
The xstacks Package
Version 1.1
Alceu Frigeri∗

February 2026

Abstract
Originally this package aimed at solving the problem of preserving some tokens beyond

a variable number of nested groups. Though, after some further testing and optimization, it
became clear that (a) there was a lot of room for improvement (stacks) and (b) there was a
better way to implement the aftergroup mechanism. As such, there are two new packages at
CTAN, tokgroupmark[3] which implements (b) and tokglobalstack[2] which implements (a).

This package now loads these two, and set a series of aliases such that the “user visible
commands” remain the same (but the user is invited to use one of the other two, instead of
this). Moreover, the benchmark part got updated (see 7).

Contents
1 Introduction 1

2 Simple mark point after group variant 2

3 Multiple mark points after group variant 2

4 Custom Group Mark Commands 2

5 Stack command variant 3

6 Stack variable variant 3

7 Benchmarks and Final Thoughts 3
7.1 Single mark, after group variant . 4
7.2 Multiple marks, after group variant . 5
7.3 Custom group mark commands variant . 6
7.4 Stack command variant . 7
7.5 Stack variable variant . 8

1 Introduction
(Original rationality behind this package) Sometimes one needs to preserve the value of some
variables beyond a local group. In simple cases it’s enough to use \group_insert_after:N or
\aftergroup, if you know how many nested groups you are in.

But, sometimes you don’t have this information (see [1], for instance) in which case you have
a few options:

• use global variables, or
• implement an after group strategy, as suggested by Carlisle, or
• use a (global) stack.

The global variables way is, of course, the fastest (and easiest) if you don’t have to worry about
reentrant coding (like when you have nested groups inside an environment, which might get nested
into itself).

∗https://github.com/alceu-frigeri/xstacks

1

https://github.com/alceu-frigeri/xstacks

2 Simple mark point after group variant

\xstacks_groupmark:
\xstacks_aftergroup:N {⟨token⟩}

\xstacks_groupmark:
\xstacks_aftergroup:N

These will use a single, internal, variable to ‘track’ the target group level. Better said, upon
calling \xstacks_groupmark: the current group will be saved (local assignment), so that, later
on, \xstacks_aftergroup:N can be called from nested groups and ⟨token⟩ will be pushed into the
marked group.

Note: Since all assignments are local, it’s possible to have multiple marks, for in-
stance, one at group level 2, another at group level 5, so that anything saved with
\xstacks_aftergroup:N on group level 6+ will be restored at group level 5... any-
thing between level 3 until the other mark will be restored at level 2.
Note: if \xstacks_aftergroup:N is called at the same level (or above) of the mark,
it will be equivalent to a simple \group_insert_after:N.
Attention: These should be considered deprecated. They are less effective and flexible
than \groupmark_new:n (from package tokgroupmark).

3 Multiple mark points after group variant

\xstacks_groupmark:N {⟨int-var⟩}
\xstacks_aftergroup:NN {⟨int-var⟩} {⟨token⟩}

\xstacks_groupmark:N
\xstacks_aftergroup:NN

⟨int-var⟩ must be an already declared integer variable, and will be used to mark/track a group
level. That way it is possible to have multiple and independent return points. Otherwise it works
exactly as the previous pair of commands. All assignments made to ⟨int-var⟩ are also local.

Attention: These should be considered deprecated. They are less effective and flexible
than \groupmark_new:n (from package tokgroupmark).

4 Custom Group Mark Commands
This is defined in the package tokgroupmark. The obvious distinction with the previous commands:
this don’t depend on the user reserving an integer for it (as in \xstacks_groupmark:N) and, unlike
\xstacks_groupmark:, it allows for multiple sets (no commonalities).

\groupmark_new:n {⟨mark-prefix⟩}

This will globally create two commands (below), named after ⟨mark-prefix⟩, to “mark” and “re-
store” a token up to that “mark”.

Note: Internally, an unique integer will be created to track the group mark.
Note: An error will be raised if ⟨mark-prefix⟩ is already used.

\groupmark_new:n

\<mark-prefix>_groupmark:
\<mark-prefix>_aftergroup:N {⟨token⟩}

\<mark-prefix>_groupmark:
\<mark-prefix>_aftergroup:N

The \<mark-prefix>_groupmark: will “mark” (save) the current group level, so that, when using
\<mark-prefix>_aftergroup:N the token will be restored once the same group level is reached once
again (similar to \aftergroup).

Note: \<mark-prefix>_groupmark: will save (local assignment) the current group
in an (unique to the set) integer. Since the assignment is local, it is possible to have
more than one mark associated with the same set.

2

5 Stack command variant
These are defined in the package tokglobalstack.

\globalstack_csnew:n {⟨stack-prefix⟩}\globalstack_csnew:n

This will globally create a set of commands, named after ⟨stack-prefix⟩, to push, put and pop
items from a private global stack. All assignments to/from that stack will be global, and the stack
itself will be unique to the command’s set.

Attention: This package defines \xstacks_cs_gset:N and \xstacks_cs_gset:n as
aliases to this, for continuity, as it was originally defined in this package.

\<stack-prefix>_gpush:n {⟨tokens⟩}
\<stack-prefix>_gput_right:n {⟨tokens⟩}
\<stack-prefix>_gput_left:n {⟨tokens⟩}
\<stack-prefix>_gput_gpop:

\<stack-prefix>_gpush:n
\<stack-prefix>_gput_right:n
\<stack-prefix>_gput_left:n
\<stack-prefix>_gpop:

The \<stack-prefix>_gpush:n will push ⟨tokens⟩ (can be any number of tokens) into a global,
private, stack. \<stack-prefix>_gput_right:n and \<stack-prefix>_gput_left:n will amend tokens
to it, and \<stack-prefix>_gpop:, as the name implies, will insert the top of the stack into the
input stream. That way it is possible to have a very fine control of what, where and when the
items are collected and used.

6 Stack variable variant
These are also defined in the package tokglobalstack.

\globalstack_gset:N {⟨stack-var⟩}
\globalstack_gpush:Nn {⟨stack-var⟩} {⟨tokens⟩}
\globalstack_gput_right:Nn {⟨stack-var⟩} {⟨tokens⟩}
\globalstack_gput_left:Nn {⟨stack-var⟩} {⟨tokens⟩}
\globalstack_gpop:N {⟨stack-var⟩}

\globalstack_gset:N
\globalstack_gpush:Nn
\globalstack_gput_right:Nn
\globalstack_gput_left:Nn
\globalstack_gpop:N

\globalstack_gset:N will globally create a stack variable named ⟨stack-var⟩ (a specialized token
list variable). Once created it is possible to push tokens into it (\globalstack_gpush:Nn), amend
tokens to the top (\globalstack_gput_right:Nn and \globalstack_gput_left:Nn) and pop those
tokens (\globalstack_gpop:N) into the input stream. All assignments being global.

Attention: This package defines a series of aliases, for definition continuity, as follow:
\xstacks_gset:N → \globalstack_new:N
\xstacks_gpush:Nn → \globalstack_gpush:Nn
\xstacks_gput_right:Nn → \globalstack_gput_right:Nn
\xstacks_gput_left:Nn → \globalstack_gput_left:Nn
\xstacks_gpop:N → \globalstack_gpop:N

7 Benchmarks and Final Thoughts
In the following, there is an exercise of . . . , better said, to evaluate the advantage/disadvantage
of each approach, in an extreme case: multiple tokens, deeply nested groups. The most effective
strategy is the stack command variant (see 5): 40 ops (7.4) versus 160 (7.3). In lighter cases, taking
in account that the stack variants are mostly ‘constant time’ (they don’t depend on how deep the
grouping is, but just how many operations (push/pop) are needed), the difference diminishes, but
the stack command variant still comes first (20 ops versus 35 ops).

At the end, it’s a case of flexibility, convenience and programming style versus performance.
In case of the original problem, to save context past the end of a scope, the stack approach is
the fastest, but the after group variant doesn’t lags much behind, while behaving much like the
\aftergroup primite: tokens are promptly restored past the end of a local group (at the target
group).

Note: About the after group variant, if \int_if_compare:nNnTF is used (instead of
the primitive \if_int_compare:w), the number of ops almost triple! Take a look at
the code, the version with \int_if_compare:nNnTF is commented out.
Note: Not really needed, but since one is at it, you can try (for more stable results)
\fp_set:Nn \g_benchmark_duration_target_fp {20}. . .

3

7.1 Single mark, after group variant

\benchmark:n
{

\group_begin:
\xstacks_groupmark:

{{
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpc_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpc_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpc_bool

{{
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpb_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpb_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpb_bool

{{
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool

{{
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool

{{
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool
\xstacks_aftergroup:N \bool_set_true:N
\xstacks_aftergroup:N \l__mytest_tmpa_bool

}} }} }}
}} }}
\group_end:

}

On average, it took about 160 ops (430 ops if using \int_if_compare:nNnTF). If ‘only’ the 4 first
groups, the average goes down to just 35 ops (90 ops if using \int_if_compare:nNnTF). Obviously,
the number of after groups raises exponentially, 2n, with the number of nested groups.

Attention: Again, these commands are to be considered deprecated. They are less
effective and flexible than \groupmark_new:n (from package tokgroupmark).

4

7.2 Multiple marks, after group variant

\int_gzero_new:N \myMark_int
\benchmark:n

{
\group_begin:

\xstacks_groupmark:N \myMark_int
{{

\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpc_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpc_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpc_bool

{{
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpb_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpb_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpb_bool

{{
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool

{{
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool

{{
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool
\xstacks_aftergroup:NN \myMark_int \bool_set_true:N
\xstacks_aftergroup:NN \myMark_int \l__mytest_tmpa_bool

}} }} }}
}} }}
\group_end:

}

On average, it took about 200 ops (480 ops if using \int_if_compare:nNnTF). If ‘only’ the 4 first
groups, the average goes down to just 45 ops (95 ops if using \int_if_compare:nNnTF). Likewise, the
number of after groups raises exponentially, 2n, with the number of nested groups (more expensive
than the previous one because of the extra integer that has to be carried on).

Attention: Again, these commands are to be considered deprecated. They are less
effective and flexible than \groupmark_new:n (from package tokgroupmark).

5

7.3 Custom group mark commands variant

\groupmark_new:n {myMark}
\benchmark:n

{
\group_begin:

\myMark_groupmark:
{{

\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpc_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpc_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpc_bool

{{
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpb_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpb_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpb_bool

{{
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool

{{
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool

{{
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool
\myMark_aftergroup:N \bool_set_true:N
\myMark_aftergroup:N \l__mytest_tmpa_bool

}} }} }}
}} }}
\group_end:

}

On average, it took about 160 ops (430 ops if using \int_if_compare:nNnTF). If ‘only’ the 4 first
groups, the average goes down to just 35 ops (90 ops if using \int_if_compare:nNnTF). Obviously,
the number of after groups raises exponentially, 2n, with the number of nested groups.

This has, naturally, the same performance/behaviour as 7.1, but with the flexibility of 7.2.

6

7.4 Stack command variant

\globalstack_csnew:n {myStack}
\benchmark:n

{
\group_begin:
{{

\myStack_gpush:n {
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool

}
{{

\myStack_gput_right:n {
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool

}
{{

\myStack_gput_right:n {
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool

}
{{

\myStack_gput_right:n {
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool

}
{{

\myStack_gput_right:n {
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool

}
}} }} }}
}} }}

\myStack_gpop:
\group_end:

}

On average, it took about 40 ops. If ‘only’ the 4 first groups, the average goes down to about
22 ops. All operations, \myStack_gpush:n, \myStack_gput_right:n and \myStack_gpop: are, more
or less, equally expensive.

The original implementation (version 1.0a) took, on average, about 405 ops. If ‘only’ the 4 first
groups, the average was about 195 ops. What’s the difference? Using just \int_use:N instead of
\int_to_Alph:n when creating internal variables (with \csname) to save the tokens.

7

7.5 Stack variable variant

\globalstack_new:N \g_mytest_stack
\benchmark:n

{
\group_begin:
{{

\globalstack_gpush:Nn \g_mytest_stack {
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool

}
{{

\globalstack_gput_right:Nn \g_mytest_stack {
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool
\bool_set_true:N \l__mytest_tmpb_bool

}
{{

\globalstack_gput_right:Nn \g_mytest_stack {
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool

}
{{

\globalstack_gput_right:Nn \g_mytest_stack {
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool

}
{{

\globalstack_gput_right:Nn \g_mytest_stack {
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool
\bool_set_true:N \l__mytest_tmpc_bool

}
}} }} }}
}} }}

\globalstack_gpop:N \g_mytest_stack
\group_end:

}

On average, it took about 50 ops. If ‘only’ the 4 first groups, the average goes down to about
30 ops. The \globalstack_gpush:Nn and \globalstack_gpop:N are somewhat the more expensive
operations.

The original implementation (version 1.0a) took, on average, about 310 ops. If ‘only’ the 4
first groups, the average remained about 290 ops. What’s the difference? Using just \int_use:N
instead of \int_to_Alph:n when creating internal variables (with \csname) to save the tokens.

References
[1] David Carlisle. Stackexchange about grouping. 2026. url: https://tex.stackexchange.

com / questions / 757755 / coffins - scope - groups # comment1889872 _ 757755 (visited on
01/01/2026).

[2] Alceu Frigeri. The tokglobalstack package. 2026. url: https://ctan.org/pkg/tokglobalstack
(visited on 02/18/2026).

[3] Alceu Frigeri. The tokgroupmark package. 2026. url: https://ctan.org/pkg/tokgroupmark
(visited on 02/18/2026).

8

https://tex.stackexchange.com/questions/757755/coffins-scope-groups#comment1889872_757755
https://tex.stackexchange.com/questions/757755/coffins-scope-groups#comment1889872_757755
https://ctan.org/pkg/tokglobalstack
https://ctan.org/pkg/tokgroupmark

	Introduction
	Simple mark point after group variant
	Multiple mark points after group variant
	Custom Group Mark Commands
	Stack command variant
	Stack variable variant
	Benchmarks and Final Thoughts
	Single mark, after group variant
	Multiple marks, after group variant
	Custom group mark commands variant
	Stack command variant
	Stack variable variant

