n \1__talk_overprint_int
253 }

(End of definition for __talk_frame_overprint:.)

__talk_overpwverprdmte(&nv.) For overprinting, in contrast to beamer we use a two-pass approach to save the size at
__talk_overprint_check_ht:n the end of the run: this means you can use \only for example in overprinting.

252 \NewDocumentEnvironment { overprint } { 0 { \textwidth } }
255 { __talk_overprint_begin:n {#1} }

256 {

257 \vbox_set_end:

258 \int_incr:N \1__talk_overprint_int

259 __talk_overprint_save_ht:

260 \cs_if_exist:cTF

261 { overprint@ __talk_frame_overprint: }

262 {

263 \dim_compare: vNnTF

264 { overprint@ __talk_frame_overprint: }
265 > { \box_ht:N \1__talk_tmp_box }

266 {

267 \vbox_to_ht:vn

268 { overprint@ __talk_frame_overprint: }
269 {

270 \box_use_drop:N \1__talk_tmp_box
271 \vfil

272 }

273 }

274 { \box_use_drop:N \1__talk_tmp_box }
275 }

276 { \box_use_drop:N \1__talk_tmp_box }

277 \par

278 }

44

\textbf
\textit
\textmd
\textnormal
\textrm
\textsc
\textsf
\textsl
\texttt
\textup
\emph
\stdtextbf
\stdtextit

As there is no clear end-point for overprinting, we need to be careful to keep the current
width separate from the saved one. The rest is then about saving to the .aux file and
helping out the user.

309

310

311

312

313

314

320

\cs_new_protected:Npn __talk_overprint_save_ht:

\tl_if_exist:cF { g__talk_overprint_ __talk_frame_overprint: _tl }
{
\tl_new:c { g__talk_overprint_ __talk_frame_overprint: _tl }
\tl_gset:cn { g__talk_overprint_ __talk_frame_overprint: _tl }
{ opt %}
}
\tl_gset:ce { g__talk_overprint_ __talk_frame_overprint: _tl }
{
\dim_max:vn { g__talk_overprint_ __talk_frame_overprint: _tl }
{ \box_ht:N \1__talk_tmp_box }

}
\legacy_if:nT { @filesw }
{
\iow_now:Ne \@auxout
{
\gdef \exp_not:c { overprint@ __talk_frame_overprint: }
{
\exp_not:v { g__talk_overprint_ __talk_frame_overprint: _tl }
}
}
}

\hook_gput_code:nne { enddocument / afterlastpage } { talk }
{ __talk_overprint_check_ht:n { __talk_frame_overprint: } }

\cs_new_protected:Npn __talk_overprint_check_ht:n #1

\bool_lazy_and:nnF
{ \exp_not:N \cs_if_exist_p:c { overprint@ #1 } }
{
\dim_compare_p:vNv { overprint@ #1 } = { g__talk_overprint_ #1 _tl1 }
}
{
\msg_warning:nn { talk } { overprint-ht }
\cs_gset_protected:Npn __talk_overprint_check_ht:n ##1 { }
}

\msg_new:nnn { talk } { overprint-ht }

Overprint~area~height~has~changed:\\
rerun~LaTeX.

(End of definition for __talk_overprint_save_ht: and __talk_overprint_check_ht:n.)

1.6 Adding overlays to existing commands

Make the standard text commands overlay-aware. To keep the spacing unchanged when
the command is not active, we use the same approach as the kernel does for inserting the
right grouping.

45

32 \tl_map_inline:nn

323 {

324 \textbf

325 \textit

326 \textmd

327 \textnormal

328 \textrm

329 \textsc

330 \textsf

331 \textsl

332 \texttt

333 \textup

334 \emph

335 }

336 {

337 \ExpandArgs { c } \NewCommandCopy { std \cs_to_str:N #1 } #1
338 \ExpandArgs { Nne } \RenewDocumentCommand #1
339 {D<x>{all } +m }

340 {

341 \exp_not:N __talk_if_overlay:nTF {##1}
342 { \exp_not:c { std \cs_to_str:N #1 } }
343 { \exp_not:N __talk_textcmd_eqiv:n }
344 {##2}

345 }

346 }

;7 \cs_new_protected:Npn __talk_textcmd_eqiv:n #1
348 {

349 \mode_if_math:TF

350 { { \mbox {#1} } }

351 {

352 \mode_leave_vertical:

353 {#1}

354 }

355 }

(End of definition for \textbf and others. These functions are documented on page 77?.)

\includegraphics Just wrap up the args and forward if appropriate. The star is #1 here as that matches
\stdincludegraphics the documented behavior of starred commands generally.
356 \RequirePackage { graphicx }
557 \NewCommandCopy \stdincludegraphics \includegraphics
355 \RenewDocumentCommand \includegraphics { s D <> { all } o om }

359 {

360 __talk_if_overlay:nT {#2}

361 {

362 \use:e

363 {

364 \exp_not:N \stdincludegraphics

365 \IfBooleanT #1 { * }

366 \IfNoValueF {#3} { [\exp_not:n { {#3} } 1 }
367 \IfNoValueF {#4} { [\exp_not:n { {#4} } 1 }
368 }

369 {#5}

370 }

371 }

46

\label
__talk_label:n

(End of definition for \includegraphics and \stdincludegraphics. These functions are documented
on page 77.)

Here, we can’t wrap the existing command up as we need the space hack, so it has to
be declared from scratch. There is also a non-standard overlay default. At present, no
special tricks as seen in beamer.

372 \RenewDocumentCommand \label { D <> { 1 } m }

373 {

374 \@bsphack

375 __talk_if_overlay:nT {#1}

376 { __talk_label:n {#2} }

377 \@esphack

378 }

579 \cs_new_protected:Npn __talk_label:n #1
380 {

381 \begingroup

382 \UseHookWithArguments { label } { 1 } {#1}
383 \protected@write \@auxout { }

384 {

385 \string \newlabel {#1}

386 {

387 { \@currentlabel }

388 { \thepage }

389 { \@currentlabelname }

390 { \@currentHref }

301 { \@kernel@reserved@label@data }
392 }

393 }

394 \endgroup

395 }

(End of definition for \label and __talk_label:n. This function is documented on page 77.)
306 (/class)

47

Part VIII
Itx-talk-required — “Required”
definitions

1 Itx-talk-required implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (ee=talk)
Here we collect up things that are more-or-less required to create a useful class but are
not defined by the IATEX kernel for historical reasons. They are therefore largely copies

from article.cls and contain “classical” definitions so that they follow the expectations
of third-party code.

\today This is the definition as done in the standard classes.

5 \cs_new_nopar:Npn \today

+ A

5 \ifcase \month \or
6 January \or

7 February \or
8 March \or

9 April \or

10 May \or

11 June \or

12 July \or

13 August \or

14 September \or
15 October \or
16 November \or
17 December

18 \fi

19 \space

20 \number \day ,
21 \space

2 \number \year
23 }

(End of definition for \today. This function is documented on page ?77.)

1.1 Standard design settings

» \setcounter { tocdepth } { 3 }

s \setlength \arraycolsep { 5pt }

s \setlength \tabcolsep { 6pt }

7 \setlength \arrayrulewidth { 0.4pt }
\setlength \doublerulesep { 2pt }

20 \setlength \tabbingsep { \labelsep }
o \skip \@mpfootins = \skip \footins

N

N

48

;1 \setlength \fboxsep { 3pt }
2 \setlength \fboxrule { 0.4pt }

1.2 List support

3 \setlength \labelsep { 0.5em }

s \cs_new:Npn \labelenumi { \theenumi .

}

55 \cs_new:Npn \labelenumii { (\theenumii) }

36 \cs_new:Npn \labelenumiii { \theenumiii . }

s7 \cs_new:Npn \labelenumiv { \theenumiv . }

55 \cs_new:Npn \labelitemi { \labelitemfont \textbullet }

39 \cs_new:Npn \labelitemii { \labelitemfont \bfseries \textendash }
20 \cs_new:Npn \labelitemiii { \labelitemfont \textasteriskcentered }
21 \cs_new:Npn \labelitemiv { \labelitemfont \textperiodcentered }
2 \cs_new:Npn \labelitemfont { \normalfont }

.3 \setlength \leftmargini { 2em }
2 \setlength \leftmarginii { 2em }
25 \setlength \leftmarginiii { 2em }
% \setlength \labelsep { 0.5em }

IS

 \setlength \labelwidth { \leftmargini }

s \addtolength \labelwidth { -\labelsep }

20 \cs_gset_nopar:Npn \@listi

50 {

51 \leftmargin \leftmargini

52 \topsep 3pt plus 2pt minus 2.5pt
53 \parsep Opt

54 \itemsep 3pt plus 2pt minus 3pt
55 }

56 \cs_gset_eq:NN \@listI \@listi
s7 \cs_gset_nopar:Npn \@listii
58 {

59 \leftmargin \leftmarginii

60 \topsep 2pt plus 1pt minus 2pt
61 \parsep Opt plus 1pt

62 \itemsep \parsep

63 }

e+ \cs_gset_nopar:Npn \@listiii
65 {

66 \leftmargin \leftmarginiii

67 \topsep 2pt plus 1pt minus 2pt

68 \parsep Opt plus 1pt
69 \itemsep \parsep

o}

71 \setlength \partopsep { Opt }

7 (/class)

49

Part IX
Itx-talk-structure — Structural
commands

1 Itx-talk-structure implementation

Start the DocStrip guards.
1 (xclass)
Identify the internal prefix.
. (0@=talk)

1.1 Frame title

\g__talk_frame_title_tl

\g__talk_frame_subtitle_tl 3 \tl_new:N \g__talk_frame_title_tl
2 \tl_new:N \g__talk_frame_subtitle_tl

(End of definition for \g__talk_frame_title_tl and \g__talk_frame_subtitle_tl.)

\frametitle Just data storage: at the present no use of the optional argument.
5 \NewDocumentCommand \frametitle { D <> { all } 0 {#3} m }

o {

7 __talk_if_overlay:nT {#1}

8 { \tl_gset:Nn \g__talk_frame_title_tl {#3} }

9 }

10 \NewDocumentCommand \framesubtitle { D <> { all } 0 {#3} m }
11 {

12 __talk_if_overlay:nT {#1}

13 { \tl_gset:Nn \g__talk_frame_subtitle_tl {#3} }

14 }

(End of definition for \frametitle. This function is documented on page 77.)

__talk_frame_title:n Inserting the frame title requires we deal with tagging as well as appearance: if there is
__talk_frame_title_tagged:n a title, we need to tag just this part of the header.

15 \NewTemplateType { frametitle } { 1 }
16 \DeclareTemplateInterface { frametitle } { talk } { 1 }

T

18 after-vspace : skip = \bigskipamount ,

19 before-vspace : skip = Oem ,

20 color : tokenlist = ,

21 font : tokenlist = \Large \bfseries
»}

23 \DeclareTemplateCode { frametitle } { talk } { 1 }
24 {

25 after-vspace = \1__talk_frametitle_after_skip ,

2 before-vspace = \1__talk_frametitle_before_skip ,
27 color \1__talk_frametitle_color_tl ,
28 font \1__talk_frametitle_font_tl

50

31 \noindent

32 \vspace { \1__talk_frametitle_before_skip }

33 \group_begin:

34 \tl_if_empty:NF \1__talk_frametitle_color_tl
35 { \color_select:V \1__talk_frametitle_color_tl }
36 \1__talk_frametitle_font_tl

37 \tl_if_blank:nF {#1}

38 { __talk_frame_title:n {#1} }

39 \par

40 \group_end:

a1 \vspace { \1__talk_frametitle_after_skip }

Fos }
.3 \DeclareInstance { frametitle } { header } { talk } { }
2 \cs_new_protected:Npn __talk_frame_title:n #1

s

46 \bool_if:NTF \g__talk_frame_tag_bool

a7 { __talk_frame_title_tagged:n }

48 { \use:n }

49 {#1}

0}

st \cs_new_protected:Npn __talk_frame_title_tagged:n #1
52 {

53 __talk_header_tag_begin:e

54 {

55 firstkid = true ,

56 parent = \int_use:N \g__talk_frame_struct_int ,
57 tag = frametitle ,

58 title = { \text_purify:n { \g__talk_frame_title_tl } } ,
59 }

60 \group_begin:

61 \tagpdfparaOff

62 #1

63 \group_end:

64 __talk_header_tag_end:

65}

(End of definition for __talk_frame_title:n and __talk_frame_title_tagged:n.)

1.2 Sectioning

\1__talk_section_tl Two versions of the data store: one set locally (but at the top level) for general use, one
\g__talk_section_tl set (and more importantly cleared) globally to allow insertion in the header area just
\1__talk_subsection_tl once per name.
\g__talk_subsection_tl 4 \tl_new:N \1__talk_section_tl
\1__talk_subsubsection_tl & \tl_new:N \g__talk_section_tl
\g__talk_subsubsection_tl e \tl_new:N \1__talk_subsection_tl
6o \tl_new:N \g__talk_subsection_tl
70 \tl_new:N \1__talk_subsubsection_tl
71 \tl_new:N \g__talk_subsubsection_tl

(End of definition for \1__talk_section_tl and others.)

\section Here, we need full WTEX counters, so create them using the appropriate mechanism: that
\subsection also means we can sort out counter dependency and the appearance (using the same setup
\subsubsection
\thesection 51

\thesubsection
\thesubsubsection

as in article). As (subsub)section numbers never increment inside frames, we remove these
counters from the general tracker.

7 \newcounter { section }

73 \newcounter { subsection } [section]

72 \newcounter { subsubsection } [subsection]

75 \seq_gremove_all:Nn \1__talk_cnt_reset_seq { section }

7 \seq_gremove_all:Nn \1__talk_cnt_reset_seq { subsection }

77 \seq_gremove_all:Nn \1__talk_cnt_reset_seq { subsubsection }

7z \cs_gset:Npn \thesection { \@arabic \c@section }

79 \cs_gset:Npn \thesubsection { \thesection . \@arabic \c@subsection }

20 \cs_gset:Npn \thesubsubsection { \thesubsection . \@arabic \c@subsubsection }

(End of definition for \section and others. These functions are documented on page 77.)

\section The sectioning commands all have essentially the same form: we therefore create using a

\subsection generator with the necessary conditionals in place. As we do not typeset sections at this

\subsubsection stage, the code is quite different from article. This also means that the bookmark links

\insertsection mneed to point forward to the next slide: if that doesn’t appear, the bookmarks will be

\insertsubsection out. Using the general scratch sequence here should be OK: it really is a one-off setting.

\insertsubsubsection We need a sequence to allow indexed mapping to avoid any extra setup for the depth
__talk _sect_section:Nnn value.

__talk_sect_subsection:Nnn 4 \seq_set_from_clist:Nn \1_tmpa_seq

__talk sect subsubsection:llin g { section , subsection , subsubsection }
53 \seq_map_indexed_inline:Nn \1_tmpa_seq
s {
85 \use:e
86 {
87 \NewDocumentCommand \exp_not:c { insert #2 } { }
89 \exp_not:N \tl_use:N
90 \exp_not:c { 1__talk_ #2 _tl }
91 }
2 \NewDocumentCommand \exp_not:c {#2}
93 {sD<>{all } 0 {##4} m }
94 {
95 \exp_not:N \bool_if:NF \exp_not:N \1__talk_frame_bool
96 {
o7 __talk_if_overlay:nT {##2}
08 { \exp_not:c { __talk_sect_ #1 :Nnn } ##1 {##3} {##4} }
99 ¥
100 3
101 \cs_new_protected:Npn \exp_not:c { __talk_sect_ #1 :Nnn } ##1##2##3
102 {
103 \exp_not:N \refstepcounter {#2}
104 \UseTaggingSocket { sec / end } { \use:c { toclevel@ #2 } }
105 \UseTaggingSocket { sec / begin }
106
107 { \use:c { toclevel@ #2 } }
108 {
109 tag =
110 \exp_not:N \UseStructureName

111 { sec / \use:c { toclevel@ #2 } }

52

113 }

114 \tl_set:Nn \exp_not:c { 1__talk_ #2 _t1 } {##3}

115 \UseTaggingSocket { talk / sec / title } {#2}

116 \str_if_eq:nnT {#2} { section }

117 { \tl_clear:N \exp_not:N \1__talk_subsection_tl }
118 \str_if_eq:nnF {#2} { subsubsection }

119 { \tl_clear:N \exp_not:N \1__talk_subsubsection_tl }
120 \exp_not:N \addcontentsline { toc } {#2}

121 {

122 \exp_not:N \int_compare:nNnF {#1} >

123 { \exp_not:N \value { secnumdepth } }

124 {

125 \exp_not:N \protect \exp_not:N \numberline
126 { \exp_not:c { the #2 } }

127 }

128 ##3

129 }

130 \hook_use:n { #2 / begin }

131 }

132 \hook_new:n { #2 / begin }

133 }

134}

(End of definition for \section and others. These functions are documented on page ?77.)

talk/sec/title The argument is one of section, subsection or subsubsection.
__talk_sect_tag:nn ; \NewTaggingSocket { talk / sec / title } { 1 }
135 \NewTaggingSocketPlug { talk / sec / title } { default }
157 { \exp_args:Ne __talk_sect_tag:nn { \text_purify:v { 1__talk_ #1 _ t1 } } {#1} }
133 \cs_new_protected:Npn __talk_sect_tag:nn #1#2

@

139 {

140 \tag_struct_begin:e

141 {

142 tag =

143 \UseStructureName { sec / \use:c { toclevel@ #2 } / title } ,
144 title = {#1} ,

145 actualtext = {#1} ,

146 }

147 \tag_struct_end:

148 }

120 \AssignTaggingSocketPlug { talk / sec / title } { default }

(End of definition for talk/sec/title and __talk_sect_tag:nn. This function is documented on page
?7.)

1.3 Table of contents

\@starttoc The standard kernel implementation here deliberately overwrites the file as soon as it’s
read. That’s no good for us as the table of contents can be read multiple times. So we
modify the code: we start from the tagging-aware version (this may need to be revisited).
We retain the ITEX 2¢ code as much as possible.

150 \cs_gset_protected:Npn \@starttoc #1

151 {
152 \begingroup

53

\tableofcontents

\1l@section
\1l@subsection
\1l@subsubsection
__talk_toc_aux:nnnn
__talk_toc_dest:n
__talk_toc_dest:w
__talk_toc_level:nnnn

162

163

164

165

166

167

\makeatletter
\UseTaggingSocket { toc / starttoc / before } {#1}
\@input { \jobname .#1 }
\UseTaggingSocket { toc / starttoc / after } {#1}
\legacy_if:nT { @filesw }
{
\AddToHook { enddocument / afterlastpage }
{
\expandafter \newwrite \csname tf@ #1 \endcsname
\immediate \openout \csname tf@ #1 \endcsname \jobname .#1 \relax
}
}
\@nobreakfalse
\endgroup
}

(End of definition for \@starttoc. This function is documented on page 77.)

For the present simply print the output.

168

\NewDocumentCommand \tableofcontents { 0 { } }
{
\group_begin:
\@starttoc { toc }
\group_end:
}

(End of definition for \tableofcontents. This function is documented on page 77.)

Initial hard-coded versions to be templated once we have some other effects also working.
We may need to look at this “higher up” as we will need to know the section numbers.

191

192

194

195

196

197

\cs_new_protected:Npn \l@section #1#2
{ __talk_toc_aux:nnnn { 1 } { \bfseries \color { structure } } {#1} {#2} }
\cs_new_protected:Npn \l@subsection #1#2
{
__talk_toc_aux:nnnn
{21}
{
\skip_set:Nn \leftskip { 2em }
\color_ensure_current:
}
{#1} {#2}
}
\cs_new_protected:Npn \l@subsubsection #1#2
{
__talk_toc_aux:nnnn
{31}
{
\skip_set:Nn \leftskip { 4em }
\color_ensure_current:
\footnotesize
}
{#1} {#2}
}
\cs_new_protected:Npn __talk_toc_aux:nnnn #1#2#3#4

54

198 {

109 \int_compare:nNnTF { \value { section } } < 1

200 { \use:n }

201 { __talk_toc_dest:n }

202 { __talk_toc_level:nnnn {#1} {#2} {#3} {#4} }
203 }

We can extract the details for the TOC levels from \@contentsline@destination. At
present, that is quite simple-minded: if we are in the current section, show fully, else
make semi-opaque. Needs a rounded-out interface but the basic idea will be the same.

204 \cs_new_protected:Npn __talk_toc_dest:n

205 {

206 \exp_after:wN __talk_toc_dest:w \@contentsline@destination
207 .0 .0 .0 . \g_stop

208 }

20 \cs_new_protected:Npn __talk_toc_dest:w #1 . #2 . #3 . #4 . #5 \q_stop #6
210 {

211 \int_compare:nNnTF { \value { section } } = {#2}

212 {#6}

213 {

214 \opacity_begin:n { 0.2 }

215 #6

216 \opacity_end:

217 T

218 }

219 \cs_new_protected:Npn __talk_toc_level:nnnn #1#2#3#4

220 {

21 \int_compare:nNnF {#1} > { \value { tocdepth } }

222 {

223 \group_begin:

224 \noindent

225 #2

226 \UseHookWithArguments { contentsline / text / before } { 4 }
207 {#1} {#3} {#4} { \@contentsline@destination }

228 #3

229 \UseHookWithArguments { contentsline / text / after } { 4 }
230 {#1} {#3} {#4} { \@contentsline@destination }

231 \UseHookWithArguments { contentsline / page / before } { 4 }
232 {#1} {#3} {#4}

233 { \@contentsline@destination }

234 \UseHookWithArguments { contentsline / page / after } { 4 }
235 {#1} {#3} {#4}

236 { \@contentsline@destination }

237 \par

238 \group_end:

239 \vfil

240 }

241 ¥

(End of definition for \1@section and others. These functions are documented on page ?7.)

22 \setcounter { tocdepth } { 2 }

55

1.4 Block environments

description (env.) Stub logical environments: needed as the tagging setup expects these to exist.

quote (env.

) 2 \NewDocumentEnvironment { description } { } { } { }

quotation (env.) s \NewDocumentEnvironment { quote } { } {

) -
)

5 \NewDocumentEnvironment { quotation } {
226 \NewDocumentEnvironment { verse } { } {

R

P{}
FLr{}
Y {3}

(

(

(
verse (env.

(

(

(

stdquote (enw.
stdquotation (env.) 27 \AddToHook { begindocument / before }

stdverse (env.) ** {
249 \clist_map_inline:nn { quote , quotation , verse }
250 {
251 \NewEnvironmentCopy { std #1 } {#1}
252 \RenewDocumentEnvironment {#1} { D <> { all } '0 { } }
253 {
254 __talk_action_begin:n {##1}
255 \begin { std #1 } [{##2}]
256 \ignorespaces
257 }
258 {
259 \end { std #1 }
260 __talk_action_end:
261 3
262 }
263 }

block (env.)
264 \NewDocumentEnvironment { block } { D <> { all } m }

265 {

266 __talk_action_begin:n {#1}
267 \par

268 \vbox_set:Nw \1__talk_tmp_box
269 \group_begin:

270 \medskip

271 \leavevmode

272 \normalfont \large \bfseries
273 \color { structure }

274 #2

275 \par

276 \medskip

277 \group_end:

278 }

279 {

280 \vbox_set_end:

281 \box_use:N \1__talk_tmp_box
282 \par

283 __talk_action_end:

284 }

1.5 Lists

\item Again, add the additional argument: here, we have to do a little gymnastics. The test
__talk_item_parse_spec:w for an overlay has to come after the standard item definition: in a list, items have to
__talk_item_parse_spec:n

56

\1__talk_list_end_tl

__block_inter_item:
\BlockEnvEnd
\endblockenv

close the structure before them first, so if we test too early, we’d end up covering then
uncovering straight away!

255 \AddToHook { begindocument / before }

286 {

287 \NewCommandCopy \stditem \item

288 \RenewDocumentCommand \item { d <> o }

289 {

290 \IfNoValueTF {#2}

201 { \stditem }

202 { \stditem [{#2} 1 }

293 \IfNoValueTF {#1}

294 {

205 \exp_after:wN __talk_item_parse_spec:w
296 \1__talk_action_spec_str < all > \qg_stop
297 }

208 { __talk_item_parse_spec:n {#1} }

209 T

300 }

Parsing the spec is a separate function here as there are a couple of routes to get here. At
present we only have a false branch, but for spacing we likely will need to add something
to the true branch too. The odd stuff with \currentgrouplevel here is needed so we
only close the item at the correct nesting, allowing for the group that gets added.

501 \cs_new_protected:Npn __talk_item_parse_spec:w #1 < #2 > #3 \qg_stop

3o { __talk_item_parse_spec:n {#2} }

503 \cs_new_protected:Npn __talk_item_parse_spec:n #1

304 {

305 \bool_lazy_or:nnF

306 { \tl_if_blank_p:n {#1} }

307 { \str_if_eq_p:nn {#1} { all } }

308 {

309 \tl_set:Ne \1__talk_list_end_tl

310 {

311 \exp_not:N \int_compare:nNnT \tex_currentgrouplevel:D =
312 { \int_eval:n { \tex_currentgrouplevel:D + 1 } }
313 {

314 __talk_action_end:

315 \tl_clear:N \exp_not:N \1__talk_list_end_tl

316 }

317 }

318 __talk_action_begin:n {#1}

319 }

320 }

(End of definition for \item, __talk_item_parse_spec:w, and __talk_item_parse_spec:n. This func-
tion is documented on page 77.)

321 \tl_new:N \1__talk_list_end_t1

(End of definition for \1__talk_list_end_t1.)

There are no currently no hooks for insertion at the end of list items, so we have to do it
manually. We cannot target __block_list_item_end:/__block_list_end: as these
change definition if tagging is suspended.

57

32 \cs_gset_protected:Npn __block_inter_item:

323 {

324 \legacy_if:nT { @inlabel }

325 { \indent \par }

326 \mode_if_horizontal:T

327 {

328 __block_skip_remove_last:
320 __block_skip_remove_last:
330 \par

331 }

332 \1__talk_list_end_tl

333 __kernel_list_item_end:

334 __kernel_list_item_begin:

335 \addpenalty \@itempenalty

336 \addvspace \itemsep

337 }

A rather long block done by expansion to avoid duplication in a patch.
333 \IfFormatAtLeastTF { 2026-06-01 }

5.9 { \cs_gset_protected:Npe \BlockEnvEnd }

20 { \cs_gset:Npe \endblockenv }

341 {

342 \exp_not:n

343 { __block_debug_typeout:n { blockenv~common~ending \on@line } }
344 \cs_if_exist:NTF \1__block_transparent_level_bool
345 {

346 \exp_not:N \bool_if:NF

347 \exp_not:N \1__block_transparent_level_bool

348 }

349 {

350 \exp_not:N \bool_if:NT

351 \exp_not:N \1__block_level_incr_bool

352 }

353 { \int_gdecr:N \exp_not:N \g_block_nesting_depth_int }
354 \exp_not:n

355 {

356 \legacy_if:nT { @inlabel }

357 {

358 \mode_leave_vertical:

359 \legacy_if_gset_false:n { @inlabel }

360 }

361 __block_if_list:T

362 { \legacy_if:nT { Onewlist } { \@noitemerr } }
363 \mode_if_horizontal:TF

364 {

365 __block_skip_remove_last:

366 __block_skip_remove_last:

367 \par

368 3

360 { \@inmatherr { \end { \@currenvir } } }

370 \1__talk_list_end_tl

371 __kernel_displayblock_end:

372 __block_if_list:T { \legacy_if_gset_false:n { @newlist } }
373 \legacy_if_gset_false:n { Onobreak }

374 \legacy_if:nF { @noparlist }

58

itemize (env.)
enumerate (env.)
description (env.)

\1__talk_action_spec_str

375 {
376 __block_skip_set_to_last:N \1_tmpa_skip

377 \dim_compare:nNnT \1_tmpa_skip > \c_zero_dim
378 {

379 \skip_vertical:n { - \1_tmpa_skip }

380 \skip_vertical:n { \1l_tmpa_skip + \parskip - \Q@outerparskip }
381 }

382 \addpenalty \@endparpenalty

383 \addvspace \1__block_topsepadd_skip

384 }

385 \socket_use:n { block / endpe }

386 }

e}

(End of definition for __block_inter_item:, \BlockEnvEnd, and \endblockenv. These functions are
documented on page 77.)

Allow for the classical beamer syntax: currently two versions but that will only last until
the 2026-06-01 release of XTEX is out.

;s \AddToHook { begindocument / before }

389 {

390 \clist_map_inline:nn { itemize , enumerate , description }

391 {

392 \IfFormatAtLeastTF { 2026-06-01 }

393 {

394 \RenewDocumentEnvironment {#1} { = { action-spec } !0 { } }
395 { \SimpleBlockEnv {#1} {##1} }

396 { \BlockEnvEnd }

397 }

308 {

399 \RenewDocumentEnvironment {#1} { = { action-spec } !o }

400 {

401 \IfNoValueTF {##1}

402 { \UseInstance { blockenv } {#1} { } }
403 { \UseInstance { blockenv } {#1} {##1} }
404 }

405 { \endblockenv }

406 }

407 ¥

408 }

And add the structural color to item labels.
200 \AddToHook { begindocument / before }

410 {

a1 \EditInstance { item } { basic }

a12 { label-format = \color { structure } #1 }

413 \EditInstance { item } { description }

414 { label-format = \normalfont \bfseries \color { structure } #1 }
415 }

Add an overlay key to the block template. Placed here, it applies before the \item starts,
so we do not have to redefine the latter to do actions up-front. This also means it can
apply to whatever we want it to within a block. Currently two versions but that will
only last until the 2026-06-01 release of I¥TEX is out.

59

116 \IfFormatAtLeastTF { 2026-06-01 }

417 {

418 \keys_define:nn { template / block / std 1}

419 { action-spec .str_set:N = \1__talk_action_spec_str }
420 }

421 {

422 \keys_define:nn { template / block / display }

423 { action-spec .str_set:N = \1__talk_action_spec_str }
424 ¥

(End of definition for \1__talk_action_spec_str.)

1.6 Theorems, etc.

\newtheorem We need to extend the creation of theorems in two ways: add the overlay argument, and
\stdnewtheorem add the counter to the list of those reset during overlay creation.

225 \NewCommandCopy \stdnewtheorem \newtheorem
26 \RenewDocumentCommand \newtheorem { m o m o }

427 {

428 \IfNoValueTF {#4}

429 {

430 \IfNoValueTF {#2}

431 { \stdnewtheorem {#1} {#3} }

43 { \stdnewtheorem {#1} [{#2} 1 {#3} }
433 }

434 {

435 \IfNoValueTF {#2}

436 { \stdnewtheorem {#1} {#3} [{#4} 1 }
437 { \stdnewtheorem {#1} [{#2} 1 {#3} [{#4} 1 }
438 }

439 \NewEnvironmentCopy { std #1 } {#1}

440 \RenewDocumentEnvironment {#1} { D <> { all } o }
441 {

402 __talk_action_begin:n {##1}

443 \IfNoValueTF {##2}

s { \begin { std #1 } }

a5 { \begin { std #1 } [{##2} 1 }

446 \ignorespaces

447 }

448 {

449 \end { std #1 }

450 __talk_action_end:

451 }

452 }

(End of definition for \newtheorem and \stdnewtheorem. These functions are documented on page 77.)

153 (/class)

60

\@author

\@date
\@institute
\@subtitle
\@title
\@shortauthor
\@shortdate
\@shortinstitute
\@shortsubtitle
\@shorttitle

\author
\date
\title

Part X
Itx-talk-title — Title pages

1 Itx-talk-title implementation

Start the DocStrip guards.
1 (*class)
Identify the internal prefix.
. (ee=talk)

We create a set of keys and variables in one go. Following the classical kernel approach,
all of the underlying storage is global. The short values will always be set in the following
code so can be used automatically anywhere we might want them.

5 \clist_map_inline:nn

s+ { author , date , institute , subtitle , title }

{
6 \keys_define:nn { talk / metadata }
7 {
3 #1 .tl_gset:c = Q@ #1 ,
9 short- #1 .tl_gset:c = @short #1
10 }
11 }

Allow empty values for author and title.

12 \tl_gclear:N \@author
13 \tl_gclear:N \@title

As the date has a standard value, that has to be propagated.
12 \tl_gset_eq:NN \@shortdate \@date

(End of definition for \@author and others. These variables are documented on page ?77.)

Slightly repetitive but as we need to handle the tagging aspects, this is easier than using
a loop. The main aim is to add the short metadata concept. Notice that keys are set
before the main data storage in case someone set the value as a key as well as a mandatory
argument.

s \RenewDocumentCommand \author { = { short-author } 0 { {#2} } m }

16 {

17 \keys_set:nn { talk / metadata } {#1}

18 \tl_gset:Nn \@author {#2}

19 \tl_gset_eq:NN \g__tag_title_author_tl \Qauthor

20 \keys_set_known:nn { hyp } {#1}

21 }

2> \RenewDocumentCommand \date { = { short-date } 0 { {#2} } m }
23 {

2 \keys_set:nn { talk / metadata } {#1}

25 \tl_gset:Nn \@date {#2}

s}

»7 \RenewDocumentCommand \title { = { short-title } 0 { {#2} } m }
28 {
29 \keys_set:nn { talk / metadata } {#1}

61

w

0 \tl_gset:Nn \@title {#2}

31 \tl_gset_eq:NN \g__tag_title_title_tl \@title
32 \keys_set_known:nn { hyp } {#1}

33 }

(End of definition for \author, \date, and \title. These functions are documented on page ?7.)

\institute Simple storage at present: unlike some of the kernel data, there is not a lot to do here.
\subtitle ., \NewDocumentCommand \institute { = { short-institute } 0 { {#2} } m }

35 {

36 \keys_set:nn { talk / metadata } {#1}

37 \tl_gset:Nn \Q@institute {#2}

38 ¥

30 \NewDocumentCommand \subtitle { = { short-subtitle } O { {#2} } m }
w o

41 \keys_set:nn { talk / metadata } {#1}

a2 \tl_gset:Nn \@subtitle {#2}

PER

(End of definition for \institute and \subtitle. These functions are documented on page 77.)

\1__talk_titlelem_after_skip As the various elements of the titlepage share certain characteristics, we use a single
\1 talk titlelen before skip template and split them as instances.
\1__talk_titlelem_color_tl ,, \NewTemplateType { titlepage-element } { 1 }
\1__talk_titlelem_font_tl .5 \DeclareTemplateInterface { titlepage-element } { talk } { 1 }
\l talk titlelem tag begin t1 a6 {

\1__talk_titlelem_tag_end_tl 4 after-skip : length = Oem ,
48 before-skip : length = Oem ,
49 color : tokenlist = . ,
50 font : tokenlist = \normalfont ,
51 tag-begin : tokenlist = ,
52 tag-end : tokenlist =
53 }
s« \DeclareTemplateCode { titlepage-element } { talk } { 1 }
55 {
56 after-skip = \1__talk_titlelem_after_skip ,
57 before-skip = \1__talk_titlelem_before_skip ,
58 color = \1__talk_titlelem_color_tl ,
59 font = \1__talk_titlelem_font_tl ,
60 tag-begin = \1__talk_titlelem_tag_begin_tl ,
61 tag-end = \1__talk_titlelem_tag_end_tl
e }
63 {
64 \tl_if_empty:nF {#1}
65 {
66 \vspace { \1__talk_titlelem_before_skip }
67 \group_begin:
68 \tl_if_empty:NF \1__talk_titlelem_color_tl
69 { \color_select:V \1__talk_titlelem_color_tl }
70 \1__talk_titlelem_font_tl
7 \1__talk_titlelem_tag_begin_tl
72 #1
73 \par
74 \1__talk_titlelem_tag_end_tl

62

75 \group_end:
76 \vspace { \1__talk_titlelem_after_skip }
77 }
78 }
Standard settings are taken from beamer with minor adjustments.

79 \DeclareInstance { titlepage-element } { author } { talk }

80 { before-skip = lem }

s1 \DeclareInstance { titlepage-element } { date } { talk }

&2 { after-skip = 0.5em }

53 \DeclarelInstance { titlepage-element } { institute } { talk }
s« { font = \scriptsize }

&5 \DeclareInstance { titlepage-element } { subtitle } { talk }
% { before-skip = 0.25em , color = structure }

s7 \DeclareInstance { titlepage-element } { title } { talk }

88 {

89 color = structure ,

9 font = \Large ,

01 tag-begin = \tag_struct_begin:n { tag = Title } ,
B tag-end = \tag_struct_end:

93 }

(End of definition for \1__talk_titlelem_after_skip and others.)

\l talk titlepage order clist Here, we deal with the overall style: notice that frame vertical alignment actually applies
\l talk titlepage alignment t1 elsewhere, which is why it doesn’t show up in the template code part. As a result, we
\l talk titlepage framestyle t1 have a slightly repetitive key interface.
\1__talk_frame_alignment_tl o, \NewTemplateType { titlepage } { 0 }
os \DeclareTemplateInterface { titlepage } { talk } { 0 }

96 {

97 element-order : commalist =

98 {

99 title s

100 subtitle |,

101 author s

102 institute ,

103 date

104 } N

105 framestyle : tokenlist = talk ,

106 horizontal-alignment : choice { left , center , right } = center ,
107 vertical-alignment : choice { bottom , center , stretch , top } = center
108 }

100 \DeclareTemplateCode { titlepage } { talk } { 0 }

110 {

111 element-order = \1__talk_titlepage_order_clist ,

112 framestyle = \1__talk_titlepage_framestyle_tl ,

113 horizontal-alignment =

114 {

115 left = \tl_set:Nn \1__talk_titlepage_alignment_tl { flushleft } ,
116 center = \tl_set:Nn \1__talk_titlepage_alignment_tl { center } ,
117 right = \tl_set:Nn \1__talk_titlepage_alignment_tl { flushright }
118 } N

119 vertical-alignment =

120 {

121 bottom = \tl_set:Nn \1__talk_frame_alignment_tl { bottom } ,

63

122 center = \tl_set:Nn \1__talk_frame_alignment_tl { center } ,
123 stretch = \tl_set:Nn \1__talk_frame_alignment_tl { stretch } ,

124 top = \tl_set:Nn \1__talk_frame_alignment_tl { top }

125 }

126 }

127 {

128 \tl_if_empty:NF \1__talk_titlepage_framestyle_tl

129 { \exp_args:NV \thispagestyle \1__talk_titlepage_framestyle_tl }
130 \begin { \1__talk_titlepage_alignment_tl }

131 \cs_set_protected:Npn \and { \quad }

132 \clist_map_inline:Nn \1__talk_titlepage_order_clist

133 {

134 \ExpandArgs { nnv } \UseInstance { titlepage-element }
135 {##1} { @ ##1 }

136 }

137 \end { \1__talk_titlepage_alignment_t1l }

138 }

(End of definition for \1__talk_titlepage_order_clist and others.)

\maketitle A very simple setup.
130 \NewDocumentCommand \maketitle { 0 {} }

140 {

141 \bool_if:NTF \1__talk_frame_bool

142 { \UseTemplate { titlepage } { talk } {#1} }
143 {

144 \begin { frame }

145 \UseTemplate { titlepage } { talk } {#1}
146 \end { frame }

147 }

148 }

(End of definition for \maketitle. This function is documented on page 77.)

149 (/class)

64

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
NC 86
) 86
© commands:
\@_decode_overlay_+:nw 131
AN\ 319
A
\abovecaptionskip 159, 161
\action, 125
actionenv (env.) 125
\addcontentsline 120
\addpenalty 335, 382
\AddToHook 54, 60, 66,
159, 247, 265, 285, 330, 388, 400, 409
\addtolength 48
\addvspace 336, 383
\alert 40, 103
alertenv (€nv.) 110
Nalt o 187
Nand 131
\arabic 397
\arraycolsep 25
\arrayrulewidth 27
\AssignSocketPlug 197
\AssignTaggingSocketPlug 149
\author 15
B
\begin ... 130, 131, 132, 144, 255, 444, 445
\begingroup 152, 166, 381
\belowcaptionskip 160, 162
\bfseries 21, 39, 175, 272, 414
\bigskipamount 18
block (env.) 264
block commands:
\g_block_nesting_depth_int 353
block internal commands:
__block_debug_typeout:n 343
__block_if_list:TF 361, 372
__block_inter_item: 322, 322
\1__block_level_incr_bool 351
__block_list_end: 57
__block_list_item_end: 57

__block_skip_remove_last:

............... 328, 329, 365, 366
__block_skip_set_to_last:N 376
\1__block_topsepadd_skip 383

65

\1__block_transparent_level_bool

...................... 344, 347
\BlockEnvEnd 322, 396
bool commands:

\bool_do_while:Nn 27
\bool_gset_false:N . 30, 36, 40, 422
\bool_gset_true:N 207, 215, 221, 414
\bool _if:NTF 6, 39, 44, 44,
46, 50, 58, 66, 71, 83, 86, 95, 141,
157, 170, 174, 215, 256, 346, 350, 428
\bool_lazy_and:nnTF .. 21, 49, 218, 307
\bool_lazy_any:nTF 64, 91
\bool_lazy_or:nnTF . 5,18, 21, 305
\bool_lazy_or_p:nn 24
\bool new:N 3,
3,7, 8,13, 121, 123, 124, 391, 392, 393
\bool_set_eq:NN 149, 153
\bool_set_false:N
. 27,28, 37, 101, 120, 142, 434, 454
\bool_set_true:N 24, 29, 52, 69
140, 148, 185, 204, 217, 407, 442, 462
\c_false_bool 15
\c_true_bool 14, 166, 183
box commands:
\box_dp:N 36, 66, 75
\box_gclear:N 7
\box_ht:N 65, 74, 265, 290
\box_if_empty:NTF 92
\box_new:N 4,115, 174
\box_set_dp:Nn 70
\box_set_ht:Nn 61
\box_use:N 281
\box_use_drop:N
...... 26, 80, 243, 270, 274, 276, 326
\box_wd:N 41
box internal commands:
__box_dim_eval:n 33, 36, 41, 44
__box_set_to_wd: 40, 45
C
\clearpageouiiiiniin.n 98
clist commands:
\clist_const:Nn 58
\clist_if_in:NnTF 65, 184
\clist_map_break: 222
\clist_map_inline:Nn ... 132, 187, 313

\clist_map_inline:nn
3, 89, 139, 141, 249, 390

\clist_new:N 10, 14
\clist_pop:NNTF 309
\clist_set:Nn 104, 183

\color
color commands:

4, 11, 56, 175, 273, 412, 414

\color_ensure_current: .. 63, 182, 192
\color_group_begin: 34, 46
\color_group_end: 34
\color_math:nn 9, 26
\color_math:nnn 10, 27
\color_select:n 7,16, 35

37, 45, 46, 69, 107, 210, 254, 307, 348

\color_select:nn 8, 17, 38
color internal commands:

__color_backend_reset: 64
\colorlet 68
column (env.) vt 87
columns (env.) 11

\columnwidth
cs commands:

\cs_generate_variant:Nn
.......... 7,8,9, 10, 104, 105,

107, 108, 109, 110, 111, 112, 113, 181

\cs_gset:Npe 340
\cs_gset:Npn 78, 79, 80
\cs_gset_eq:NN 56
\cs_gset_nopar:Npn 49, 57, 64
\cs_gset_protected:Npe ... 62, 89, 339

\cs_gset_protected:Npn
29, 38, 48, 56, 58, 148, 150, 314, 322

\cs_if_exist:NTF 118, 260, 344
\cs_if_exist_p:N 308
\cs_if_exist_use:NTF ... 139, 159, 176

\cs_new:Npn 6, 7, 34, 35, 36, 37, 38, 39
40, 41, 42, 222, 249, 336, 396, 397, 402
\cs_new_eq:NN 5, 6, 147, 198, 395
\cs_new_nopar :Npn 3, 379
\cs_new_protected:Npe 63,78, 104
\cs_new_protected:Npn 9,
11, 16, 18, 18, 35, 38, 40, 42, 44, 45,
48, 51, 52, 53, 54, 55, 56, 56, 62, 64,
69, 72, 81, 82, 82, 87, 91, 100, 101,
106, 111, 112, 114, 118, 131, 136,
136, 136, 137, 138, 142, 146, 146,
151, 153, 164, 168, 174, 174, 175,
176, 181, 182, 186, 191, 197, 198,
201, 204, 209, 219, 230, 279, 301,
303, 305, 342, 347, 379, 404, 410, 418
\cs_set:Npn 14, 15, 59
\cs_set_eq:NN 61, 62
63, 64, 216, 361, 362, 376, 377, 387, 388
\cs_set_nopar:Npn
133, 218, 219, 220, 221,
354, 356, 360, 364, 366, 371, 381, 386

66

\cs_set_protected:Npn
40, 131, 163, 166, 210

\cs_to_str:N 337, 342
\csname 161, 162, 170
D
\date 15
\day ... 20
\DeclareColor 65, 71, 72, 73

\DeclareInstance 43,

79, 80, 81, 83, 85, 87, 135, 217,
218, 219, 220, 221, 222, 223, 264, 329
\DeclareInstanceCopy 267, 332
\DeclareTemplateCode
. 23, 54, 77, 109, 119, 197, 235, 282
\DeclareTemplateInterface
. 16, 45, 75, 95, 114, 190, 225, 272
\definecolor 69
description (env.) 243, 388

dim commands:

108, 263, 377

\dim_compare :nNnTF

\dim_compare_p:nNn 109, 310
\dim_const:Nn 163, 169
\dim_eval:in 51, 52, 53, 63, 72
\dim_max:nn 110, 289
\dim_set:Nn 19, 95
\dim_set_eq:NN 20, 96
\dim_to_decimal:n 156
\dim_use:N 184, 185
\c_zero dim 377
\DocumentMetadata 8
\doublerulesepc..... 28
E
\EditInstance 268, 333, 411, 413
\emph 322
\end 137, 138, 139, 146, 259, 369, 449
\endblockenv 322, 405
\endcsname 161, 162, 170
\endfloatenv 136, 149
\endgroup 166, 172, 394
enumerate (env.) 388
environments:
actionenv 125
alertenv 110
block 264
column 87
columns 11
description 243, 388
enumerate 388
figure, 141
invisibleenv 98
itemize 388
onlyenv 118

overlayarea 237
overprint 254
quotation 243
quote 243
stdquotation 243
stdquote 243
stdverse 243
table 141
UNCOVEXeNVot vt vnienn e 98
VELSE v v vttt e 243
visibleenv 98
exp commands:

\exp_after:wN 206, 295
\exp_args:Ne 17, 54, 137, 227
\exp_args:Nne 444
\exp_args:No 32
\exp_args:NV 129, 191
\exp_args_generate:n 106
\exp_not:N

. 65, 67, 68, 69, 71, 72, 72, 73,

78, 80, 81, 84, 86, 87, 89, 89, 90, 92,

94, 95, 96, 98, 100, 101, 101, 103,

106, 107, 110, 111, 112, 114, 117

119, 120, 122, 123, 125, 126, 157

161, 166, 167, 169, 171, 172, 175,

176, 180, 296, 308, 311, 315, 341,
342, 343, 346, 347, 350, 351, 353, 364
\exp_not:n 298, 342, 354, 366, 367, 445
\exp_stop_£: 51, 52, 53
\expandafter 161
\ExpandArgs
91, 98, 134, 258, 311, 318, 337, 338

F
\fboxrule 32
\fboxsep i 31
\NFi 18, 168
figure (env.) 141
\figurename 152
file commands:

\file_if_exist_input:nTF 156

\file_input:n 158
fnote commands:

\fnote_makefntext:n 198
\font 86
\fontchardp 86
\fontcharht 86
\footins 30
\footnote 176, 177
\footnoterule 94
\footnotesize 193
\footskip 296, 297
fp commands:

\fp_evalin 161

67

\fp_to_dim:n 171
\frame 28, 26, 403
frame L 428
frame* 428
\framesubtitle 10
\frametitle 5, 435, 445

G
\gdef ... 296
\geometry 5
group commands:

\group_begin:

...... 11, 33, 35, 58, 60, 67, 105,
127, 138, 170, 208, 223, 252, 269, 347
\c_group_begin_token 43

\group_end: 40, 40, 54, 62, 63, 75, 108,
131, 172, 185, 213, 238, 262, 277, 351

\group_insert_after:N 45
H
hbox commands:
\hbox_set_end: 25
\hbox_set_to_wd:Nnw 18
\headsep 230, 249, 250
\hfil 92, 280, 324, 358, 369, 374, 384

hook commands:

\hook_gput_code:nnn 105, 160, 302

\hook_new:n 132
\hook_use:n 130
\hspace 207, 214
\hypersetup 224
I
\IfBooleanT 365
\ifcase 5
\IfFormatAtLeastF 7
\IfFormatAtLeastTF 338, 392, 416
\IfNoValueF 366, 367
\IfNoValueTF 15, 25, 36, 47, 67, 180,
224, 290, 293, 401, 428, 430, 435, 443
\ignorespaces

19, 21, 101, 170, 196, 235, 256, 446
\immediate 162
\includegraphics 356
\indent 325
\insertsection 81
\insertsubsection 81
\insertsubsubsection 81
\institute 34
int commands:

\int_compare:nNnTF 91, 122,
199, 203, 206, 211, 212, 214, 221, 311

\int_compare_p:nNn 219, 220

\int_eval:in 227, 312

\int_gdecr:N 353
\int_gincr:N 29, 42, 90, 225, 406
\int_gset:Nn 226, 413
\int_gset_eq:NN 27, 135, 140, 145
\int_gzero:N 16, 25, 74
\int_incr:N 258
\int_max:nn 178

\int_new:N
4,5,9,10, 71, 134, 151, 248, 394

\int_set_eq:NN 15

\int_to_Roman:n 251

\int_to_roman:n 252

\int_use:N 8, 14, 52, 56, 68, 399

\c_max_int 197, 220
\invisible 89
invisibleenv (env.) 98
iow commands:

\iow_now:Nn 294
\item 59, 285
itemize (env.) 388
\itemsep 54, 62, 69, 336

J
\jobname 155, 162
K

kernel internal commands:
__kernel_backend_literal_pdf:n
__kernel_color_backend_stack_-

7

push:nn 79
__kernel_displayblock_end: 371
__kernel_list_item_begin: 334
__kernel_list_item_end: 333

keys commands:
\1_keys_choice_tl 130
\keys_define:nn 3,
5, 6, 31, 117, 132, 141, 155, 418, 422

\keys_set:nn .. 7, 17, 17, 24, 29, 36

41, 49, 93, 148, 168, 433, 441, 453, 461
\keys_set_known:nn 20, 32
\1_keys_value_tl 46, 165

L
\label, 372
\labelenumi 34
\labelenumii 35
\labelenumiii 36
\labelenumiv 37
\labelitemfont 38, 39, 40, 41, 42
\labelitemi 38
\labelitemii 39
\labelitemiii 40
\labelitemiv 41
\labelsep 29, 33, 46, 48

68

\labelwidth 47, 48
\Largeiii... 21, 90
\largeo 272
\leavevmode 98, 271
\leftmargin 51, 59, 66
\leftmargini 43, 47, 51
\leftmarginii 44, 59
\leftmarginiii 45, 66
\leftskip 181, 191

legacy commands:
\legacy_if :nTF
41, 157, 222, 292, 324, 356, 362, 374
\legacy_if_gset_false:n 359, 372, 373

M

\makeatletter 153
\maketitle 139
\mathcolor 5,11
\mboxX, 350
\medskip 270, 276
\mode 36, 11
mode commands:

\mode_if_horizontal:TF 31, 326, 363

\mode_if_horizontal p: 25

\mode_if_math:TF 349

\mode_if_vertical_p: 26

\mode_leave_vertical: 34, 352, 358
\month, 5
msg commands:

\msg_error:nnn 126, 168

\msg_fatal:nn 15

\g_msg_module_name_prop 5

\g_msg_module_type_prop 6

\msg_new:nnn 22, 317

\msg_new:nnnn 9, 226

\msg_warning:nn 27, 313

N
\NeedsDocumentMetadata 17
\NewCommandCopy
. 4,5,6, 176, 287, 337, 357, 403, 425

\newcounter 21,72, 73, 74, 152
\NewDocumentCommand 5,

10, 11, 34, 39, 65, 87, 91, 92, 103,
113, 125, 139, 168, 187, 193, 210, 220
\NewDocumentEnvironment 11,
87, 98, 110, 118, 133, 143, 237,
243, 244, 245, 246, 254, 264, 438, 458

\NewEnvironmentCopy 251, 439
\newlabel 385
\newlength 159, 160
\NewSocketPlug 184
\NewTaggingSocket 135
\NewTaggingSocketPlug 136

\NewTemplateType
. 15, 44, 74, 94, 113, 189, 224, 271

\newtheorem 425
\newwrite 161
\nobreakspace 157
\noindent 31, 224, 246, 293
\normalfont 42, 50, 229, 272, 414
\normalsize 169
\number 20, 22
\numberline 125
(0]
\obeyedline 18, 59
\onlyviiii 44, 113
onlyenv (€nv.) 118
\onslide 41,193
opacity commands:
\opacity_begin:n 39, 56, 214
\opacity_end: 41, 58, 216
opacity internal commands:
__opacity_backend:nnn 85, 86
__opacity_backend_begin:n 57, 62
__opacity_backend_end: 59, 89
\1__opacity_backend_fill_tl 71
__opacity_backend_reset: 97
__opacity_backend_reset_fill: 99
__opacity_backend_reset_stroke: 100
\c__opacity_backend_stack_int ... 80
\1__opacity_backend_stroke_tl ... 72
__opacity_select:nN 57
\openout 162
\or 5,6,7,8,9,10, 11, 12, 13, 14, 15, 16
overlayarea (env.) 237
overprint (emv.) 254
P
\pagecolorii... 43
\pagestyle 390
\paperheight 57, 58
\paperwidth 58, 301, 349, 350
\par 30, 32, 14, 28, 34, 39, 73, 89,

104, 109, 165, 171, 232, 237, 246,
267, 275, 277, 282, 325, 330, 367, 424

\parsep 53, 61, 62, 68, 69
\parskip 380
\partopsep 71
\pause i 41, 220
pdfmanagement commands:
\pdfmanagement_add:nnn 73
prg commands:
\prg_generate_conditional -
variant:Nnn 10
\prg_new_protected_conditional:Npnn
......................... 3,3

69

\prg_return_false: 8,9

\prg_return_true: 7,8
\ProcessedArgument 14, 15
\ProcessKeyOptions 155
prop commands:

\prop_gput:Nnn 5,6
property commands:

\property_new:nnnn 8, 398

\property_record:nn 52, 68, 401

\property_ref:nn 14, 402
\protect, 125
\ProvidesExplClass 3
\PUt ... 57

Q

\quad 131
quark commands:

\quark_if_recursion_tail_stop:N 138

\quark_if_recursion_tail_stop_-

do:Nn 155, 166
\quark_if_recursion_tail_stop_-

do:nn 47
\g_recursion_stop 38, 133, 158
\g_recursion_tail 38, 133, 158

\q_stop 73, 81, 107, 112
167, 176, 188, 191, 207, 209, 296, 301

quotation (env.) 243
quote (ENV.) ... 243
R
\raggedright 99, 197, 234
\refstepcounter 103
\relaxt 162
\relsize 161
\RenewCommandCopy 26

\RenewDocumentCommand . 11, 15, 21, 22

27, 30, 43, 177, 288, 338, 358, 372, 426
\RenewDocumentEnvironment
252, 394, 399, 430, 440, 450

\RequirePackage 3, 159, 180, 198

201, 202, 205, 208, 214, 215, 223, 356
\rmdefault 216
\rule ... 58
rule commands:

\rule:nnn 48, 349

S
scan commands:

\scan_stop: 54
\scriptsize 84
\section 72, 81
seq commands:

\seq_gpop_left:NN 189

\seq_gpush:Nn 179

\seq_gput_right:Nn 152
\seq_gremove_all:Nn 75, 76, 77
\seq_map_indexed_inline:Nn 83
\seq_map_inline:Nn 132, 139, 144
\seq_new:N 124, 175
\seq_set_from_clist:Nn 81, 125
\l_tmpa_seq 81, 83
\setcounter 24, 242
\setlength 25, 26, 27, 28, 29, 31,
32, 33, 43, 44, 45, 46, 47, 71, 161, 162
\setmainfont 209
\setmathfont 211
\setsansfont 210
\SetTemplateKeys 130
\sfdefault 216
\SimpleBlockEnv 395
\SKIPp « v v e 30

skip commands:
\skip_horizontal:n
32, 251, 298, 327, 344, 350

\skip_if_eq p:nn 22
\skip_new:N 17
\skip_set:Nn 181, 191
\skip_set_eq:NN 20
\skip_vertical:n 33, 102, 104,

108, 110, 114, 116, 120, 122, 379, 380
\1_tmpa_skip 376, 377, 379, 380
socket commands:

\socket_use:n 385
\Spaceiii 19, 21
\stdcolor 4
\stdemph 322
\stdfootnote 176, 181, 182
\stdincludegraphics 356
\stditem 287, 291, 292
\stdmathcolor 4
\stdnewtheorem 425
stdquotation (env.) 243
stdquote (env.) 243
\stdtextbf 322
\stdtextcolor 4
\stdtextit 322
\stdtextmd 322
\stdtextnormal 322
\stdtextrm 322
\stdtextsc 322
\stdtextsf 322
\stdtextsl 322
\stdtexttt 322
\stdtextup 322
stdverse (env.) 243
\stepcounter 21
str commands:

\str_clear:N 20, 30, 31

70

\str_if_empty:NTF 96
\str_if_empty_p:N 50
\str_if_eq:nnTF 17, 67, 93, 116, 118, 139
\str_if_eq_p:nn 6, 7, 23, 307
\str_new:N 9, 11, 12, 15, 122
\str_put_right:Nn 141, 177
\str_replace_all:Nnn 20, 22, 111
\str_set:Nn 18, 26, 121, 126, 130
\str_set_eq:NN 151
\string 385
\subsection 72, 81
\subsubsection 72, 81
\subtitle 34
sys commands:
\c_sys_engine_str 24
\sys_if_engine_luatex:TF 203
\sys_if_engine_luatex_p: 19, 67, 94
\sys_if_engine_opentype:TF 199
\sys_if_engine_pdftex_p: 20, 66, 93
\sys_if_engine_xetex:TF 76
\sys_if_engine_xetex_p: 68, 95
T
\tabbingsep 29
\tabcolsep 26
table (env.) 141
\tableename 152
\tableofcontents 168
tag commands:
\tag_get:n 413
\tag_mc_begin:n 179, 186, 420
\tag_mc_end: 177, 184, 426
\tag_resume:n 176, 425

\tag_struct_begin:n
\tag_struct_end:

91, 140, 178, 412
92, 147, 185, 416

\tag_suspend:n 187, 421
tag internal commands:

\g__tag_title_author_tl 19

\g__tag_title_title_tl 31
\tagpdfparaOff 61
\tagpdfsetup 206, 225

talk internal commands:
__talk_action_alert:N 42,42, 106, 111
__talk_action_begin:n 13, 100, 125,
128, 134, 136, 145, 254, 266, 318, 442
__talk_action_begin_aux:n
125, 143, 146
__talk_action_end: 352,29, 105, 125
130, 135, 150, 168, 260, 283, 314, 450
__talk_action_invisible:N 48, 48, 166
__talk_action_invisible_end:N .

.................... 48, 54, 183
__talk_action_only:N 64, 64, 119
__talk_action_only_end:N 64, 69, 120

\1__talk_action_spec_str 155, 296, 416

__talk_action_uncover:N . 81, 81, 192

__talk_action_uncover_end:N ...

81, 87, 194
48, 56

__talk_action_visible:N

__talk_action_visible_end:N . 48, 62
\1__talk_aspect_ratio_str 117, 175
\1__talk_cnt_reset_seq
...... 75, 76, 77, 124, 139, 144, 152
__talk_cnt_restore: . 87,137, 142
__talk_cnt_save: 78, 137, 137
__talk_column_align_bottom:n 53, 53
__talk_column_align_center:n 53, 55
__talk_column_align_top:n 53, 82
\1__talk_column_alignment_tl 31, 107

\g__talk_column_int 9, 15, 16, 27, 90, 91

\1__talk_column_int 9, 15, 27
\1__talk_columns_wd_tl 5, 18, 19
__talk_decode_action:n . 95, 104, 104
__talk_decode_action:w 104, 106, 111

\1__talk_decode_action_str

12, 20, 121, 152, 160

\1__talk_decode_actions_bool . ..

13, 27, 154, 162

\1__talk_decode_actions_clist ... 13

\1__talk_decode_actions_str .. 13,31

\1__talk_decode_arg_str

9, 26, 32, 127, 169

__talk_decode_check:n 134, 181, 181

__talk_decode_check:nw 181, 188, 191

__talk_decode_check_range:nnn
............... 181, 197, 198, 210

__talk_decode_check_single:nn

181, 194, 201

__talk_decode_mode:n 54,63, 63
__talk_decode_mode:nn 86, 89, 91
__talk_decode_mode:w 63,72, 78
__talk_decode_mode_aux:n 63
__talk_decode_overlay_.:nw 131

__talk_decode_overlay_aux:nNN
131, 149, 152, 153
__talk_decode_overlay_offset:nNn
131, 157, 162, 172, 175
__talk_decode_overlay_offset:nNnN
131, 161, 164, 173
__talk_decode_overlays:nN .
131, 133, 136, 142, 179
__talk_decode_overlays:nn ..
............ 97, 116, 123, 131, 131
\1__talk_decode_overlays_bool . 3,
6, 24, 28, 52, 69, 150, 157, 192, 194

\1__talk_decode_overlays_clist .. 10
\1__talk_decode_overlays_str ...
.................. 10, 30, 50, 96

71

__talk_decode_parse:n
5, 16, 16, 148, 191
__talk_decode_parse:w . 16, 38, 45, 56
__talk_decode_parse_auxi:n

..................... 16, 17, 18
__talk_decode_parse_auxii:n ...
..................... 16, 32, 35
\1__talk_decode_pure_bool
.............. 7,29, 51, 101, 120
\1__talk_decode_step_bool
.................. 8, 37, 39, 148
\1__talk_float_alignment_tl
....... 112, 124, 125, 126, 132, 138
\1__talk_fontsize_dim .. 117, 156, 161
\1__talk_footelem_color_tl 189
\1__talk_footelem_font_t1 189
\1__talk_footelem_left_skip 189
\1__talk_footelem_right_skip ... 189
\1__talk_footer_bg_tl 271
\1__talk_footer_fg tl 271
\1__talk_footer_font_tl 271
\1__talk_footer_left_skip 271
\1__talk_footer_order_clist 271
\1__talk_footer_right_skip 271
\1__talk_footer_sep_tl 271

\g__talk_footnote_box
77,92, 95, 174, 186, 188
\g__talk_footnote_overlay_seq ..

175, 179, 189
\1__talk_frame_alignment_tl

90, 94, 154, 164
95, 141, 391, 407

\1__talk_frame_bool .
\g__talk_frame_int
14, 52, 68, 251, 394, 399, 406
__talk_frame_notag:n ... 41, 418, 418
__talk_frame_overprint:
249, 249, 261, 264, 268,
281, 283, 284, 287, 289, 296, 298, 303
__talk_frame_process:nn
404, 404, 435, 444, 455, 463

\g__talk_frame_struct_int 56, 71, 413
\g__talk_frame_subtitle_tl 3,13, 76
__talk_frame_tag:n 37, 410, 410

\g__talk_frame_tag_bool
46, 392, 414, 422
\1__talk_frame_tagging_str

17, 18, 20, 22, 34, 155
__talk_frame_title:n 15,38, 44
\1__talk_frame_title_bool 117, 428
__talk_frame_title_tagged:n ...

15, 47, 51

\g__talk_frame_title_tl
3, 8, 58, 75, 260, 443

\1__talk_frame_verb_bool
44, 393, 434, 442, 454, 462
\1__talk_frametitle_after_skip

\1__talk_frametitle_before_skip
........................ 26, 32
\1__talk_frametitle_color_tl ...
..................... 27, 34, 35
\1__talk_frametitle_font_tl .. 28, 36
\1__talk_header_bg_tl 224
\1__talk_header_fg_ tl 224
\1__talk_header_font_tl 224
\1__talk_header_frametitle_bool 224
\1__talk_header_ht_dim 224
\1__talk_header_left_skip 224
\1__talk_header_right_skip 224

__talk_header_tag_begin:n
53, 174, 174, 181

__talk_header_tag_end: . 64, 174, 182
__talk_if_overlay:n 3, 10
__talk_if_overlay:nTF 3,

7, 12, 13, 13, 23, 31, 32, 34, 45,

97, 115, 189, 202, 212, 341, 360, 375
__talk_item_parse_spec:n
285, 298, 302, 303
__talk_item_parse_spec:w

285, 295, 301
....... 372, 376, 379
. 26, 403, 403

__talk_label:n
__talk_latexe_frame:n
\1__talk_list_end_tl
309, 315, 321, 332, 370
__talk_metadata_name:n

312, 315, 320, 336, 336

__talk mode:n 3
__talk_mode:nTF 3,12
\1__talk_mode_str 7, 68,93, 117
\c__talk_modes_clist 58, 65

__talk_onslide:n
\g__talk_onslide_tl
80, 84, 155, 172, 200, 201, 205, 209
__talk_opacity_begin:n
38, 38, 51, 52, 59, 60, 79, 84, 204
__talk_opacity_end:
38, 40, 55, 63, 88, 181, 206
\1__talk_overlay_all_bool
124, 140, 142, 170

193, 195, 198, 227

__talk_overlay_arg:n
3, 11, 92, 99, 103, 110, 118
__talk_overprint_begin:n
230, 230, 238, 255
__talk_overprint_check_ht:n ...

254, 303, 305, 314
\1__talk_overprint_int . 248, 252, 258

72

__talk_overprint_save_ht: .
254, 259, 279
43, 48, 49, 52

__talk_pagecolor:n

\c__talk_paper_height_dim 163
\c__talk_paper_width_dim 163
\g__talk_pauses_int
11, 4, 42, 74, 178, 225, 226, 227
\1__talk_saved_action_str
.................. 121, 151, 177
\1__talk_saved_actions_bool
.................. 121, 153, 179
\1__talk_saved_overlays_bool ...
.................. 121, 149, 174
__talk_sect_section:Nnn 81
__talk_sect_subsection:Nnn 81

__talk_sect_subsubsection:Nnn .. 81

__talk_sect_tag:nn 135, 137, 138
\g__talk_section_tl 66
\1__talk_section_tl 66
\1__talk_shuffle_skip .. 17, 20, 22, 34
__talk_shuffle_skip:n . 18, 18, 39, 41
__talk_slide:nn 9, 9, 408

__talk_slide_align_bottom:n 100, 100
__talk_slide_align_center:n 100, 106
__talk_slide_align_stretch:n ..
...................... 100, 112
__talk_slide_align_top:n 100, 118
__talk_slide_aux:n 9, 45, 56
__talk_slide_begin: 33, 72, 72
\1__talk_slide_box 4,79, 91
\g__talk_slide_continue_bool .. 3,

27, 30, 36, 40, 86, 207, 215, 215, 221
__talk_slide_end: 49, 72, 82
\g__talk_slide_int

. 5, 8, 25, 29, 203, 206, 212, 214, 219

\g__talk_subsection_tl 66
\1__talk_subsection_tl 66, 117
\g__talk_subsubsection_tl 66

\1__talk_subsubsection_tl .. 66, 119
__talk_textcmd_eqiv:n . 322, 343, 347

\1__talk_titlelem_after_skip 44
\1__talk_titlelem_before_skip ... 44
\1__talk_titlelem_color_tl 44
\1__talk_titlelem_font_tl 44
\1__talk_titlelem_tag_begin_tl 44
\1__talk_titlelem_tag_end_tl 44
\1__talk_titlepage_alignment_tl 94
\1__talk_titlepage_framestyle_tl 94
\1__talk_titlepage_order_clist 94
__talk_tmp:w 114, 114, 166, 175

\1__talk_tmp_box 18,
26, 58, 61, 65, 66, 67, 70, 74, 75,
80, 94, 108, 115, 233, 243, 265,
268, 270, 274, 276, 281, 290, 299, 326

talk/sec/title
\temporal
TEX and KTEX 2¢ commands:

\1__talk_tmp_tl 12, 18,
21, 23, 116, 121, 190, 191, 309, 311, 312
__talk_toc_aux:nnnn
174, 175, 178,
__talk_toc_dest:n . 174,
__talk_toc_dest:w . 174,
__talk_toc_level:nnnn . 174,
\1__talk_uncover_hidden_fp 74
\1__talk_vcenter_offset_tl 67, 76, 84
__talk_wallpaper_hrule:Nnn
247, 294, 342, 342
135

188, 197
201, 204
206, 209
202, 219

\@arabic 6,7, 78,79, 80, 222, 396
\@author 3, 18, 19
\@auxout 294, 383
\@bsphack 374
\@caption 163
\@captype 133

\@contentsline@destination .
55, 206, 227, 230, 233, 236

\@currentHref 390
\@currentlabel 387
\@currentlabelname 389
\@currenvir 369
\@date 3, 25
\@definecounter 147
\@endparpenalty 382
\@esphack 377
\@evenfoot 362, 377, 388
\@evenhead 361, 376, 387
\@framenumber 394
\@ignore 32
\@ignoretrue 110
\@inmatherr 369
\@input 155
\@institute 3, 37
\@itempenalty 335
\@kernel@reserved@label@data ... 391
\@listI 56
\@listi 49, 56
\@listii, 57
\@listiii 64
\@makecaption 170
\@makefntext 198
\@mpfootins 30
\@nobreakfalse 165
\@noitemerr 362
\Qoddfoot 360, 362, 371, 377, 386, 388

\@oddhead 356, 361, 366, 376, 381, 387
\Qouterparskip 380
\@parboxrestore 97, 167
\@setminipage 168

73

tex

\@shortauthor 3
\@shortdate 3
\@shortinstitute 3
\@shortsubtitle 3
\@shorttitle 3
\@starttoc 150, 17
\@subtitle 3, 42
\@title 3, 30, 31
\@totalframes 398
\c@figure 152
\c@frame 394
\c@page 222
\COPAUSES ..t 4
\c@section 78
\c@slide 5
\c@subsection 79
\c@subsubsection 80
\c@table 152
\check@mathfonts 57
\currentgrouplevel 57
\fnum@figure 152
\fnum@table 152
\Gm@bmargin 297
\Gm@lmargin 231, 278, 344
\Gm@rmargin 233, 279, 327
\Gm@tmargin 230
\if@minipage 168
\ifmeasuring@ 12
\ignorespaces 32
\l@section 174
\l@subsection 174
\1l@subsubsection 174
\on@line 343
\protected@urite 383
\ps@plain 354
\ps@talk 354
\ps@wallpaper 354
\reset@color 62, 63
\set@color 61, 63
\std@definecounter 147
\stdreset@color 61
\stdset@color 61
\textsubscript@offset 218
\textsubscript@space 218
\textsuperscript@offset 218
\textsuperscript@space 218
commands:

\tex_currentgrouplevel:D 311, 312
\tex_hsize:D 33, 44
\tex_lastskip:D 20
\tex_setbox:D 31, 42
\tex_unskip:D 29
\tex_vbox:D 31, 42
\tex_vrule:D 50

text commands:

\text_purify:n 58, 112, 137

\text_titlecase_first:n 154
\textasteriskcentered 40
\textbf 322
\textbullet 38
\textcolor 6, 11
\textendash 39
\textheight 88
\textit 322
\textmd 322
\textnormal 322
\textperiodcentered 41
\textrm 322
\textsc 322
\textsf 322
\textsl 322
NBeXttt . oo 322
\textup 322
\textwidth 30, 8, 19, 20, 95, 96, 254
\theenumi 34
\theenumii 35
\theenumiii 36
\theenumiv 37
\thefigure 152
\theframe 394
\thepage 7, 222, 388
\thepauses 4
\thesection 72
\theslide 5
\thesubsection 72
\thesubsubsection 72
\thetable 152
\thispagestyle 129
\tiny 277
\title ...t 15
tl commands:

\tl_clear:N 117, 119, 315

\tl_gclear:N ... 12,13, 75, 76, 80, 201

\tl_gput_right:Nn 205

\tl_gset:Nn 8,

13, 18, 25, 30, 37, 42, 284, 287, 443
\tl_gset_eq:NN 14, 19, 31
\tl_if_blank:nTF

......... 37, 84, 100, 115, 122, 196
\tl_if_blank p:n 22, 306
\tl_if_empty:NTF 34, 68

128, 155, 172, 209, 253, 306, 315, 345
\tl_if_empty:nTF 64, 193, 205
\tl_if_exist:NTF 281, 338
\tl_map_inline:nn 322
\tl_new:N

. 3,4, 66, 67, 68, 69, 70, 71, 84,
112, 116, 153, 154, 155, 209, 283, 321
\tl_retokenize:n 63

\tl_set:Nn 12, 71,
72, 85, 114, 115, 116, 117, 121, 122,
123, 124, 124, 125, 126, 154, 156, 309

\tl_set_eq:NN 45, 164

\tl_to_str:n 60,

61, 72, 87, 107, 112, 167, 176, 445
\tl_trim_spaces:n 55
\tl use:N 84, 89, 200

\today 3
token commands:

\token_if_eq_meaning:NNTF 160, 171

\token_to_str:N 79, 80
\topsep 52, 60, 67

U
\UDCOVET . .t vttt et 89
uncoverenv (env.) 98
\unskip 24
use commands:

\use:N 90, 104, 107, 107, 111, 143

\use:n 46, 48,

59, 60, 76, 85, 109, 164, 178, 200, 362
\use_none:n 161, 178

\UseHookWithArguments

........... 226, 229, 231, 234, 382

\UselInstance 85, 134, 146, 164, 259
311, 319, 368, 373, 383, 386, 402, 403

\UseStructureName 110, 143

\UseTaggingSocket . 104, 105, 115, 154, 156

\UseTemplate 142, 145

\%

\value 123, 199, 211, 221

vbox commands:

\vbox:n 54

\vbox_gset:Nn 186

\vbox_set:Nn 58

\vbox_set:Nw 67, 79, 268

\vbox_set_end: 72,85, 106, 240, 257, 280

\vbox_set_to_wd:Nnn 29, 299

\vbox_set_to_wd:Nnw 38, 94, 233

\vbox_to_ht:nn 88, 113, 241, 267

\vbox_top:n 83

\vbox_unpack:N 188

\vbox_unpack_drop:N 91, 95, 108
veoffin commands:

\vcoffin_set:Nnn 2
verse (BNV.) 243
\vfil ... 239, 244, 271
\visible 89
visibleenv (env.) 98
\vspace 32, 41, 66, 76

Y
\year 22

	Contents
	I ltx-talk – Overall set up
	1 ltx-talk implementation
	1.1 Set up
	1.2 Additions for expl3
	1.3 Extra variants
	1.4 Scratch space
	1.5 Option handling
	1.6 Setting up
	1.7 Math support
	1.8 Font selection
	1.9 Text scripts
	1.10 Hyperlinks
	1.11 Tagging

	II ltx-talk-color – Color definitions
	1 ltx-talk-color implementation
	1.1 Existing definitions
	1.2 Document (and interface) commands
	1.3 Color definition
	1.4 Semantic colors

	III ltx-talk-decode – Decoding overlay specs
	1 ltx-talk-decode implementation

	IV ltx-talk-frame – The structure of frames
	1 ltx-talk-frame implementation
	1.1 Slides in frames
	1.2 Counters
	1.3 Frame options
	1.4 Tagging for headers
	1.5 Wallpaper
	1.6 The frame environment

	V ltx-talk-frame – The structure of frames
	1 ltx-talk-frame-structure implementation
	1.1 Columns
	1.2 Floats
	1.3 Footnotes

	VI ltx-talk-mode – Modes
	1 ltx-talk-mode implementation

	VII ltx-talk-overlay – Overlays
	1 ltx-talk-overlay implementation
	1.1 Utilities
	1.2 Opacity utilities
	1.3 Action commands and environments
	1.4 Non-action commands and environments
	1.5 Fixed-size areas
	1.6 Adding overlays to existing commands

	VIII ltx-talk-required – "Required" definitions
	1 ltx-talk-required implementation
	1.1 Standard design settings
	1.2 List support

	IX ltx-talk-structure – Structural commands
	1 ltx-talk-structure implementation
	1.1 Frame title
	1.2 Sectioning
	1.3 Table of contents
	1.4 Block environments
	1.5 Lists
	1.6 Theorems, etc.

	X ltx-talk-title – Title pages
	1 ltx-talk-title implementation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

