The Dvipdfmx user manual

The Dvipdfmx project team

February 18, 2026

https://ctan.org/pkg/dvipdfmx

https://ctan.org/pkg/dvipdfmx

Contents

1 Getting Started
1.1 Imtroduction e e
1.1.1 =xdvipdfmx
1.1.2 Legal Notice
1.2 Imstallation and Usage L o
1.3 Quick Guide oL
1.3. 1 XATEX . . o o e
1.3.2 pTEX . .
1.3.3 upTEX . . o
1.3.4 CIK-IATEX o
1.4 Overview of Extensions e
1.4.1 CJK Support o
1.4.2 Unicode Support
1.4.3 Other Extensions
2 Auxiliary Files
2.1 PostScript CMap Resources Lo o
2.1.1 Subfont Definition Files
2.1.2 The Adobe Glyph List and ToUnicode Mappings
3 Graphics
3.1 ImageInclusion L
3.1.1 Supported Graphics File Formats
3.1.2 Image Cache e
3.1.3 Custom Stream Dictionary Entries
3.2 Graphics Drawing e e
3.2.1 The pdf:content Special oL
3.2.2 Guide to PDF Graphics Operators
4 Specials
4.1 PDF Specials
4.1.1 Additions to PDF Specials. L
4.1.2 ToUnicode Special
4.1.3 PDF Special Examples oo o
4.2 Dvipdfmx Extensions
4.3 PS Specials

10
10
10
11

12
12
12
14
15
15
15
16

CONTENTS

CONTENTS

5 Fonts and Encodings

5.1 Fonts and Encodings Support
5.2 Font Mappings
5.2.1 Extended Syntax and Options
5.2.2 Specifying Unicode Plane
5.2.3 OpenType Layout Feature
5.3 Other Improvements
5.3.1 Extended Glyph Name Syntax
5.3.2 CFF Conversion
5.4 Font Licensing

6 Encryption

6.1 Encryption Supporto

7 Compatibility

7.1 Incompatible Changes
7.2 Important Changes,

A GNU Free Documentation License v1.3

P NSO W

ADDENDUM: How to use this License for your documents

APPLICABILITY AND DEFINITIONS
VERBATIM COPYING
COPYING IN QUANTITY
MODIFICATIONS o .
COMBINING DOCUMENTS
COLLECTIONS OF DOCUMENTS
AGGREGATION WITH INDEPENDENT WORKS
TRANSLATION
9. TERMINATION e
10. FUTURE REVISIONS OF THIS LICENSE
11. RELICENSING o

Chapter 1

Getting Started

1.1

Introduction

The dvipdfmx (formerly dvipdfm-cjk) project provides an extended version of the dvipdfm, a
DVI to PDF translator developed by Mark A. Wicks.

The primary goal of this project is to support multi-byte character encodings and large
character sets such as those for East Asian languages. This project started as a combined work
of the dvipdfm-jpn project by Shunsaku Hirata and its modified one, dvipdfm-kor, by Jin-Hwan

Cho.

Extensions to dvipdfm include,

Support for OpenType and TrueType fonts, including partial support for OpenType Lay-
out features for glyph variants and for vertical writing.

Support for CJK-IATEX and HIXTEX with Subfont Definition Files.
Support for various legacy multi-byte encodings via PostScript CMap Resources.

Unicode related features: Unicode as an input encoding and auto-creation of ToUnicode
CMaps.

Support for pTEX (a Japanese localized variant of TEX) including vertical writing exten-
sion.

Some extended DVI specials.

Reduction of output files size with on-the-fly Typel to CFF (TypelC) conversion and
PDF object stream.

Advanced raster image support including alpha channels, embedded ICC profiles, 16-bit
bit-depth colors, and so on.

Basic PDF password security support. (only for output)

Some important features are still missing:

Linearization.
Color Management.

Resampling of images.

1.2. INSTALLATION AND USAGE CHAPTER 1. GETTING STARTED

e Selection of compression filters.
e Variable font and OpenType 1.8.
e and plenty more...

dvipdfmx is now maintained as part of TEX Live. Latest source code can be found at the
TEX Live SVN repository. For an instruction on accessing the development sources for TEX
Live, see,

https://tug.org/texlive/svn/

Please send bug reports, questions, or suggestions to the public mailing list, tex-k@tug.org.
For more information, see https://ctan.org/pkg/dvipdmx.

1.1.1 =xdvipdfmx

xdvipdfmx is an extended version of dvipdfmx, and is now incorporated into dvipdfmx.

The xdvipdfmx extensions provides support for the Extended DVI (.xdv) format generated
by XHIEX which includes support for platform-native fonts and the X#IEX graphics primitives,
as well as Unicode text and OpenType font.

XATEX originally used a Mac-specific program called xdv2pdf as a backend program instead
of xdvipdfmx. The xdv2pdf program supported some special effects that are not yet available
through xdvipdfmx: Quartz graphics-based shadow support, AAT “variation” fonts such as
Skia, transparency as a font attribute, and so on.

1.1.2 Legal Notice

Copyright © The Dvipdfmx project team. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

1.2 Installation and Usage

dvipdfmx is included in the TEX distributions, so usually you don’t have to install it separately.

If you do wish to install it separately, typical usage and installation steps are not different
from the original dvipdfm. Please refer documents from dvipdfm distribution for detailed
instruction on how to install and how to use dvipdfm. The dvipdfm manual is available from
its CTAN site:

https://ctan.org/tex-archive/dviware/dvipdfm

The minimal requirements for building dvipdfmx is the kpathsea library. the zlib library for
compression and the libpng library for PNG inclusion are highly recommended. Optionally, the
libpaper library might be used to handle paper size.

This document mainly focuses on the additions and modifications to dvipdfm. Please refer
the “Dvipdfm User’s Manual” available from the CTAN site mentioned above for basic usage.

Some additional command line options recognized by dvipdfmx are listed in Table 1.1. In
addition to this, the -V option for specifying the output PDF version now accepts the version
specification of a form 2.0. Please try

https://tug.org/texlive/svn/
https://ctan.org/pkg/dvipdmx
https://ctan.org/tex-archive/dviware/dvipdfm
https://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf

1.3. QUICK GUIDE CHAPTER 1. GETTING STARTED

Option Description

-C number Specify miscellaneous option flags. See, section
of “Incompatible Changes” for details.

-S Enable PDF encryption.
-K number Set encryption key length. The default value is
40.

=P number Set permission flags for PDF encryption. The
number is a 32-bit unsigned integer represent-
ing permission flags. See, section of “Encryption
Support”. The default value is 0x003C.

-I number Life of image cache in hours, relevant only when
an image not directly supported by dvipdfmx is
used thus an external program is invoked to con-
vert it to a PDF format intermediate file. This
option basically specifies how long such interme-
diate files are preserved and reused. (to avoid
an external program is invoked again and again
whenever dvipdfmx tries to include images) By
specifying a value of 0, dvipdfmx erases existing
cached images, and the value -1 tells dvipdfmx
to erase all cached images and not to leave newly
generated one. And -2 indicates “ignore image
cache®. The default value is -2.

-M Process METAPOST generated PostScript file.
-E Always try to embed fonts regardless of licens-
ing.

-0 number Set maximum depth of open bookmark item.

Table 1.1: Additional command line options recognized by dvipdfmx.

dvipdfmx --help

for a complete list of command line options and their explanations.

1.3 Quick Guide

As the primary goal of dvipdfmx is to support multi-byte character encodings and large char-
acter sets, its primary users are expected to be users of IATEX packages for typesetting CJK
languages such as HIATEX and CJK-KTEX, and users of extended TEX variants which are capa-
ble of handling those languages, like X7IEX, pTEX, and upTEX. This section provides a “Quick
Guide” for those users.

1.3.1 XgTpX

XATEX users normally do not invoke the dvipdfmx command directly. To control the behavior
of dvipdfmx, please consider using the dvipdfmx:config special explained in the section of
“Specials”. Some part of this document is irrelevant for XfIEX users.

1.3. QUICK GUIDE CHAPTER 1. GETTING STARTED

1.3.2 pTEX

PTEX users are at least required to install several auxiliary files mentioned in the section of
“Auxiliary Files” and to setup font-mappings. Just install the adobemappings and glyphlist for
auxiliary files. (As TEX Live basic installation requires them, they are probably already installed
for TEX Live users.)

For TpX Live users, setting up fontmaps can be easily done with the help of the ptex-
fontmaps package and the updmap program. To use with the IPAex fonts (contained in the
ipaex package), for example, run,

kanji-config-updmap --sys ipaex

where the ‘--sys’ option indicates the system-wide configuration. After successful invocation
of the above command, the IPAex fonts will be used by default. The current setting can be
checked via,

kanji-config-updmap --sys status

For more information on the updmap program, try,

kanji-config-updmap --help

or refer the documentation of the updmap program.
Alternatively, just for a quick test of installation, try the following:

\documentclass{article}

\begin{document}

\special{pdf:mapline rml H KozMinProVI-Regular}
...Some Japanese text goes here...
\end{document}

In this example, PDF viewer which can handle substitute font is required since dvipdfmx does
not embed fonts.

For using Japanese text in PDF document information and annotations, put the following
special command,

\AtBeginDocument{\special{pdf:tounicode 90ms-RKSJ-UCS2}}

in the preamble. The above special command instructs dvipdfmx to convert text encoded in
Shift-JIS to Unicode. For EUC-JP, replace 90ms-RKJK-UCS2 with EUC-UCS2.

1.3. QUICK GUIDE CHAPTER 1. GETTING STARTED

1.3.3 upTEX

upTEX users are basically the same as pTEX users but there are two choices for setting fontmaps.
Setup fontmaps as mentioned above for pTEX, or use keyword unicode in the encoding field of
the fontmap file.

The former might be easier as the auto-creation of fontmap files can be done with the updmap
program and the ptez-fontmaps package. But in this method there are some difficulties when
using fonts which employ character collections (glyph repertoire) other than Adobe-Japanl in
the case of PostScript flavored OpenType fonts. In the later case, the adobemappings package is
not required and newer PostScript flavored OpenType fonts which do not employ Adobe-Japanl
can be easily used too.

Using unicode is more simpler and intuitive thus it is recommended to use this method.!
A typical example fontmap entries for using Adobe’s SouceHan series might look like:

urml unicode SourceHanSerifJP-Light.otf
urmlv ~ unicode SourceHanSerifJP-Light.otf -w 1
ugbm unicode SourceHanSansJP-Medium.otf

ugbmv unicode SourceHanSansJP-Medium.otf -w 1

As in pTEX, the following special instruction might be necessary for PDF document infor-
mation and annotations to be shown correctly:

\AtBeginDocument{\special{pdf:tounicode UTF8-UCS2}}

Here, input encoding is assumed to be UTF-8.

1.3.4 CJK-BTEX

CJK-IYTEX users are required to have Subfont Definition Files to be installed. They are available
as part of the ttfutils package.
To use TrueType Arphic fonts provided by the arphic-ttf package:

\documentclass{article}

\usepackage{CJKutf8}

...0ther packages loaded here...

\AtBeginDocument{%
\special{pdf:tounicode UTF8-UCS2}/
\special{pdf:mapline bsmiu@Unicode@ unicode bsmiOOlp.ttfl}%
}

\begin{document}

\begin{CJK}{UTF8}{bsmi}

...some Chinese text goes here...

\end{CJK}

\end{document}

For TEX Live 2017. Earlier versions have buggy support.

1.4. OVERVIEW OF EXTENSIONS CHAPTER 1. GETTING STARTED

[EEOr Ty~ (Y]

Figure 1.1: An example of horizontal and vertical text; left and right corner brackets are replaced
with their vertical counterparts.

Here, pdf :mapline special is used to setup a font-mapping.

1.4 Overview of Extensions

This section gives a quick overview of dvipdfmx’s extended capabilities.

1.4.1 CJK Support

There are many extensions made for supporting CJK languages. Features described here are
mainly for CJK languages. However, those features are implemented in a more generic way and
hence they can be also beneficial to users who are not involved in CJK languages.

Legacy Multi-byte Encodings

dvipdfmx has an extensible support for multi-byte encodings by means of PostScript CMap
Resources. Just like various 8-bit encodings can be supported via enc file, various multi-byte
encodings (including custom one) can be supported by preparing CMap files. See, Adobe’s
technical notes[2| for details on PostScript CMap Resources.

Vertical Writing

dvipdfmx supports the vertical writing extension used by pTEX and upTEX. A DVI instruction
to set the writing mode is supported. The OpenType Layout GSUB Feature is supported for
selecting vertical version of glyphs.

1.4.2 Unicode Support

Unicode support here consists of two parts: Supporting Unicode as an input encoding and
making output PDF files “Unicode aware” (“ToUnicode CMap Support”).

Unicode as Input Encoding

dvipdfmx recognizes an additional keyword unicode in the encoding entry of fontmap file, which
declares that character code used in input DVI files for fonts with this keyword specified should
be regarded as Unicode values. Unicode support is basically limited to the Basic Multilingual
Plane (BMP) since there are no support for code ranges that requires more than two bytes in
TFM and extended TFM formats.

1.4. OVERVIEW OF EXTENSIONS CHAPTER 1. GETTING STARTED

ToUnicode CMap Support

In PDF, it is often the case that text is not encoded in Unicode. However, modern applica-
tions usually want them represented in Unicode to make it usable as text information. The
ToUnicode CMap is a bridge between PDF text string encodings and Unicode encodings, and
makes it possible to extract text in PDF files as Unicode encoded strings. It is important to
make resulting PDF search-able and copy-and-past-able. Dvipdfmx supports auto-creation of
ToUnicode CMaps.

It will not work properly for multiply encoded glyphs due to fundamental limitations of
Unicode conversion mechanism with ToUnicode CMaps.

1.4.3 Other Extensions

dvipdfmx can generate encrypted PDF documents to protect its contents from unauthorized
access. It is limited to password-based authentication, and public-key based authentication is
not supported. The 256-bit AES encryption is also supported for PDF version 1.7 and 2.0
setting although it may not be supported by PDF viewers.

There are various other improvements over dvipdfm. The most notable one is more improved
PDF input and output support: The cross-reference stream and object stream introduced in
PDF-1.5 are also supported.

Chapter 2

Auxiliary Files

This chapter describes various auxiliary files required for supporting legacy encodings and legacy
font format such as PostScript Typel font. X+IEX users may skip this chapter.

dvipdfmx can handle various input encodings, from 7-bit encodings to variable-width multi-
byte encodings. It also has some sort of Unicode support. Several auxiliary files which are not
common to TEX users are needed to utilize those features. This chapter shortly describes about
those auxiliary files.

2.1 PostScript CMap Resources

PostScript CMap Resources' are required for supporting legacy encodings such as Shift-JIS,

EUC-JP, Bigh, and other East Asian encodings. dvipdfmx internally identifies glyphs with
identifiers (CIDs?) represented as an integer ranging from 0 to 65535 in the CID-based glyph
access. PostScript CMap Resources describes the mapping between sequences of input character
codes and CIDs. dvipdfmx has an extensible support for multi-byte encodings via PostScript
CMap Resources.

CMap files for standard Fast Asian encodings, for use with Adobe’s character collections,
are included in the adobemapping package. The latest version of those CMap files maintained
by Adobe can be found at Adobe’s GitHub Project page:

https://github.com/adobe-type-tools/cmap-resources

Those files are mandatory for supporting pTEX. upTEX users may also want to install them
but they are not required.

2.1.1 Subfont Definition Files

CJK fonts usually contain several thousands of glyphs. For using such fonts with (original) TEX,
which can only handle 8-bit encodings, it is necessary to split a font into several subfonts. The
Subfont Definition File (SFD) specify the way how those fonts are split into subfonts. dvipdfmx
uses SFD files to convert a set of subfonts back to a single font.

SFD files are not required for use with TEX variants which can handle multi-byte character
encodings and large character sets such as pTEX, upTEX,XHIEX, and Omega. HIXTEX and
CJK-KTEX users are required to have those files to be installed. SFD files are available as a
part of the ttfutils package for TEX Live users.

1See, “Adobe CMap and CIDFont Files Specification”
2PostScript terminology “Character IDentifier”.

10

https://github.com/adobe-type-tools/cmap-resources
https://www.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5014.CIDFont_Spec.pdf

2.1. POSTSCRIPT CMAP RESOURCES CHAPTER 2. AUXILIARY FILES

2.1.2 The Adobe Glyph List and ToUnicode Mappings

The Adobe Glyph List® (AGL) describes correspondence between PostScript glyph names (e.g.,
AE, Aacute,...) and Unicode character sequences representing them. Some features described
in the section “Unicode Support” requires AGL file.

dvipdfmx looks for the file glyphlist.txt when conversion from PostScript glyph names
to Unicode sequences is necessary. This conversion is done in various situations; when creat-
ing ToUnicode CMaps for 8-bit encoding fonts, finding glyph descriptions from TrueType and
OpenType fonts when the font itself does not provide a mapping from PostScript glyph names
to glyph indices (version 2.0 “post” table), and when the encoding unicode is specified for
Typel font.

The AGL file is included in the glyphlist package. The latest version can be found at Adobe’s
GitHub site:

https://github.com/adobe-type-tools/agl-aglfn

ToUnicode Mappings are similar to AGL but they describe correspondence between CID
numbers (instead of glyph names) and Unicode values. The content of those files are the same
as CMap Resources. They are required when using TrueType fonts emulated as a CID-keyed
font. They should be found in the same directory as ordinary CMap files.

ToUnicode Mapping files are included in the adobemapping package. Those files are not

required for XHIEX users.

3See, “Adobe Glyph List Specification”

11

https://github.com/adobe-type-tools/agl-aglfn
https://github.com/adobe-type-tools/agl-specification

Chapter 3

Graphics

3.1 Image Inclusion

The basics of incorporating images into output PDF is the same as in dvipdfm. To do this,
IATEX users can simply use the graphicz package. (possibly with the driver option dvipdfmx)
This section is not for providing a how-to guide to include images but just for supported graphics
and image formats along with supported features.

Graphics support was mostly rewritten in dvipdfmx. Support for BMP and JPEG2000
was added. An effort to preserve more information originally found in included images, e.g.,
embedded ICC Profiles and XMP Metadata, was made.

However, dvipdfmx does not support various features common to graphics manipulation
programs such as resampling, color conversion, and selection of compression filters. Thus, it
is recommended to use other programs specialized in image manipulation for preparation of
images.

3.1.1 Supported Graphics File Formats

Supported formats are, PNG, JPEG, JPEG2000, BMP, PDF, and METAPOST generated EPS.
All other format images, such as SVG and PostScript, must be converted to PDF before inclusion.
The ‘-D’ option, as in dvipdfm, can be used for filtering images.

Notes on PNG Support

PNG is supported as in dvipdfm with many improvements.

PNG support includes most of important features of PNG format such as color palette,
transparency, 16-bit bit-depth color, embedded ICC Profiles, calibrated color, and embedded
XMP Metadata.

In including PNG images, dvipdfmx first decompresses image data and then compresses
(if requested) it again. For better compression ratio, a preprocessing filter (Predictor filter)
might be applied before compression. dvipdfmx supports the TIFF Predictor 2 and the PNG
optimum filter. However, there is yet no way to specify which predictor function is to be used
and currently PNG optimum filter is always employed.

Predictor filter is a preprocessing filter to image data for improving compression. Using a
predictor filter usually gives better compression but in many cases compression speed becomes
significantly slower. Try ‘-C 0x20’ command line option to disable predictor filters and to check
if slowness is due to filtering.

12

3.1. IMAGE INCLUSION CHAPTER 3. GRAPHICS

Feature PDF Version Required
16-bit Color Depth Version 1.5
Transparency Full support for alpha channel requires PDF ver-

sion 1.4. Color key masking (a specific color is
treated as fully transparent) requires 1.3.

XMP Metadata Version 1.4

1CC Profile Version 1.3

Table 3.1: PNG features and corresponding PDF versions required.

For the PNG optimum filter, a heuristic approach, “minimum sum of absolute differences”, is
employed for finding the most optimal filter to be used. See, discussion in the PNG Specification
"Filter selection”:

https://www.w3.org/TR/2003/REC-PNG-20031110/#12Filter-selection

As built-in support for the sRGB color space is absent in PDF, the sRGB color can only be
represented precisely by means of the sSRGB ICC Profile. However, for sSRGB color PNG images,
dvipdfmx uses an approximate calibrated RGB color space instead. For approximating the
sRGB color, the gamma and CIE 1931 chromaticity values mentioned in the PNG Specification
is used. See, the following page for more information:

https://www.w3.org/TR/2003/REC-PNG-20031110/#11sRGB

dvipdfmx also supports calibrated color with the gAMA and the cHRM chunk. These chunks
carry information on more accurate color representation. Some software programs, however,
write only cHRM but do not record the gamma value although the PNG specification recommends
to do so. Gamma value 2.2 is assumed if only cHRM is present but gAMA is not.

Some PNG features are unavailable depending on output PDF version setting. Please refer
Table 3.1 for more details.

JPEG and JPEG2000

JPEG format is supported as in dvipdfm. In addition to this, JPEG2000 is also supported.

JPEG and JPEG2000 image inclusion is basically done as "pass-through”, that is, image
data is not decompressed before inclusion. So, although these formats are basically lossy, there
should be no quality loss when including images.

JPEG is relatively well supported. dvipdfmx supports embedded ICC Profiles and CMYK
color. Embedded XMP metadata is also preserved in the output PDF. JFIF or Exif data might
be used to determine image’s physical size.

As the PDF specification does not require information irrelevant to displaying images to be
embedded, dvipdfmx does not embed whole data. Especially, not all application specific data is
retained. Application specific data such as JFIF, Exif, and APP14 Adobe marker are preserved.
Please note that XMP and Exif data which may contain location information where the photo
was taken is always preserved in the output PDF file.

JPEG2000 is also supported. It is restricted to JP2 and JPX baseline subset as required by
the PDF specification. It is not well supported and still in an experimental stage. J2C format
and transparency are not supported.

13

https://www.w3.org/TR/2003/REC-PNG-20031110/#12Filter-selection
https://www.w3.org/TR/2003/REC-PNG-20031110/#11sRGB

3.1. IMAGE INCLUSION CHAPTER 3. GRAPHICS

PDF Support

PDF inclusion is supported as in dvipdfm, with various important enhancement over dvipdfm
for more robust inclusion. dvipdfmx can handle cross-reference streams and object streams
introduced in PDF-1.5. dvipdfmx also supports inclusion of PDF pages other than the first
page. However, tagged PDF may cause problems and annotations are not kept.

As there is no clear way to determine the natural extent of a graphics contents to be clipped,
dvipdfmx first try to find if there is any crop box explicitly specified, to determine image size.
If not, then it tries to refer other boundary boxes such as the art box which can be used for
defining the extent of the page’s meaningful content as suggested by the PDF Reference.[2] If
there is no such page boundaries explicitly specified, useful for estimating the intended size of
the graphics contents, the media box, which is the boundaries of the physical medium on which
the page is to be printed, is used as the last resort.

The pdf:image special supports additional keys, “page” and “pagebox” The page key
takes an integer value representing the page number of the PDF page to be included, and the
pagebox takes one of the keywords mediabox, cropbox, artbox, bleedbox, or trimbox for
selecting page’s boundary box to be used. For example,

\special{pdf:image pagebox artbox page 3 (foo.pdf)}

includes 3rd page of ‘foo.pdf’ with the boundary box set to the art box.

Other Image Formats

For METAPOST generated Encapsulated PostScript (EPS) files, multi-byte encoding support
is added. dvipdfmx also supports “METAPOST mode”. When dvipdfmx is invoked with ‘-M’
option, it enters in METAPOST mode and processes a METAPOST generated EPS file as an
input.?

BMP support is also added. It is limited to uncompressed or RLE-compressed raster images.
Extensions are not (won’t be) supported.

For image formats not natively supported, the -D option can be used to convert images
to PDF format before inclusion, as in dvipdfm. In dvipdfmx, the letter v in the -D option
argument is expanded to the output PDF version.

3.1.2 Image Cache

Caching of images generated via filtering command specified with ‘-D’ option is supported. It
solves the problems that image inclusion becomes very slow when external filtering program
such as GhostScript is invoked each time images are included.

Use ‘=1’ option to enable this feature:

-1 24

where the integer represents the life of cache files, 24 hours in this example. Zero and negative
values have a special meaning. Value 0 for “erase old cached images while leaving newly created
one”, —1 for “erase all cached images”, and —2 for “ignore image cache”. The default is —2.

Iprologue should be set to 2.

14

3.2. GRAPHICS DRAWING CHAPTER 3. GRAPHICS

3.1.3 Custom Stream Dictionary Entries

For all supported image formats, you can insert custom entries into the image’s XObject stream
dictionary by enclosing the entries inside of a pair of doubled angle brackets immediately after
the filename:

\special{pdf:image (foo.pdf) << /TestKey (TestValue) >>}

3.2 Graphics Drawing

dvipdfmx does not offer a high level interface to draw graphics objects. A possible way to draw
graphics is to write raw PDF graphics drawing codes and then to insert them into the output
via special commands.

To show an example, the following code:

\special{pdf:content
100100cm

0 100 m
80 100 120 80 120 0 c¢
S

draws a Bézier curve,

The pdf: content special is used here which is useful for inserting an isolated graphics object.

The above example illustrates a typical example of PDF graphics drawing. It consists of
three parts; setting graphics state, constructing a path, and painting a path. A Graphic object
are specified as a sequence of operators and their operands using postfix notation. Graphics
state operators comes first, cm in this example sets the current transformation matrix (CTM).
Then, path construction operators follow; move to position (0, 100), append a Bézier curve from
current point to (120,0) with control points (80,100) and (120,80). Finally, a path painting
operator comes to draw the constructed path. In this example the stroking operator S is used.

3.2.1 The pdf:content Special

The pdf : content special can be used for drawing an isolated graphics object. It sets the origin
of graphics drawing operators supplied to this command to the position where it is inserted.

15

3.2. GRAPHICS DRAWING CHAPTER 3. GRAPHICS

The whole content is enclosed by a pair of graphics state save-restore operators. So for example,
a color change made within a pdf:content command takes an effect only within the content of
this special.

3.2.2 Guide to PDF Graphics Operators

PDF employs essentially the same imaging model as PostScript. So, it is easy to learn about
PDF graphics drawing for people who are well accustomed to PostScript. This section is in-
tended to be a short guide for PDF graphics operators.

Graphics State Operators

The cm operator modifies CTM by concatenating the specified matrix. Operands given to

this operators are six numbers each representing transformation matrix elements: translation

represented as [1,0,0,1,¢,,1,], scaling [s,,0,0,s,,0,0], rotation [cos @, sin 6, —sin ¢, cos 6, 0, 0].
To uniformly scale the object, just use

Y

2.00 02.00 0 cm

The w operator sets the line width, e.g., ‘2 w’ sets the line width to 2. Here is an example
of drawing a rotated rectangle:

0.866 0.5 -0.5 0.866 30 2 cm 5 w O 0 100 50 re S

Transformations can be sequentially applied; for the above example,

100130 2cm0.86 0.5 -0.50.866 0 0 cm
5wO0O0 100 50 re S

gives the same result.
To specify colors, use RG, rg, K, and k operators, for RGB or CMYK color for stroking
(upper-case) and nonstroking (lower-case).

0.866 0.5 -0.5 0.866 30 2 cm 5 w
10.400K1000Kk

16

3.2. GRAPHICS DRAWING CHAPTER 3. GRAPHICS

0 0 100 50 re B

where the B operator fill and then stroke the path.

A dash pattern can be specified with the d operator. Operands for this operator are the
dash array and the dash phase. For example, to specify a dash pattern with 6-on 4-off starting
with phase 0:

64 0d2wO0OO0Om32001S

draws the following dashed line:

Other important operators are q and Q, which saves and restores the graphics state.

1001302cm

q

0.866 0.5 -0.5 0.866 0 0 cm
[6 4 0d2wO O 100 50 re S
Q

-:300m9 01S

0-2m09% 1S

In the above example, d, w, and rotation only take effect within the g-Q block. The portion
drawing two straight lines is unaffected by these graphics state change.

For a (incomplete) list of graphics state operators, see Talbe 3.2.

17

3.2. GRAPHICS DRAWING

CHAPTER 3. GRAPHICS

Operands Operator

Description

- q
— Q
abcdef cm
width W
array phase d
rghb RG
rgb rg
cmyk K
cmyk k

Save the current graphics state.

Restore the previously saved graphics state.
Modify the current transformation matrix by
concatenating the specified matrix.

Set the line width.

Set the line dash pattern.

Set the stroking color space to RGB and set
the stroking color as specified.

Set the nonstroking color space to RGB and
set the nonstroking color as specified.

Set the stroking color space to CMYK and set
the stroking color as specified.

Set the nonstroking color space to CMYK and
set the nonstroking color as specified.

Table 3.2: A few examples of graphics state operators and color operators.

Path Construction Operators

A path construction normally starts with a m operator which moves the current point to the
specified position and then sequences of other path construction operators follow. The path
currently under construction is called the current path. A sequence of path construction opera-
tors appends segments of path to the current path and then move the current point to the end
point of appended path. A typical sequence of path construction looks like,

100 50 m

100 78 78 100 50 100 c
22 100 0 78 0 50 ¢
022220500c

78 0 100 22 100 50 c
S

This example is an approximated circle drawn by four Bézier curves.

Table 3.3 shows a list of path construction operators. Those who are accustomed to the
PostScript language should note that in PDF the current path is not a part of the graphics
state, and hence is not saved and restored along with the other graphics state parameters.

18

3.2. GRAPHICS DRAWING CHAPTER 3. GRAPHICS

Operands Operator Description

Ty m Begin a new path by moving the current
point specified by given operands.

Ty 1 Append a line segment from the current
point to the point specified.

Ty Yy Ty Yoy Ty Y3 C Append a Bézier curve to the current

path. Two Control points and the end
point given as operands.

Ty Yo Ty Ys v Append a Bézier curve to the current
path. Using the current point and first
two operand as the Bézier control points.

Ty Yy Ty Ys y Append a Bézier curve to the current
path. The second control point coincides
with the end point.

— h Close the current path by appending a
straight line segment from the current
point to the starting point of the path.

x y width height re Append a rectangle. First two operands
for the position of lower-left corner, third
and forth operand representing width and
height.

Table 3.3: List of path construction operators. All operators move the current point to the end
point of appended path.

Path Painting Operators

There are basically four kind of path painting operators: S, £, B, and n. The first three for
“stroke”, “fill”, and “fill then stroke” operators respectively, and the last one n paints nothing
but end the path object. For filling operators, there are two kind of operators depending on
how “insideness” of points are determined: the non-zero winding number rule and the even-odd
rule. The even-odd rule operators are f£* and Bx.

The following example illustrates the difference:

0 0 100 100 re 20 20 60 60 re £
1001120 0 cm
0 0 100 100 re 20 20 60 60 re fx*

The “interior” of the “inner” square has a non-zero even winding number. (In this example,

19

3.2. GRAPHICS DRAWING CHAPTER 3. GRAPHICS

counter-clockwise direction is assumed for both of two re operators.)

20

Chapter 4

Specials

4.1 PDF Specials

dvipdfmx recognizes various special commands originally introduced in dvipdfm. Please refer
to the “Dvipdfm User’s Manual”[1] for detailed information on PDF specials.

4.1.1 Additions to PDF Specials

Several special commands are added for more flexible PDF generation: creation of arbitrary
stream objects, controlling dvipdfmx behavior, and some specials which might be useful for
graphics drawing.

PDF Object Manipulation

PDF object manipulation is a key feature of PDF specials. The pdf :fstream special is added
in dvipdfmx which enables creation of PDF stream object from an existing file. The syntax of
this special is,

pdf :fstream Q@identifier (filename) <<dictionary>>

where identifier and filename (specified as a PDF string object) are mandatory and a dictionary
object, following the filename, which is to be added to the stream dictionary is optional.
For example, to incorporate XMP Metadata from a file test.xmp,

\special{pdf:fstream @xmp (test.xmp) <<
/Type /Metadata
/Subtype /XML
>>}
\special{pdf:put @catalog << /Metadata @xmp >>}

Similarly, pdf : stream special can be used to create a PDF stream object from a PDF string
instead of a file.

pdf :stream Qidentifier (stream contents) <<dictionary>>

21

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

Figure 4.1: An image created by pdf : stream special.

This special might be useful for creating a simple image inline.

\special{pdf:stream @myimO1
<5500AAC05500AAC05500AAC05500AAC05500>
<<
/Type /X0Object
/Subtype /Image
/BitsPerComponent 1
/ColorSpace /DeviceGray
/Width 9
/Height 9

>>

}

\special{pdf:put @resources <<
/X0bject << /MyIMO1 @myimO1 >>

>>}

\special{pdf:content 81 0 0 81 0 O cm /MyIMOl Do}

The above example draws an image like Figure 4.1.

Controlling Font Mappings

pdf :mapline and pdf:mapfile specials can be used to append a fontmap entry or to load a
fontmap file:

pdf :mapline foo unicode bar
pdf :mapfile foo.map

Specifying Output PDF Version

pdf :majorversion and pdf:minorversion specials can be used to specify major and minor
version of output PDF.

pdf :minorversion 3

22

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

Please note that this command must appear on the first page, otherwise it will be ignored.

Custom File Identifiers

A custom file identifier (the ID entry in the trailer dictionary) can be specified via the special Addition in

pdf :trailerid. For example: /)%?9[“6

pdf:trailerid [
<00112233445566778899%9aabbccddeeff>
<00112233445566778899aabbccddeeff>

An array of two 16-byte PDF string objects (hexadecimal notion is used in the above example)
must be supplied as a file identifier. This special command must appear on the first page.

Encryption

To protect output PDF with encryption, use pdf :encrypt special

pdf :encrypt userpw (foo) ownerpw (bar) length 128 perm 20

where user-password (userpw) and owner-password (ownerpw) must be specified as PDF string
objects. (which can be empty) Numbers specifying key-length and permission flags here are
decimal numbers. See, section “Encryption Support” for a brief description of permission flags.

PDF Document Creation
As a convenience, the pageresources special is added, which puts given page resources into Addition in

subsequent page’s Resource Dictionary. For example, ﬁ%;sgLu(

\special{pdf:pageresources <<
/ExtGState << /MyGSOl << /ca 0.5 /CA 0.5 >> >>
>>}

?

puts an ExtGState resource named MyGSO1 into the current page’s and all subsequent pages
resource dictionary.

Other notable extensions are code, bcontent, and econtent. The code special can be used
to insert raw PDF graphics instructions into the output. It is different from dvipdfm’s content
special in that it does not enclose contents with a q and Q (save-restore of graphics state) pair.
A typical usage of this special is:

\special{pdf:code q 1 Tr}
...some text goes here...
\special{pdf:code Q}

23

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

Figure 4.2: A character drawn in the PDF text rendering mode 1.

which changes text rendering mode to 1, as shown in Figure 4.2.

Be careful on using this special as it is very easy to generate broken PDF files. The bcontent
and econtent pair is somewhat fragile and might be incompatible to other groups of special
commands. It may not always be guaranteed to work as ‘expected’.

4.1.2 ToUnicode Special

PDF allows users to attach various additional information such as document information, an-
notation, and navigation information (like bookmarks) to their document. All human-readable
text, text string, contained in such information must be encoded either in PDFDocEncod-
ing or UTF-16BE with Unicode byte order marker. However, as many users can’t prepare
their document with text strings properly encoded, there is a special kind of special command,
pdf : tounicode, which can be used to convert text strings into the appropriate Unicode form.
Note that this feature is provided just as a remedy for users incapable of encoding text strings
properly.
For example,

\special{pdf:tounicode 90ms-RKSJ-UCS2}

declares that some of text strings should be re-encoded according to specified conversion CMap
90ms-RKSJ-UCS2.

Conversion is done only for arguments to several PDF special commands such as docinfo,
ann, and out but not for that of general object creation specials. Note that not all PDF string
objects are subject to this conversion. By default, only dictionary entries listed below are
converted.

Title Author Subject Keywords Creator Producer Contents Subj
TU T TM

The list of dictionary entries subject to conversion can be extended by supplying additional
dictionary keys as an array object:

24

Addition in
TrX Live
2019

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

\special{pdf:tounicode 90ms-RKSJ-UCS2 [/RC /DS]}

If the name of conversion CMap contains one of the keywords RKSJ, B5, GBK, and KSC,
PDF string objects are treated specially when they are parsed. A two byte sequence starting
with the first byte’s high bit set is treated “as is” so that the 0x5¢ byte appears in the second byte
is not treated as an escape sequence. This behavior is not compliant to the PDF specification.

4.1.3 PDF Special Examples

This section shows several examples of special command usage. It is intended to be a hint for
advanced users, so uninterested users can safely skip this section. In many cases, using dvipdfmx
PDF specials requires knowledge on PDF. Please refer to Adobe’s “PDF Reference”[2].

Annotations

In this section, some useful special commands for creating annotations are explained. Note that
viewer support is required for annotations to be displayed correctly.

First start with a very simple Text Annotation for attaching a comment. This feature is
supported by many PDF viewer applications.

\special{pdf:ann width 20bp height 20bp

<<

/Type /Annot

/Subtype /Text

/Name /Comment

/T (Text Annotation Example)

/Subj (An Example of Text Annotations)

/Contents (A Quick Brown Fox Jumped Over The Lazy Dog.)
>>

pdf :ann special is used to create an annotation. A small icon shall be shown on the side margin.
Here, dictionary entry T is for the tilte, Subj for the subject of this annotation, and Contents
for the text string to be shown in the body of this annotation.

Likewise, Rubber Stamp Annotation, which places a rubber stamp like figure,

\special{pdf:ann width 150bp height 50bp

<<
/Type /Annot
/Subtype /Stamp
/Name /Approved
>>

25

Text Annotation Example
An Example of Text Annotations
A Quick Brown Fox Jumped Over The Lazy Dog.

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

Other keywords such as Expired, Final, Draft, and so on, can be used in place of Approved.
One can create stamps of their own style. For this purpose, other specials pdf :bxobj and
pdf :exobj can be used for designing stamps. Those specials “capture” all typeset material
enclosed by them into a PDF Form XObject, which is a reusable graphics object like included
images.
For a simple example,

\special{pdf:bxobj @MyStamp

width 280pt height Opt depth 40pt}
\addfontfeature{Scale=3,Color=FF9933}My Own Stamp%
\special{pdf:exobj}

It captures typeset material “My Own Stamp” (this example uses fontspec package’s command
for changing font size and text color) into the object labeled as MyStamp for later reuse. Then,
AP (appearance dictionary) entry for controlling the appearance of annotations is used as,

\special{pdf:ann width 280pt height 40pt
<<
/Type /Annot
/Subtype /Stamp
/AP << /N @MyStamp >>
>>

The image captured into the object MyStamp is used as “Normal” (AP dictionary entry N) ap-
pearance. (R for “Rollover” and D for “Down” can be used.)

The result is:

With the following code, dvipdfmx reads the source file and creates a stream object named
SourceFile, and then creates file attachment annotation.

\special{pdf:fstream @SourceFile (\jobname.tex)}/
\special{pdf:ann width 10bp height 20bp
<<
/Type /Annot
/Subtype /FileAttachment
/FS <<
/Type /Filespec

26

% Id
% dvipdfmx manual. GFDL 1.3 or later.
% https://ctan.org/pkg/dvipdfmx
\documentclass[a4paper,xetex,11pt]{report}
\hyphenation{Ja-pa-nese}
\usepackage{fullpage}
\usepackage{xltxtra}
\usepackage{fontspec}
\usepackage{microtype}
\usepackage{xunicode}
\usepackage{unicode-math}

% cm fonts suffice for the text.
\usepackage[olddefault]{fontsetup}

%% The following section is for showing some fancy examples.
%% Some fonts used here may not be availabel on your system.
%% Please modify this. Just replacing with empty macros is OK.
\newcommand{\jpzerofourexamples}{{%
\setmainfont[Scale=5,RawFeature=+jp04]{HaranoAjiMincho-Light.otf}葛祇逢}}
\newcommand{\jpninezeroexamples}{{%
\setmainfont[Scale=5,RawFeature=+jp90]{HaranoAjiMincho-Light.otf}葛祇逢}}
%% We use PostScript raw code here to test dvipdfmx's capability.
%% TFM files `urml' and `urmlv' are distributed with upTeX.
%% TrueType font `ipaexm.ttf' is bundled with TeX Live.
\newcommand{\jphoritext}{%
\makebox[112bp][l]{%
\raisebox{88bp}[112bp][0bp]{%
\special{pdf:mapline urml UniJIS-UTF8-H ipaexm.ttf}
\special{ps: urml findfont 16 scalefont setfont
 currentpoint moveto (「こんにちは」) show}%
}}}
%
\newcommand{\jpverttext}{%
\makebox[16bp][l]{%
\raisebox{112bp}[112bp][0bp]{%
\special{pdf:mapline urmlv UniJIS-UTF8-V ipaexm.ttf}
\special{ps: urmlv findfont 16 scalefont setfont
 currentpoint moveto (「こんにちは」) show}%
}}}

\usepackage{listings}
\lstset{
 keepspaces=true,
 basicstyle={\ttfamily},
 frame={tb},
 breaklines=true,
 columns=[l]{fullflexible},
 numbers=none,
 xrightmargin=2em,
 xleftmargin=2em,
 aboveskip=2em,
 belowskip=2em
}

\usepackage{mflogo}
\usepackage{lipsum}
\usepackage{array}
\usepackage{marginnote}
\renewcommand*{\marginfont}{\footnotesize\itshape}
\usepackage[noorphans,font=itshape]{quoting}
\newcommand{\package}[1]{\textit{#1}}
\newcommand{\code}[1]{\mbox{\texttt{#1}}}
\newcommand{\keyword}[1]{\textit{#1}}
\newcommand{\option}[1]{\mbox{`\texttt{#1}'}}
\newcommand{\dvipdfm}{\texttt{dvipdfm}}
\newcommand{\dvipdfmx}{\texttt{dvipdfmx}}
\newcommand{\xdvipdfmx}{\texttt{xdvipdfmx}}
\newcommand{\deprecated}[1]{\marginnote{\addfontfeatures{Color=CC3333}#1}}
\newcommand{\newfeature}[1]{\marginnote{\addfontfeatures{Color=3366CC}#1}}
\newcommand{\lnum}[1]{{\addfontfeatures{RawFeature=+lnum}#1}}
% For placeing drawings via \special
\newcommand{\specialbox}[3]{%
\makebox[#1][l]{\raisebox{-#2}[0bp][#2]{\special{#3}}}}

\usepackage{xcolor,hyperref,hyperxmp}
\hypersetup{%
 bookmarksnumbered=true,%
 linktocpage=true,
 hidelinks,
 %colorlinks=true,%
 %urlcolor=[rgb]{0.2,0.2,0.4},
 %linkcolor=[rgb]{0.2,0.2,0.4},
 %citecolor=[rgb]{0.2,0.2,0.4},
 pdftitle={The Dvipdfmx User Manual},%
 pdfauthor={The Dvipdfmx project team},%
 pdfsubject={A User's Manual for Dvipdfmx and Xdvipdfmx.},%
 pdfkeywords={dvipdfmx, XeTeX, TeX, LaTeX},
 pdflang=en,
 pdfcopyright={Copyright © The dvipdfmx project team.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".},
 pdflicenseurl={https://www.gnu.org/licenses/fdl.html}
}

%\pagestyle{headings}
\usepackage{fancyhdr}
\pagestyle{fancy}
%
\setlength{\headheight}{14pt}
\setlength{\headsep}{18pt}
\addtolength{\topmargin}{-6pt}

%%DVIPDFMX SETTINGS
\AtBeginDocument{%
 \special{dvipdfmx:config O 1}%
 \special{dvipdfmx:config V 7}
}

\title{The Dvipdfmx user manual}
\author{The Dvipdfmx project team}
\date{%
 \hspace*{1em}\\ \today\\
 \hspace*{1em}\\ \url{https://ctan.org/pkg/dvipdfmx}
 }

\begin{document}
\maketitle

%\begin{titlepage}
% \begin{raggedleft}
% {\Huge\bfseries Dvipdfmx User Manual}\\[\baselineskip]
% \Large \advance
% Dvipdfmx Project Team\\
% \url{https://ctan.org/pkg/dvipdfmx}\\
% \today\par
% \end{raggedleft}
%\end{titlepage}

\tableofcontents

\chapter{Getting Started}

\section{Introduction}

The \dvipdfmx\ (formerly \dvipdfm-cjk) project provides an extended version of
the \dvipdfm, a DVI to PDF translator developed by Mark~A.~Wicks.

The primary goal of this project is to support multi-byte character encodings
and large character sets such as those for East Asian languages.
This project started as a combined work of the \dvipdfm-jpn project by
Shunsaku Hirata and its modified one, \dvipdfm-kor, by Jin-Hwan Cho.

Extensions to \dvipdfm\ include,
\begin{itemize}
 \item Support for OpenType and TrueType fonts, including partial support
 for OpenType Layout features for glyph variants and for vertical writing.
 \item Support for CJK-\LaTeX\ and H\LaTeX\ with Subfont Definition Files.
 \item Support for various legacy multi-byte encodings via PostScript CMap
 Resources.
 \item Unicode related features: Unicode as an input encoding and
 auto-creation of ToUnicode CMaps.
 \item Support for p\TeX\ (a Japanese localized variant of \TeX) including
 vertical writing extension.
 \item Some extended DVI specials.
 \item Reduction of output files size with on-the-fly Type1 to CFF (Type1C)
 conversion and PDF object stream.
 \item Advanced raster image support including alpha channels, embedded
 ICC profiles, 16-bit bit-depth colors, and so on.
 \item Basic PDF password security support. (only for output)
\end{itemize}
Some important features are still missing:
\begin{itemize}
 \item Linearization.
 \item Color Management.
 \item Resampling of images.
 \item Selection of compression filters.
 \item Variable font and OpenType 1.8.
 \item and plenty more...
\end{itemize}

\dvipdfmx\ is now maintained as part of \TeX\ Live. Latest source code can
be found at the \TeX\ Live SVN repository. For an instruction on accessing the
development sources for \TeX\ Live, see,\medskip

\url{https://tug.org/texlive/svn/}
\medskip

\noindent Please send bug reports, questions, or suggestions to
the public mailing list, \texttt{tex-k@tug.org}. For more information,
see \url{https://ctan.org/pkg/dvipdmx}.

\subsection{\xdvipdfmx}

\xdvipdfmx\ is an extended version of \dvipdfmx, and is now incorporated into
\dvipdfmx.

The \xdvipdfmx\ extensions provides support for the Extended DVI (.xdv) format
generated by \XeTeX\ which includes support for platform-native fonts and the
\XeTeX\ graphics primitives, as well as Unicode text and OpenType font.

\XeTeX\ originally used a Mac-specific program called \code{xdv2pdf} as
a backend program instead of \xdvipdfmx. The \code{xdv2pdf} program
supported some special effects that are not yet available through
\xdvipdfmx: Quartz graphics-based shadow support, AAT ``variation''
fonts such as Skia, transparency as a font attribute, and so on.

\subsection{Legal Notice}

Copyright © The Dvipdfmx project team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled
``\hyperref[SEC:FDL]{GNU Free Documentation License}''.

\section{Installation and Usage}

\dvipdfmx\ is included in the \TeX\ distributions, so usually you don't
have to install it separately.

If you do wish to install it separately, typical usage and installation
steps are not different from the original \dvipdfm. Please refer
documents from \dvipdfm\ distribution for detailed instruction on how to
install and how to use \dvipdfm. The \dvipdfm\ manual is available from
its CTAN site:\medskip

\url{https://ctan.org/tex-archive/dviware/dvipdfm}
\medskip

The minimal requirements for building \dvipdfmx\ is the \keyword{kpathsea} library.
the \keyword{zlib} library for compression and the \keyword{libpng} library for PNG
inclusion are highly recommended.
Optionally, the \keyword{libpaper} library might be used to handle paper size.

This document mainly focuses on the additions and modifications to \dvipdfm.
Please refer the
``\href{https://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf}{Dvipdfm User's Manual}''
available from the CTAN site mentioned above for basic usage.

Some additional command line options recognized by \dvipdfmx\ are listed in
Table~\ref{TABLE:options}. In addition to this, the \code{-V} option for specifying
the output PDF version now accepts the version specification of a form \code{2.0}.
Please try
\begin{lstlisting}
dvipdfmx --help
\end{lstlisting}
for a complete list of command line options and their explanations.

\begin{table}
 \centering
 \begin{tabular}{lp{8cm}}\hline
 Option & Description \\ \hline\hline
 \code{-C} \textit{number} & Specify miscellaneous option flags. See,
 section of ``\hyperref[SEC:compatibility]{Incompatible Changes}'' for
 details. \\
 \code{-S} & Enable PDF encryption. \\
 \code{-K} \textit{number} & Set encryption key length. The default value
 is 40.\\
 \code{-P} \textit{number} & Set permission flags for PDF encryption.
 The \textit{number} is a 32-bit unsigned integer representing permission
 flags.
 See, section of ``\hyperref[SEC:encryption]{Encryption Support}''.
 The default value is \code{0x003C}.\\
 \code{-I} \textit{number} & Life of image cache in hours, relevant only when
 an image not directly supported by \dvipdfmx\ is used thus an external
 program is invoked to convert it to a PDF format intermediate file.
 This option basically specifies how long such intermediate files are preserved
 and reused. (to avoid an external program is invoked again and again whenever
 \dvipdfmx\ tries to include images)
 By specifying a value of \code{0}, \dvipdfmx\ erases existing cached images,
 and the value \code{-1} tells \dvipdfmx\ to erase all cached images and not to
 leave newly generated one. And \code{-2} indicates ``ignore image cache``.
 The default value is \code{-2}.\\
 \code{-M} & Process \MP\ generated PostScript file.\\
 \code{-E} & Always try to embed fonts \emph{regardless of
 licensing}.\\
 \code{-O} \textit{number} & Set maximum depth of open bookmark item.\\
 \hline
 \end{tabular}
 \caption{Additional command line options recognized by \dvipdfmx.}%
 \label{TABLE:options}
\end{table}

\section{Quick Guide}

As the primary goal of \dvipdfmx\ is to support multi-byte character encodings
and large character sets, its primary users are expected to be users of
\LaTeX\ packages for typesetting CJK languages such as H\LaTeX\ and CJK-\LaTeX,
and users of extended \TeX\ variants which are capable of handling those
languages, like \XeTeX, p\TeX, and up\TeX.
This section provides a ``Quick Guide'' for those users.

\subsection{\texorpdfstring{\XeTeX}{XeTeX}}

\XeTeX\ users
normally do not invoke the \dvipdfmx\ command directly. To control the
behavior of \dvipdfmx, please consider using the \code{dvipdfmx:config}
special explained in the section of ``\hyperref[SEC:specials]{Specials}''.
Some part of this document is irrelevant for \XeTeX\ users.

\subsection{p\TeX}
p\TeX\ users are at least required to install several auxiliary files
mentioned in the section of ``\hyperref[SEC:auxfiles]{Auxiliary Files}''
and to setup font-mappings. Just install the \package{adobemappings} and
\package{glyphlist} for auxiliary files. (As \TeX\ Live basic installation
requires them, they are probably already installed for \TeX\ Live users.)

For \TeX\ Live users, setting up fontmaps can be easily done with the help
of the \package{ptex-fontmaps} package and the \keyword{updmap} program.
To use with the IPAex fonts (contained in the \package{ipaex} package), for
example, run,
\begin{lstlisting}
kanji-config-updmap --sys ipaex
\end{lstlisting}
where the \option{--sys} option indicates the system-wide configuration.
After successful invocation of the above command, the IPAex fonts will
be used by default. The current setting can be checked via,
\begin{lstlisting}
kanji-config-updmap --sys status
\end{lstlisting}
For more information on the updmap program, try,
\begin{lstlisting}
kanji-config-updmap --help
\end{lstlisting}
or refer the documentation of the updmap program.

Alternatively, just for a quick test of installation, try the following:
\begin{lstlisting}
\documentclass{article}
\begin{document}
\special{pdf:mapline rml H KozMinProVI-Regular}
...Some Japanese text goes here...
\end{document}
\end{lstlisting}
In this example, PDF viewer which can handle substitute font is required since
\dvipdfmx\ does not embed fonts.

For using Japanese text in PDF document information and annotations, put
the following \code{special} command,
\begin{lstlisting}
\AtBeginDocument{\special{pdf:tounicode 90ms-RKSJ-UCS2}}
\end{lstlisting}
in the preamble.
The above \code{special} command instructs \dvipdfmx\ to convert text encoded
in Shift-JIS to Unicode. For EUC-JP, replace 90ms-RKJK-UCS2 with EUC-UCS2.

\subsection{up\TeX}
up\TeX\ users are basically the same as p\TeX\ users but there are two choices
for setting fontmaps. Setup fontmaps as mentioned above for p\TeX, or use
keyword \code{unicode} in the encoding field of the fontmap file.

The former might be easier as the auto-creation of fontmap files can be done
with the updmap program and the \package{ptex-fontmaps} package. But in
this method there are some difficulties when using fonts which employ character
collections (glyph repertoire) other than Adobe-Japan\lnum{1} in the case of PostScript
flavored OpenType fonts.
In the later case, the \package{adobemappings} package is not required
and newer PostScript flavored OpenType fonts which do not employ Adobe-Japan\lnum{1}
can be easily used too.

Using \code{unicode} is more simpler and intuitive thus it is recommended to
use this method.\footnote{For \TeX\ Live 2017. Earlier versions have buggy
support.}
A typical example fontmap entries for using Adobe's SouceHan series
might look like:
\begin{lstlisting}
urml unicode SourceHanSerifJP-Light.otf
urmlv unicode SourceHanSerifJP-Light.otf -w 1
ugbm unicode SourceHanSansJP-Medium.otf
ugbmv unicode SourceHanSansJP-Medium.otf -w 1
\end{lstlisting}

As in p\TeX, the following \code{special} instruction might be necessary for PDF
document information and annotations to be shown correctly:
\begin{lstlisting}
\AtBeginDocument{\special{pdf:tounicode UTF8-UCS2}}
\end{lstlisting}
Here, input encoding is assumed to be UTF-8.

\subsection{CJK-\LaTeX}

CJK-\LaTeX\ users are required to have \keyword{Subfont Definition Files}
to be installed. They are available as part of the \package{ttfutils} package.

To use TrueType Arphic fonts provided by the \package{arphic-ttf} package:
\begin{lstlisting}
\documentclass{article}
\usepackage{CJKutf8}
...Other packages loaded here...
\AtBeginDocument{%
 \special{pdf:tounicode UTF8-UCS2}%
 \special{pdf:mapline bsmiu@Unicode@ unicode bsmi00lp.ttf}%
 }
\begin{document}
\begin{CJK}{UTF8}{bsmi}
...some Chinese text goes here...
\end{CJK}
\end{document}
\end{lstlisting}
Here, \code{pdf:mapline} special is used to setup a font-mapping.

\section{Overview of Extensions}

This section gives a quick overview of \dvipdfmx's extended capabilities.

\subsection{CJK Support}

There are many extensions made for supporting CJK languages. Features described
here are mainly for CJK languages. However, those features are implemented in a
more generic way and hence they can be also beneficial to users who are not
involved in CJK languages.

\subsubsection{Legacy Multi-byte Encodings}

\dvipdfmx\ has an extensible support for multi-byte encodings by means of PostScript
CMap Resources. Just like various 8-bit encodings can be supported via \code{enc} file,
various multi-byte encodings (including custom one) can be supported by preparing
CMap files.
See, Adobe's technical notes\cite{ADOBE} for details on PostScript CMap Resources.

\subsubsection{Vertical Writing}

\dvipdfmx\ supports the vertical writing extension used by p\TeX\ and up\TeX.
A DVI instruction to set the writing mode is supported. The OpenType Layout
GSUB Feature is supported for selecting vertical version of glyphs.

\begin{figure}
\centering
\jphoritext\hspace{24pt}\jpverttext%
\caption{An example of horizontal and vertical text;
left and right corner brackets are replaced with their vertical counterparts.}%
\label{FIG:verttext}
\end{figure}

\subsection{Unicode Support}

Unicode support here consists of two parts: Supporting Unicode as an input
encoding and making output PDF files ``Unicode aware'' (``ToUnicode CMap Support'').

\subsubsection{Unicode as Input Encoding}

\dvipdfmx\ recognizes an additional keyword \code{unicode} in the encoding entry of
fontmap file, which declares that character code used in input DVI files for fonts
with this keyword specified should be regarded as Unicode values. Unicode support is
basically limited to the Basic Multilingual Plane (BMP) since there are no
support for code ranges that requires more than two bytes in TFM and extended
TFM formats.

\subsubsection{ToUnicode CMap Support}

In PDF, it is often the case that text is not encoded in Unicode.
However, modern applications usually want them represented in Unicode to make
it usable as text information.
The ToUnicode CMap is a bridge between PDF text string encodings and Unicode
encodings, and makes it possible to extract text in PDF files as
Unicode encoded strings. It is important to make resulting PDF search-able and
copy-and-past-able. Dvipdfmx supports auto-creation of ToUnicode CMaps.

It will not work properly for multiply encoded glyphs due to fundamental
limitations of Unicode conversion mechanism with ToUnicode CMaps.

\subsection{Other Extensions}

\dvipdfmx\ can generate encrypted PDF documents to protect its contents from
unauthorized access. It is limited to password-based authentication, and
public-key based authentication is not supported. The 256-bit AES encryption is
also supported for PDF version 1.7 and 2.0 setting although it may not be supported
by PDF viewers.

There are various other improvements over \dvipdfm. The most notable one is
more improved PDF input and output support: The cross-reference stream and
object stream introduced in \lnum{PDF-1.5} are also supported.

\chapter{Auxiliary Files}\label{SEC:auxfiles}

This chapter describes various auxiliary files required for supporting legacy encodings
and legacy font format such as PostScript Type1 font.
\XeTeX\ users may skip this chapter.

\dvipdfmx\ can handle various input encodings, from 7-bit encodings to variable-width
multi-byte encodings. It also has some sort of Unicode support.
Several auxiliary files which are not common to \TeX\ users are needed to utilize those
features. This chapter shortly describes about those auxiliary files.

\section{PostScript CMap Resources}

\keyword{PostScript CMap Resources}\footnote{See,
``\href{https://www.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5014.CIDFont_Spec.pdf}%
{Adobe CMap and CIDFont Files Specification}''}
are required for supporting legacy encodings such as Shift-JIS, EUC-JP, \lnum{Big5},
and other East Asian encodings. \dvipdfmx\ internally identifies glyphs with
identifiers (CIDs\footnote{PostScript terminology ``Character IDentifier''.})
represented as an integer ranging from 0 to 65535 in the CID-based glyph access.
PostScript CMap Resources describes the mapping between sequences of input
character codes and CIDs. \dvipdfmx\ has an extensible support for multi-byte
encodings via PostScript CMap Resources.

CMap files for standard East Asian encodings, for use with Adobe's character
collections, are included in the \package{adobemapping} package.
The latest version of those CMap files maintained by Adobe can be found at
Adobe's GitHub Project page:\medskip

\url{https://github.com/adobe-type-tools/cmap-resources}
\medskip

Those files are mandatory for supporting p\TeX. up\TeX\ users may also
want to install them but they are not required.

\subsection{Subfont Definition Files}

CJK fonts usually contain several thousands of glyphs. For using such fonts
with (original) \TeX, which can only handle 8-bit encodings, it is necessary to
split a font into several \keyword{subfonts}. The Subfont Definition File (SFD)
specify the way how those fonts are split into subfonts. \dvipdfmx\ uses SFD
files to convert a set of subfonts back to a single font.

SFD files are not required for use with \TeX\ variants which can handle
multi-byte character encodings and large character sets such as p\TeX,
up\TeX,\XeTeX, and Omega.
H\LaTeX\ and CJK-\LaTeX\ users are required to have those files to be
installed. SFD files are available as a part of the \package{ttfutils} package
for \TeX\ Live users.

\subsection{The Adobe Glyph List and ToUnicode Mappings}

The Adobe Glyph List\footnote{See,
``\href{https://github.com/adobe-type-tools/agl-specification}{Adobe Glyph List Specification}''}
(AGL) describes correspondence between PostScript glyph names (e.g., \code{AE},
\code{Aacute},...) and Unicode character sequences representing them.
Some features described in the section ``Unicode Support'' requires AGL file.

\dvipdfmx\ looks for the file \code{glyphlist.txt} when conversion from
PostScript glyph names to Unicode sequences is necessary.
This conversion is done in various situations; when creating ToUnicode CMaps
for 8-bit encoding fonts, finding glyph descriptions from TrueType and OpenType
fonts when the font itself does not provide a mapping from PostScript glyph
names to glyph indices (version 2.0 ``post'' table), and when the encoding
\code{unicode} is specified for Type1 font.

The AGL file is included in the \package{glyphlist} package. The latest version
can be found at Adobe's GitHub site:\medskip

\url{https://github.com/adobe-type-tools/agl-aglfn}
\medskip

ToUnicode Mappings are similar to AGL but they describe correspondence
between CID numbers (instead of glyph names) and Unicode values.
The content of those files are the same as CMap Resources.
They are required when using TrueType fonts emulated as a CID-keyed font.
They should be found in the same directory as ordinary CMap files.

ToUnicode Mapping files are included in the \package{adobemapping} package.
Those files are not required for \XeTeX\ users.

\chapter{Graphics}\label{SEC:graphics}

\section{Image Inclusion}

The basics of incorporating images into output PDF is the same as in \dvipdfm.
To do this, \LaTeX\ users can simply use the \package{graphicx} package.
(possibly with the driver option \code{dvipdfmx})
This section is \emph{not} for providing a how-to guide to include images but
just for supported graphics and image formats along with supported features.

Graphics support was mostly rewritten in \dvipdfmx.
Support for BMP and JPEG\lnum{2000} was added. An effort to preserve more
information originally found in included images, e.g., embedded ICC Profiles
and XMP Metadata, was made.

However, \dvipdfmx\ does not support various features common to graphics
manipulation programs such as resampling, color conversion, and selection of
compression filters. Thus, it is recommended to use other programs specialized
in image manipulation for preparation of images.

\subsection{Supported Graphics File Formats}

Supported formats are, PNG, JPEG, \lnum{JPEG2000}, BMP, PDF, and \MP\ generated
EPS. All other format images, such as SVG and PostScript, must be converted to
PDF before inclusion. The \option{-D} option, as in \dvipdfm, can be used for
filtering images.

\subsubsection{Notes on PNG Support}

PNG is supported as in \dvipdfm\ with many improvements.

PNG support includes most of important features of PNG format such as color
palette, transparency, 16-bit bit-depth color, embedded ICC Profiles,
calibrated color, and embedded XMP Metadata.

In including PNG images, \dvipdfmx\ first decompresses image data and then
compresses (if requested) it again.
For better compression ratio, a preprocessing filter (Predictor filter) might
be applied before compression.
\dvipdfmx\ supports the TIFF Predictor 2 and the PNG optimum filter.
However, there is yet no way to specify which predictor function is to be used
and currently PNG optimum filter is always employed.

Predictor filter is a preprocessing filter to image data for improving compression.
Using a predictor filter usually gives better compression
but in many cases compression speed becomes significantly slower.
Try \option{-C 0x20} command line option to disable predictor filters and to
check if slowness is due to filtering.

For the PNG optimum filter, a heuristic approach, ``minimum sum of absolute
differences'', is employed for finding the most optimal filter to be used.
See, discussion in the PNG Specification ''Filter selection'':\medskip

\url{https://www.w3.org/TR/2003/REC-PNG-20031110/\#12Filter-selection}
\medskip

As built-in support for the sRGB color space is absent in PDF,
the sRGB color can only be represented precisely by means of the sRGB ICC Profile.
However, for sRGB color PNG images, \dvipdfmx\ uses an approximate calibrated
RGB color space instead.
For approximating the sRGB color, the gamma and CIE \lnum{1931} chromaticity values
mentioned in the PNG Specification is used.
See, the following page for more information:\medskip

\url{https://www.w3.org/TR/2003/REC-PNG-20031110/\#11sRGB}
\medskip

\dvipdfmx\ also supports calibrated color with the \code{gAMA} and the \code{cHRM} chunk.
These chunks carry information on more accurate color representation.
Some software programs, however, write only \code{cHRM} but do not record the gamma value
although the PNG specification recommends to do so. Gamma value 2.2 is assumed if only
\code{cHRM} is present but \code{gAMA} is not.

Some PNG features are unavailable depending on output PDF version setting. Please refer
Table~\ref{TABLE:PNGfeat} for more details.

\begin{table}
 \centering
 \begin{tabular}{lp{8cm}}\hline
 Feature & PDF Version Required \\ \hline\hline
 16-bit Color Depth & Version 1.5 \\
 Transparency & Full support for alpha channel requires PDF version 1.4.
 Color key masking (a specific color is treated as fully transparent)
 requires 1.3.\\
 XMP Metadata & Version 1.4 \\
 ICC Profile & Version 1.3 \\
 \hline
 \end{tabular}
 \caption{PNG features and corresponding PDF versions required.}%
 \label{TABLE:PNGfeat}
\end{table}

\subsubsection{JPEG and \lnum{JPEG2000}}

JPEG format is supported as in \dvipdfm. In addition to this, \lnum{JPEG2000}
is also supported.

JPEG and \lnum{JPEG2000} image inclusion is basically done as ''pass-through'',
that is, image data is not decompressed before inclusion. So, although these
formats are basically lossy, there should be no quality loss when including
images.

JPEG is relatively well supported. \dvipdfmx\ supports embedded ICC Profiles
and CMYK color. Embedded XMP metadata is also preserved in the output PDF.
JFIF or Exif data might be used to determine image's physical size.

As the PDF specification does not require information irrelevant to
displaying images to be embedded, \dvipdfmx\ does not embed whole data.
Especially, not all application specific data is retained. Application
specific data such as JFIF, Exif, and \code{APP14} Adobe marker are
preserved.
Please note that XMP and Exif data which may contain location information
where the photo was taken is always preserved in the output PDF file.

\lnum{JPEG2000} is also supported. It is restricted to JP2 and JPX baseline
subset as required by the PDF specification. It is not well supported and still in
an experimental stage. J2C format and transparency are not supported.

\subsubsection{PDF Support}

PDF inclusion is supported as in \dvipdfm, with various important enhancement
over \dvipdfm\ for more robust inclusion. \dvipdfmx\ can handle cross-reference
streams and object streams introduced in \lnum{PDF-1.5}.
\dvipdfmx\ also supports inclusion of PDF pages other than the first page.
However, tagged PDF may cause problems and annotations are not kept.

As there is no clear way to determine the natural extent of a graphics contents
to be clipped, \dvipdfmx\ first try to find if there is any \emph{crop box}
explicitly specified, to determine image size. If not, then it tries to refer
other boundary boxes such as the \emph{art box} which can be used for defining
the extent of the page's meaningful content as suggested by the PDF Reference.\cite{ADOBE}
If there is no such page boundaries explicitly specified, useful for estimating
the intended size of the graphics contents, the \emph{media box}, which is the
boundaries of the physical medium on which the page is to be printed, is used as
the last resort.

The \code{pdf:image} special supports additional keys, ``\code{page}'' and
``\code{pagebox}''. The \code{page} key takes an integer value representing
the page number of the PDF page to be included, and the \code{pagebox} takes one
of the keywords \code{mediabox}, \code{cropbox}, \code{artbox}, \code{bleedbox},
or \code{trimbox} for selecting page's boundary box to be used. For example,
\begin{lstlisting}
\special{pdf:image pagebox artbox page 3 (foo.pdf)}
\end{lstlisting}
includes 3rd page of `foo.pdf' with the boundary box set to the art box.

\subsubsection{Other Image Formats}

For \MP\ generated Encapsulated PostScript (EPS) files, multi-byte encoding
support is added.
\dvipdfmx\ also supports ``\MP\ mode''. When \dvipdfmx\ is invoked with
\option{-M} option, it enters in \MP\ mode and processes a \MP\
generated EPS file as an input.%
\footnote{\code{prologue} should be set to \code{2}.}

BMP support is also added. It is limited to uncompressed or RLE-compressed
raster images. Extensions are not (won't be) supported.

For image formats not natively supported, the \code{-D} option can be
used to convert images to PDF format before inclusion, as in \dvipdfm.
In \dvipdfmx, the letter \code{v} in the \code{-D} option argument is expanded
to the output PDF version.

\subsection{Image Cache}

Caching of images generated via filtering command specified with \option{-D}
option is supported. It solves the problems that image inclusion becomes very
slow when external filtering program such as GhostScript is invoked each time
images are included.

Use \option{-I} option to enable this feature:
\begin{lstlisting}
-I 24
\end{lstlisting}
where the integer represents the life of cache files, 24 hours in this
example. Zero and negative values have a special meaning. Value 0 for
``erase old cached images while leaving newly created one'', -1 for
``erase all cached images'', and -2 for ``ignore image cache''.
The default is -2.

\subsection{Custom Stream Dictionary Entries}

For all supported image formats, you can insert custom entries into the image's
XObject stream dictionary by enclosing the entries inside of a pair of doubled
angle brackets immediately after the filename:
\begin{lstlisting}
\special{pdf:image (foo.pdf) << /TestKey (TestValue) >>}
\end{lstlisting}

\section{Graphics Drawing}

\dvipdfmx\ does not offer a high level interface to draw graphics objects.
A possible way to draw graphics is to write raw PDF graphics drawing codes and
then to insert them into the output via \code{special} commands.

To show an example, the following code:
\begin{lstlisting}
\special{pdf:content
 1 0 0 1 0 0 cm
 0 100 m
 80 100 120 80 120 0 c
 S
}
\end{lstlisting}
draws a Bézier curve,
\begin{center}
\specialbox{120bp}{100bp}{pdf:content 1 0 0 1 0 0 cm 0 100 m 80 100 120 80 120 0 c S}
\end{center}
The \code{pdf:content} special is used here which is useful for inserting an
isolated graphics object.

The above example illustrates a typical example of PDF graphics drawing.
It consists of three parts; setting graphics state, constructing a path, and painting
a path. A Graphic object are specified as a sequence of operators and their operands
using \emph{postfix notation}. \keyword{Graphics state operators} comes first,
\code{cm} in this example sets the current transformation matrix (CTM). Then,
\keyword{path construction} operators follow; move to position $(0, 100)$,
append a Bézier curve from current point to $(120, 0)$ with control points
$(80, 100)$ and $(120, 80)$. Finally, a \keyword{path painting} operator
comes to draw the constructed path.
In this example the stroking operator \code{S}
is used.

\subsection{The \code{pdf:content} Special}

The \code{pdf:content} special can be used for drawing an \emph{isolated}
graphics object. It sets the origin of graphics drawing operators supplied to
this command to the position where it is inserted.
The whole content is enclosed by a pair of graphics state save-restore
operators. So for example, a color change made within a \code{pdf:content}
command takes an effect only within the content of this special.

\subsection{Guide to PDF Graphics Operators}

PDF employs essentially the same imaging model as PostScript.
So, it is easy to learn about PDF graphics drawing for people who are
well accustomed to PostScript. This section is intended to be a short guide
for PDF graphics operators.

\subsubsection{Graphics State Operators}

The \code{cm} operator modifies CTM by concatenating the specified matrix.
Operands given to this operators are six numbers each representing
transformation matrix elements:
translation represented as $[1, 0, 0, 1, t_x, t_y]$,
scaling $[s_x, 0, 0, s_y, 0, 0]$,
rotation $[\cos\theta, \sin\theta, -\sin\theta, \cos\theta, 0, 0]$.

To uniformly scale the object, just use
\begin{lstlisting}
2.0 0 0 2.0 0 0 cm
\end{lstlisting}

The \code{w} operator sets the line width, e.g., `\code{2 w}' sets the line
width to 2. Here is an example of drawing a rotated rectangle:
\begin{lstlisting}
0.866 0.5 -0.5 0.866 30 2 cm 5 w 0 0 100 50 re S
\end{lstlisting}
\begin{center}
\specialbox{120bp}{96bp}{pdf:content 0.866 0.5 -0.5 0.866 30 2 cm 5 w 0 0 100 50 re S}%
\end{center}

Transformations can be sequentially applied; for the above example,
\begin{lstlisting}
1 0 0 1 30 2 cm 0.866 0.5 -0.5 0.866 0 0 cm
5 w 0 0 100 50 re S
\end{lstlisting}
gives the same result.

To specify colors, use \code{RG}, \code{rg}, \code{K}, and \code{k} operators,
for RGB or CMYK color for stroking (upper-case) and nonstroking (lower-case).
\begin{lstlisting}
0.866 0.5 -0.5 0.866 30 2 cm 5 w
1 0.4 0 0 K 1 0 0 0 k
0 0 100 50 re B
\end{lstlisting}
where the \code{B} operator fill and then stroke the path.
\begin{center}
\specialbox{120bp}{96bp}{pdf:content 0.866 0.5 -0.5 0.866 30 2 cm 5 w
1 0.4 0 0 K 1 0 0 0 k 0 0 100 50 re B}
\end{center}

A dash pattern can be specified with the \code{d} operator.
Operands for this operator are the \keyword{dash array} and
the \keyword{dash phase}.
For example, to specify a dash pattern with 6-on 4-off starting with phase 0:
\begin{lstlisting}
[6 4] 0 d 2 w 0 0 m 320 0 l S
\end{lstlisting}
draws the following dashed line:
\begin{center}
\specialbox{320bp}{30bp}{pdf:content
1 0 0 1 0 20 cm [6 4] 0 d 2 w 0 0 m 320 0 l S}
\end{center}

Other important operators are \code{q} and \code{Q}, which saves and restores
the graphics state.
\begin{lstlisting}
1 0 0 1 30 2 cm
q
0.866 0.5 -0.5 0.866 0 0 cm
[6 4] 0 d 2 w 0 0 100 50 re S
Q
-30 0 m 90 0 l S
0 -2 m 0 96 l S
\end{lstlisting}
In the above example, \code{d}, \code{w}, and rotation only take effect within
the \code{q}-\code{Q} block. The portion drawing two straight lines is unaffected
by these graphics state change.
\begin{center}
\specialbox{120bp}{96bp}{pdf:content
1 0 0 1 30 2 cm
q
0.866 0.5 -0.5 0.866 0 0 cm
[6 4] 0 d 2 w 0 0 100 50 re S
Q
-30 0 m 90 0 l S
0 -2 m 0 96 l S
}
\end{center}

For a (incomplete) list of graphics state operators, see
Talbe~\ref{TAB:operatorsGS}.

\begin{table}
 \centering
 \begin{tabular}{llp{7.6cm}}\hline
 Operands & Operator & Description\\ \hline\hline
 --- & \code{q} & Save the current graphics state.\\
 --- & \code{Q} & Restore the previously saved graphics state.\\
 a b c d e f & \code{cm} & Modify the current transformation matrix
 by concatenating the specified matrix.\\
 \textit{width} & \code{w} & Set the line width.\\
 \textit{array} \textit{phase} & \code{d} & Set the line dash pattern.\\
 r g b & \code{RG} & Set the stroking color space to RGB and
 set the stroking color as specified.\\
 r g b & \code{rg} & Set the nonstroking color space to RGB and
 set the nonstroking color as specified.\\
 c m y k & \code{K} & Set the stroking color space to CMYK and
 set the stroking color as specified.\\
 c m y k & \code{k} & Set the nonstroking color space to CMYK and
 set the nonstroking color as specified.\\
 \hline
 \end{tabular}
 \caption{A few examples of graphics state operators and color operators.}%
 \label{TAB:operatorsGS}
\end{table}

\subsubsection{Path Construction Operators}

A path construction normally starts with a \code{m} operator which moves the
current point to the specified position and then sequences of other path
construction operators follow. The path currently under construction is
called the \keyword{current path}. A sequence of path construction operators
appends segments of path to the current path and then move the
\keyword{current point} to the end point of appended path.
A typical sequence of path construction looks like,
\begin{lstlisting}
100 50 m
100 78 78 100 50 100 c
22 100 0 78 0 50 c
0 22 22 0 50 0 c
78 0 100 22 100 50 c
S
\end{lstlisting}
\begin{center}
\specialbox{120bp}{80bp}{pdf:content
100 50 m
100 78 78 100 50 100 c
22 100 0 78 0 50 c
0 22 22 0 50 0 c
78 0 100 22 100 50 c
S}
\end{center}
This example is an approximated circle drawn by four Bézier curves.

Table~\ref{TAB:operators} shows a list of path construction operators.
Those who are accustomed to the PostScript language should note that in PDF
the current path is not a part of the graphics state,
and hence is \emph{not} saved and restored along with the other graphics state
parameters.

\begin{table}
 \centering
 \begin{tabular}{llp{6.9cm}}\hline
 Operands & Operator & Description \\ \hline\hline
 x y & \code{m} & Begin a new path by moving the current point specified by given operands.\\
 x y & \code{l} & Append a line segment from the current point to the point specified.\\
 x_1 y_1 x_2 y_2 x_3 y_3 & \code{c} & Append a Bézier curve to the current path.
 Two Control points and the end point given as operands.\\
 x_2 y_2 x_3 y_3 & \code{v} & Append a Bézier curve to the current path. Using the current
 point and first two operand as the Bézier control points.\\
 x_1 y_1 x_3 y_3 & \code{y} & Append a Bézier curve to the current path. The second
 control point coincides with the end point.\\
 --- & \code{h} & Close the current path by appending a straight line segment from the current point
 to the starting point of the path.\\
 x y \textit{width} \textit{height} & \code{re} & Append a rectangle. First two operands for the
 position of lower-left corner, third and forth operand representing width and
 height.\\
 \hline
 \end{tabular}
 \caption{List of path construction operators. All operators move the current point to the end
 point of appended path.}\label{TAB:operators}
\end{table}

\subsubsection{Path Painting Operators}

There are basically four kind of path painting operators: \code{S}, \code{f},
\code{B}, and \code{n}. The first three for ``stroke'', ``fill'', and
``fill then stroke'' operators respectively, and the last one \code{n}
paints nothing but end the path object. For filling operators, there are
two kind of operators depending on how ``insideness'' of points are determined:
the \keyword{non-zero winding number rule} and the \keyword{even-odd rule}.
The even-odd rule operators are \code{f*} and \code{B*}.

The following example illustrates the difference:
\begin{lstlisting}
0 0 100 100 re 20 20 60 60 re f
1 0 0 1 120 0 cm
0 0 100 100 re 20 20 60 60 re f*
\end{lstlisting}
\begin{center}
\specialbox{220bp}{100bp}{pdf:content
0 0 100 100 re 20 20 60 60 re f
1 0 0 1 120 0 cm
0 0 100 100 re 20 20 60 60 re f*}
\end{center}
The ``interior'' of the ``inner'' square has a non-zero even winding number.
(In this example, counter-clockwise direction is assumed for both of
two \code{re} operators.)

\chapter{Specials}

\section{PDF Specials}\label{SEC:specials}

\dvipdfmx\ recognizes various special commands originally introduced in
\dvipdfm. Please refer to the ``Dvipdfm User's Manual''\cite{DVIPDFM} for detailed
information on PDF specials.

\subsection{Additions to PDF Specials}

Several \code{special} commands are added for more flexible PDF generation:
creation of arbitrary stream objects, controlling \dvipdfmx\ behavior, and some
specials which might be useful for graphics drawing.

\subsubsection{PDF Object Manipulation}

PDF object manipulation is a key feature of PDF specials.
The \code{pdf:fstream} special is added in \dvipdfmx\ which enables creation of
PDF stream object from an existing file. The syntax of this special is,
\begin{lstlisting}
pdf:fstream @identifier (filename) <<dictionary>>
\end{lstlisting}
where identifier and filename (specified as a PDF string object) are
mandatory and a dictionary object, following the filename, which is to be added
to the stream dictionary is optional.

For example, to incorporate XMP Metadata from a file \code{test.xmp},
\begin{lstlisting}
\special{pdf:fstream @xmp (test.xmp) <<
 /Type /Metadata
 /Subtype /XML
>>}
\special{pdf:put @catalog << /Metadata @xmp >>}
\end{lstlisting}

Similarly, \code{pdf:stream} special can be used to create a PDF stream
object from a PDF string instead of a file.
\begin{lstlisting}
pdf:stream @identifier (stream contents) <<dictionary>>
\end{lstlisting}

This special might be useful for creating a simple image inline.
\begin{lstlisting}
\special{pdf:stream @myim01
 <5500AAC05500AAC05500AAC05500AAC05500>
 <<
 /Type /XObject
 /Subtype /Image
 /BitsPerComponent 1
 /ColorSpace /DeviceGray
 /Width 9
 /Height 9
 >>
}
\special{pdf:put @resources <<
 /XObject << /MyIM01 @myim01 >>
>>}
\special{pdf:content 81 0 0 81 0 0 cm /MyIM01 Do}
\end{lstlisting}
The above example draws an image like Figure~\ref{FIG:stream}.
\begin{figure}
 \centering
 \makebox[81bp][l]{\raisebox{-81bp}[0bp][81bp]{%
 \special{pdf:stream @myim01 <5500AAC05500AAC05500AAC05500AAC05500>
 <<
 /Type /XObject
 /Subtype /Image
 /BitsPerComponent 1
 /ColorSpace /DeviceGray
 /Width 9
 /Height 9
 >>}
 \special{pdf:put @resources <<
 /XObject << /MyIM01 @myim01 >>
 >>}
 \special{pdf:content 81 0 0 81 0 0 cm /MyIM01 Do}
}}
\caption{An image created by \code{pdf:stream} special.}%
\label{FIG:stream}
\end{figure}

\subsubsection{Controlling Font Mappings}

\code{pdf:mapline} and \code{pdf:mapfile} specials can be used to append a
fontmap entry or to load a fontmap file:
\begin{lstlisting}
pdf:mapline foo unicode bar
pdf:mapfile foo.map
\end{lstlisting}

\subsubsection{Specifying Output PDF Version}

\code{pdf:majorversion} and \code{pdf:minorversion} specials can be used to
specify major and minor version of output PDF.
\begin{lstlisting}
pdf:minorversion 3
\end{lstlisting}

Please note that this command must appear on the first page,
otherwise it will be ignored.

\subsubsection{Custom File Identifiers}

\newfeature{Addition in \TeX\ Live 2019}

A custom file identifier (the \code{ID} entry in the trailer dictionary)
can be specified via the special \code{pdf:trailerid}. For example:
\begin{lstlisting}
pdf:trailerid [
 <00112233445566778899aabbccddeeff>
 <00112233445566778899aabbccddeeff>
]
\end{lstlisting}
An array of two 16-byte PDF string objects (hexadecimal notion is used in the above example)
must be supplied as a file identifier. This special command must appear on the first page.

\subsubsection{Encryption}

To protect output PDF with encryption, use \code{pdf:encrypt} special
\begin{lstlisting}
pdf:encrypt userpw (foo) ownerpw (bar) length 128 perm 20
\end{lstlisting}
where user-password (\code{userpw}) and owner-password (\code{ownerpw}) must be
specified as PDF string objects. (which can be empty)
Numbers specifying key-length and permission flags here are decimal numbers.
See, section ``\hyperref[SEC:encryption]{Encryption Support}'' for a brief
description of permission flags.

\subsubsection{PDF Document Creation}

\newfeature{Addition in \TeX\ Live 2019}

As a convenience, the \code{pageresources} special is added, which puts given page
resources into subsequent page's \keyword{Resource Dictionary}. For example,
\begin{lstlisting}
\special{pdf:pageresources <<
 /ExtGState << /MyGS01 << /ca 0.5 /CA 0.5 >> >>
>>}
\end{lstlisting}
puts an ExtGState resource named \code{MyGS01} into the current page's and all
subsequent pages' resource dictionary.

Other notable extensions are \code{code}, \code{bcontent}, and
\code{econtent}. The \code{code} special can be used to insert raw PDF graphics
instructions into the output. It is different from \dvipdfm's
\code{content} special in that it does not enclose contents with a \code{q}
and \code{Q} (save-restore of graphics state) pair.
A typical usage of this special is:
\begin{lstlisting}
\special{pdf:code q 1 Tr}
...some text goes here...
\special{pdf:code Q}
\end{lstlisting}
which changes text rendering mode to 1, as shown in Figure~\ref{FIG:trmode}.

\begin{figure}
\centering
\mbox{\special{pdf:code q 1 w 1 Tr}%
{\fontsize{200pt}{200pt}\selectfont\textchi}%
\special{pdf:code Q}}%
\caption{A character drawn in the PDF text rendering mode 1.}%
\label{FIG:trmode}
\end{figure}

Be careful on using this special as it is very easy to generate
broken PDF files. The \code{bcontent} and \code{econtent} pair is somewhat
fragile and might be incompatible to other groups of special commands.
It may not always be guaranteed to work as `expected'.

\subsection{ToUnicode Special}

PDF allows users to attach various additional information such as document information,
annotation, and navigation information (like bookmarks) to their document.
All human-readable text, \keyword{text string}, contained in such information must
be encoded either in \keyword{PDFDocEncoding} or UTF-16BE with Unicode byte order
marker. However, as many users can't prepare their document with text strings
properly encoded, there is a special kind of special command, \code{pdf:tounicode},
which can be used to convert text strings into the appropriate Unicode form.
Note that this feature is provided just as a remedy for users incapable of encoding
text strings properly.

For example,
\begin{lstlisting}
\special{pdf:tounicode 90ms-RKSJ-UCS2}
\end{lstlisting}
declares that \emph{some} of text strings should be re-encoded according to specified
conversion CMap \code{90ms-RKSJ-UCS2}.

Conversion is done only for arguments to several PDF special commands such as
\code{docinfo}, \code{ann}, and \code{out} but not for that of general object creation
specials. Note that not all PDF string objects are subject to this conversion.
By default, only dictionary entries listed below are converted.
\begin{lstlisting}
Title Author Subject Keywords Creator Producer Contents Subj
TU T TM
\end{lstlisting}

\newfeature{Addition in \TeX\ Live 2019}

The list of dictionary entries subject to conversion can be extended by supplying
additional dictionary keys as an array object:
\begin{lstlisting}
 \special{pdf:tounicode 90ms-RKSJ-UCS2 [/RC /DS]}
\end{lstlisting}

If the name of conversion CMap contains one of the keywords RKSJ, \lnum{B5}, GBK, and KSC,
PDF string objects are treated specially when they are parsed. A two byte sequence
starting with the first byte's high bit set is treated ``as is'' so that
the \code{0x5c} byte appears in the second byte is not treated as an escape sequence.
This behavior is not compliant to the PDF specification.

\subsection{PDF Special Examples}

This section shows several examples of special command usage.
It is intended to be a hint for advanced users, so uninterested users can safely skip
this section. In many cases, using \dvipdfmx\ PDF specials requires knowledge on PDF.
Please refer to Adobe's ``PDF Reference''\cite{ADOBE}.

\subsubsection{Annotations}

In this section, some useful special commands for creating \keyword{annotations}
are explained. Note that viewer support is required for annotations to be
displayed correctly.

First start with a very simple \keyword{Text Annotation} for attaching a comment.
This feature is supported by many PDF viewer applications.
\marginnote{\special{pdf:ann width 20bp height 20bp
 <<
 /Type /Annot
 /Subtype /Text
 /Name /Comment
 /T (Text Annotation Example)
 /Subj (An Example of Text Annotations)
 /Contents (A Quick Brown Fox Jumped Over The Lazy Dog.)
 >>
}}

\begin{lstlisting}
\special{pdf:ann width 20bp height 20bp
 <<
 /Type /Annot
 /Subtype /Text
 /Name /Comment
 /T (Text Annotation Example)
 /Subj (An Example of Text Annotations)
 /Contents (A Quick Brown Fox Jumped Over The Lazy Dog.)
 >>
}
\end{lstlisting}
\code{pdf:ann} special is used to create an annotation. A small icon shall
be shown on the side margin. Here, dictionary entry \code{T} is for the tilte,
\code{Subj} for the subject of this annotation, and \code{Contents} for
the text string to be shown in the body of this annotation.

Likewise, \keyword{Rubber Stamp Annotation}, which places a rubber stamp
like figure,
\begin{center}
\specialbox{150bp}{50bp}{pdf:ann width 150bp height 50bp
 <<
 /Type /Annot
 /Subtype /Stamp
 /Name /Approved
 >>
}
\end{center}

\begin{lstlisting}
\special{pdf:ann width 150bp height 50bp
 <<
 /Type /Annot
 /Subtype /Stamp
 /Name /Approved
 >>
}
\end{lstlisting}
Other keywords such as \code{Expired}, \code{Final}, \code{Draft}, and so on,
can be used in place of \code{Approved}.

One can create stamps of their own style. For this purpose, other specials
\code{pdf:bxobj} and \code{pdf:exobj} can be used for designing stamps.
Those specials ``capture'' all typeset material enclosed by them into a PDF
\keyword{Form XObject}, which is a reusable graphics object like included images.

For a simple example,
\begin{lstlisting}
\special{pdf:bxobj @MyStamp
 width 280pt height 0pt depth 40pt}
\addfontfeature{Scale=3,Color=FF9933}My Own Stamp%
\special{pdf:exobj}
\end{lstlisting}
It captures typeset material ``My Own Stamp'' (this example uses \code{fontspec}
package's command for changing font size and text color) into the object labeled as
\code{MyStamp} for later reuse.
Then, \code{AP} (\keyword{appearance dictionary}) entry for controlling the appearance
of annotations is used as,
\begin{lstlisting}
\special{pdf:ann width 280pt height 40pt
 <<
 /Type /Annot
 /Subtype /Stamp
 /AP << /N @MyStamp >>
 >>
}
\end{lstlisting}
The image captured into the object \code{MyStamp} is used as ``Normal''
(\code{AP} dictionary entry \code{N}) appearance.
(\code{R} for ``Rollover'' and \code{D} for ``Down'' can be used.)

{\hbadness=10000 % intentionally underfull it seems
\parbox[t][0pt][c]{280pt}{%
\special{pdf:bxobj @MyStamp width 280pt height 0pt depth 40pt}%
\addfontfeature{Scale=3,Color=FF9933}My Own Stamp% the "Stamp" is lost
\special{pdf:exobj}%
}}%

The result is:
\begin{center}
\specialbox{280bp}{40bp}{pdf:ann width 280pt height 40pt
 <<
 /Type /Annot
 /Subtype /Stamp
 /AP << /N @MyStamp >>
 >>
}
\end{center}

With the following code, \dvipdfmx\ reads the source file and creates a stream
object named \code{SourceFile}, and then creates file attachment annotation.
\marginnote{%
\special{pdf:fstream @SourceFile (\jobname.tex)}%
\special{pdf:ann width 10bp height 20bp
 <<
 /Type /Annot
 /Subtype /FileAttachment
 /FS <<
 /Type /Filespec
 /F (\jobname.tex)
 /EF << /F @SourceFile >>
 >>
 /Name /PushPin
 /C [0.8 0.2 0.2]
 /T (The Dvipdfmx User's Manual)
 /Subj (The Dvipdmfx User's Manual)
 /Contents (XeLaTeX source file of this manual.)
 >>
}}%
\begin{lstlisting}
\special{pdf:fstream @SourceFile (\jobname.tex)}%
\special{pdf:ann width 10bp height 20bp
 <<
 /Type /Annot
 /Subtype /FileAttachment
 /FS <<
 /Type /Filespec
 /F (\jobname.tex)
 /EF << /F @SourceFile >>
 >>
 /Name /PushPin
 /C [0.8 0.2 0.2]
 /T (The Dvipdfmx User's Manual)
 /Subj (The Dvipdfmx User's Manual)
 /Contents (XeLaTeX source file of the manual.)
 >>
}
\end{lstlisting}
A push-pin image must be shown on the margin if viewer supports this kind of
annotation.
PDF viewer applications are required to provide predefined icon appearances
at least for the following standard icons: \code{Graph}, \code{PushPin},
\code{PaperClip}, and \code{Tag}.

\subsubsection{Special Color Space}

This section shows various examples of using \keyword{Special color spaces}.
Examples in this section have a common structure. They consist of essentially
three parts. The first part is for defining color space itself.
PDF object creation commands like \code{pdf:obj} and \code{pdf:stream} are used
for this purpose. Next is for registering color space resources in the page's
\keyword{Resource Dictionary}. It can be done via \code{pdf:put} command as,
\begin{lstlisting}
\special{pdf:put @resource <<
 /Category << ...key-value pairs... >>
>>}
\end{lstlisting}
where \code{@resource} is a special keyword representing current page's
Resource Dictionary and \code{Category} (to be replaced by actual category
name) is a category name such as \code{ColorSpace}.
Finally, graphics objects are placed, with or with a combination of
text and, PDF drawing operators inserted by the \code{pdf:code} or the
\code{pdf:contents} special.

%%EXAMPLE: Separation Color Space
The first example is the \keyword{Separation} color space:
\special{pdf:stream @TintTransform1
 ({0 exch dup 0.62 mul exch 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}%
\special{pdf:stream @TintTransform2
 ({dup 0.78 mul exch dup 0.05 mul exch 0.71 mul 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}%
\special{pdf:obj @Orange [
 /Separation /Orange /DeviceCMYK @TintTransform1
]
}%
\special{pdf:obj @Green [
 /Separation /Green /DeviceCMYK @TintTransform2
]
}%
\begin{center}
\mbox{%
\special{pdf:put @resources <<
 /ColorSpace << /CS01 @Orange /CS02 @Green >>
 >>
}%
\fontsize{40pt}{40pt}\selectfont
\special{pdf:code q /CS01 cs 1.0 scn}Orange\special{pdf:code Q} and
\special{pdf:code q /CS02 cs 1.0 scn}Green\special{pdf:code Q}
}
\end{center}
\begin{lstlisting}
\special{pdf:stream @TintTransform1
 ({0 exch dup 0.62 mul exch 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}
\special{pdf:stream @TintTransform2
 ({dup 0.78 mul exch dup 0.05 mul exch 0.71 mul 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}
\special{pdf:obj @Orange [
 /Separation /Orange /DeviceCMYK @TintTransform1
]
}
\special{pdf:obj @Green [
 /Separation /Green /DeviceCMYK @TintTransform2
]
}
\mbox{%
 \special{pdf:put @resources <<
 /ColorSpace << /CS01 @Orange /CS02 @Green >>
 >>
 }%
 \special{pdf:code q /CS01 cs 1.0 scn}
 Orange
 \special{pdf:code Q}
 and
 \special{pdf:code q /CS02 cs 1.0 scn}
 Green
 \special{pdf:code Q}
}
\end{lstlisting}

\code{TintTransform}'s defined here are functions for transforming
\keyword{tint} values into approximate colors in the
\keyword{alternate color space}
(\code{DeviceCMYK} in this example). PostScript calculator functions are used
for converting a single component value representing ``Orange'' or ``Green''
into four component CMYK values to approximate those colors. The ``Orange''
color v is approximated as $(0, 0.62v, v, 0)$ in CMYK color space for
alternate display here.

The \code{cs} operator for selecting color space and the \code{scn} operator
for color values are used in the \code{pdf:code} special.
Be sure that the \code{pdf:put} command, which puts color space resources
into the current page's Resource Dictionary, goes into the same page as
subsequent drawing commands.

\dvipdfmx\ currently does not have an easy interface for using various color
space families such as CIE-Based color spaces (e.g., calibrated colors and
color space with an ICC profile) and Special color spaces (e.g., indexed,
separation, shading and patterns).

%%EXAMPLE: Shading
Another example is a \keyword{shading pattern}:
\begin{lstlisting}
\special{pdf:put @resources <<
 /Shading <<
 /SH01 <<
 /ShadingType 2
 /ColorSpace @Orange
 /Coords [0 0 320 20]
 /Extend [true true]
 /Function << /FunctionType 2 /Domain [0 1] /N 1.0 >>
 >>
 >>
>>}
\special{pdf:content 0 0 320 20 re W n /SH01 sh}
\end{lstlisting}
where the ``Orange'' separation color space defined before is used again.
This example shows an axial shading (\code{ShadingType} 2) pattern.
\begin{center}
\makebox[320pt][l]{
 \special{pdf:put @resources <<
 /Shading <<
 /SH01 <<
 /ShadingType 2
 /ColorSpace @Orange
 /Coords [0 0 320 20]
 /Extend [true true]
 /Function << /FunctionType 2 /Domain [0 1] /N 1.0 >>
 >>
 >>
 >>}
 \raisebox{-20pt}[0pt][20pt]{\special{pdf:content 0 0 320 20 re W n /SH01 sh}}
}
\end{center}

The shading pattern requires coordinate values to be mapped into color values.
Type 2 (Exponential Interpolation) \keyword{Function} is used for defining how
this mapping should occur here.
The above example, with the exponent $N=1$, is just a simple linear-gradient.

The final examples is a \keyword{tiling pattern}.
\begin{lstlisting}
\special{pdf:stream @MyPattern
 (0.16 0 0 0.16 0 0 cm 4 w
 50 0 m 50 28 28 50 0 50 c S 100 50
 m 72 50 50 28 50 0 c S
 50 100 m 50 72 72 50 100 50 c S
 0 50 m 28 50 50 72 50 100 c S
 100 50 m 100 78 78 100 50 100 c 22 100 0 78 0 50 c
 0 22 22 0 50 0 c 78 0 100 22 100 50 c S
 0 0 m 20 10 25 5 25 0 c f 0 0 m 10 20 5 25 0 25 c f
 100 0 m 80 10 75 5 75 0 c f
 100 0 m 90 20 95 25 100 25 c f
 100 100 m 80 90 75 95 75 100 c f
 100 100 m 90 80 95 75 100 75 c f
 0 100 m 20 90 25 95 25 100 c f
 0 100 m 10 80 5 75 0 75 c f
 50 50 m 70 60 75 55 75 50 c 75 45 70 40 50 50 c f
 50 50 m 60 70 55 75 50 75 c 45 75 40 70 50 50 c f
 50 50 m 30 60 25 55 25 50 c
 25 45 30 40 50 50 c f
 50 50 m 60 30 55 25 50 25 c 45 25 40 30 50 50 c f)
 <<
 /BBox [0 0 16 16]
 /PaintType 2
 /PatternType 1
 /Resources <<
 /ProcSet [/PDF]
 >>
 /TilingType 3
 /Type /Pattern
 /XStep 16
 /YStep 16
 >>
}
\end{lstlisting}

The above example defines a tiling pattern. The content stream containing
painting operators, \code{m} for ``move-to'', \code{c} for ``curve-to'',
\code{f} for ``fill'', and \code{S} for ``stroke'', defines the appearance of
the \keyword{pattern cell} for this tiling pattern. With the following code,
\begin{lstlisting}
\special{pdf:put @resources
 <<
 /ColorSpace << /CS01 [/Pattern /DeviceRGB] >>
 /Pattern << /PT01 @MyPattern >>
 >>
}
\special{pdf:content
 q 0.8 0.3 0.3 RG /CS01 cs 0.8 0.3 0.3 /PT01 scn
 0 0 320 100 re f
}
\end{lstlisting}
a box filled with the tiling pattern defined above is drawn.
\special{pdf:stream @MyPattern
 (0.16 0 0 0.16 0 0 cm 4 w
 50 0 m 50 28 28 50 0 50 c S 100 50
 m 72 50 50 28 50 0 c S
 50 100 m 50 72 72 50 100 50 c S
 0 50 m 28 50 50 72 50 100 c S
 100 50 m 100 78 78 100 50 100 c 22 100 0 78 0 50 c
 0 22 22 0 50 0 c 78 0 100 22 100 50 c S
 0 0 m 20 10 25 5 25 0 c f 0 0 m 10 20 5 25 0 25 c f
 100 0 m 80 10 75 5 75 0 c f
 100 0 m 90 20 95 25 100 25 c f
 100 100 m 80 90 75 95 75 100 c f
 100 100 m 90 80 95 75 100 75 c f
 0 100 m 20 90 25 95 25 100 c f
 0 100 m 10 80 5 75 0 75 c f
 50 50 m 70 60 75 55 75 50 c 75 45 70 40 50 50 c f
 50 50 m 60 70 55 75 50 75 c 45 75 40 70 50 50 c f
 50 50 m 30 60 25 55 25 50 c
 25 45 30 40 50 50 c f
 50 50 m 60 30 55 25 50 25 c 45 25 40 30 50 50 c f)
 <<
 /BBox [0 0 16 16]
 /PaintType 2
 /PatternType 1
 /Resources <<
 /ProcSet [/PDF]
 >>
 /TilingType 3
 /Type /Pattern
 /XStep 16
 /YStep 16
 >>
}%
\begin{center}
\raisebox{-100bp}[0bp][100bp]{\makebox[320bp][l]{\special{pdf:put @resources
 <<
 /ColorSpace << /CS01 [/Pattern /DeviceRGB] >>
 /Pattern << /PT01 @MyPattern >>
 >>
}%
\special{pdf:content
 0.8 0.3 0.3 RG /CS01 cs 0.8 0.3 0.3 /PT01 scn
 0 0 320 100 re f
}}}%
\end{center}

\subsubsection{Transparency}

%%EXAMPLE: Transparency
\XeTeX's transparency feature is currently lost in \xdvipdfmx, but the same
effect can be achieved by setting graphics state parameters with
\code{ExtGState} resources and \code{gs} operator. Here is a simple
transparency example:
\special{pdf:obj @gs01 <<
 /Type /ExtGState /CA 0.5 /ca 0.5 /AIS false
>>}%
\begin{figure}[ht]
\centering
\mbox{%
 %\raisebox{120pt}{\parbox[t]{0.8\textwidth}{%
 % \addfontfeature{Color=444444}\lipsum[1]}%
 %}%
 %\hspace{-0.8\textwidth}%
 \special{pdf:put @resources <<
 /ExtGState << /GS01 @gs01 >>
 >>}%
 \fontsize{220pt}{220pt}\selectfont
 \special{pdf:code q /GS01 gs 1.0 0.8 0.2 rg}%
 α%
 \special{pdf:code 0.4 0.8 0.4 rg}%
 \hspace{-0.3em}%
 β%
 \hspace{-0.3em}\raisebox{0.5ex}{%
 \special{pdf:code 0.4 0.4 0.8 rg}%
 π%
 }%
 \special{pdf:code 0.6 0.2 0.8 rg}%
 \hspace{-0.2em}%
 γ%
 \special{pdf:code Q}%
}
\end{figure}
\begin{lstlisting}
\special{pdf:obj @GS01 <<
 /Type /ExtGState /CA 0.5 /ca 0.5 /AIS false
>>}%
\mbox{%
 \special{pdf:put @resources <<
 /ExtGState << /GS01 @GS01 >>
 >>}%
 \special{pdf:code q /GS01 gs 1.0 0.8 0.2 rg}%
 α%
 \special{pdf:code 0.4 0.8 0.4 rg}%
 \hspace{-0.3em}%
 β%
 \hspace{-0.3em}\raisebox{0.5ex}{%
 \special{pdf:code 0.4 0.4 0.8 rg}%
 π%
 }%
 \special{pdf:code 1.0 0.2 0.4 rg}%
 \hspace{-0.2em}%
 γ%
 \special{pdf:code Q}%
}
\end{lstlisting}
where values for \code{CA} and \code{ca} represent opacity of stroke and
fill color respectively. Again, \code{pdf:put} command must go into the same
page as subsequent graphics and text drawing operators.

\section{Dvipdfmx Extensions}

\newfeature{Addition in \TeX\ Live 2016}

\noindent{}A new special \code{dvipdfmx:config} was introduced in
\TeX Live 2016 which makes it possible to invoke a command line option.
Several single letter command line options except \option{D} are supported.
For example,
\begin{lstlisting}
dvipdfmx:config C 0x10
\end{lstlisting}
sets the \dvipdfmx's compatibility flags. See, the section
``\hyperref[SEC:compatibility]{Incompatible Changes}'' for an explanation of
compatibility flags.

\section{PS Specials}

PS (PostScript) specials can be used to insert a raw PostScript code for drawing
graphics objects and transforming subsequent text and graphics.
Please note that support for PostScript operators in \dvipdfmx\ is very
limited. It is just enough for interpreting PostScript figures output by \MP.
Only a basic set of operators for arithmetic and math, stack operation and manipulation,
graphics state, path construction and painting, glyph and font, are supported.
See, Table~\ref{TABLE:PS} for the list of
recognized PostScript operators.

\begin{table}
 \centering
 \hbadness=10000
 \begin{tabular}{p{.25\hsize}>{\raggedright\arraybackslash}p{.6\hsize}}\hline
 Classification & Operators \\ \hline\hline
 Arithmetic \& Math & \code{add} \code{sub} \code{mul} \code{div} \code{neg} \code{truncate}\\
 Stack Operation & \code{clear} \code{pop} \code{exch}\\
 Graphis State & \code{gsave} \code{grestore}
 \code{setlinewidth} \code{setdash} \code{setlinecap} \code{setlinejoin} \code{setmiterlimit} \code{setgray} \code{setrgbcolor} \code{setcmykcolor} \\
 Coordinate System & \code{concat} \code{scale} \code{translate} \code{rotate} \code{idtransform} \code{dtransform}\\
 Path Construction & \code{currentpoint} \code{newpath} \code{closepath} \code{moveto} \code{rmoveto} \code{lineto} \code{rlineto} \code{curveto} \code{rcurveto} \code{arc} \code{arcn} \code{clip} \code{eoclip} \\
 Painting & \code{stroke} \code{fill} \\
 Glyph \& Font & \code{show} \code{findfont} \code{scalefont} \code{setfont} \code{currentfont} \code{stringwidth}\\
 \hline
 \end{tabular}
 \caption{List of PostScript operators recognized by \dvipdfmx.}%
 \label{TABLE:PS}
\end{table}

It might be enough for the purpose of basic graphics drawings but as there are
no support for conditionals and controls it is not enough for complicated tasks,
especially, the PSTricks package is not supported.

In \dvipdfmx, text handling is extended to support CJK text.
The following code draws Japanese text like shown in Figure~\ref{FIG:verttext}:
\begin{lstlisting}
\special{pdf:mapline urml UniJIS-UTF8-H ipaexm.ttf}
\special{ps: urml findfont 16 scalefont setfont
 currentpoint moveto
 (...some Japanese text goes here...) show
}
\end{lstlisting}

\chapter{Fonts and Encodings}

\section{Fonts and Encodings Support}

In \dvipdfmx, all font formats supported by \dvipdfm\ are also supported with
many improvements: The CFF conversion for PostScript Type1 fonts\footnote{PostScript
Type1 font support is restricted to the binary format as in \dvipdfm.} is
implemented which greatly reduces the output file size. Embedded TrueType fonts are
now subsetted. The OpenType font format is also supported.\footnote{Its
implementation is based on the OpenType specification version 1.4.
Newly added features such as color fonts and variable fonts are not supported yet.}

There are various enhancements made for supporting Unicode and legacy multi-byte
character encodings for East Asian languages.

\section{Font Mappings}

The Syntax of font-mapping (fontmap) files is basically the same as in \dvipdfm.
There are few extensions available in \dvipdfmx. In addition to the 8-bit \code{enc}
file and keywords \code{builtin} and \code{none}, \dvipdfmx\ accepts a PostScript CMap
Resource name and the keyword \code{unicode} in the encoding field.

When the keyword \code{unicode} is specified in the encoding field of fontmap
files, it is assumed that Unicode values are used in the input DVI file.

\begin{lstlisting}
 urml unicode SourceHanSerifJP-Light.otf
\end{lstlisting}

Although the DVI format allows 3-byte and 4-byte character codes to be used,
\dvipdfmx\ only supports up to 2-byte range since there is no TFM format supporting
3-byte or 4-byte codes.

For PostScript Type1 fonts which do not support Unicode natively, an auxiliary file,
the Adobe Glyph List, is required to make it possible to use fonts with Unicode access.

As a general framework for supporting legacy multi-byte encodings, \dvipdfmx\ employs
PostScript CMap Resources for handling input strings encoded in various
character encodings. A CMap name can be specified in the encoding field just like
the encoding name for 8-bit encodings. For example, to specify the CMap ``UniJIS-UCS2-H'',

\begin{lstlisting}
 urml UniJIS-UCS2-H HiraMinPro-W3.otf
\end{lstlisting}

For information on the Adobe Glyph List and PostScript CMap Resources, see,
the section \ref{SEC:auxfiles}, ``Auxiliary Files''.

\subsection{Extended Syntax and Options}

Few options are available in \dvipdfmx\ in addition to the original dvipdfm's
one. Please note that all features which makes \dvipdfmx\ to use
non-embedded fonts are deprecated, as by doing so it makes \dvipdfmx\ to create
PDF files which can be non-compliant to the ISO standards.

\subsubsection{SFD Specification}

For bundling up a font split into multiple subfonts via SFD back into
a single font, dvipdfmx supports extended syntax of the form
\begin{lstlisting}
tfm_name@SFD@ encoding filename options
\end{lstlisting}
A typical example looks like:
\begin{lstlisting}
gbsn@EUC@ GB-EUC-H gbsn00lp
\end{lstlisting}
where TFMs \code{gbsn00}, \code{gbsn01}, \code{gbsn02}... are mapped into a
single font named \code{gbsn00lp} via the rule described in the SFD file
\code{EUC}.

\subsubsection{TrueType Collection Index}

TrueType Collection index number can be specified with \code{:n:}
in front of the TrueType font name:
\begin{lstlisting}
min10 H :1:mincho
\end{lstlisting}
In this example, the option \code{:1:} tells \dvipdfmx\ to select first
TrueType font from the TTC font \code{mincho.ttc}. Alternatively, the
\option{-i} option can be used in the option field to specify TTC index:
\begin{lstlisting}
min10 H mincho -i 1
\end{lstlisting}

\subsubsection{Non-embedding Switch}

\deprecated{Use of this option is deprecated.}
\noindent{}The character \option{!} in front of the font name can be used to
indicate that the font shall not be embedded. This feature greatly reduces the
size of the final PDF output, but the PDF file may not be viewed exactly the same
in other systems on which appropriate fonts are not installed.
\bigskip

\noindent{}NOTE: \dvipdfmx\ always converts input encodings to CIDs and then
uses Identity CMaps\footnote{Predefined CMaps \code{Identity-H} and
\code{Identity-V} for the identity mapping.}
in the output PDF. However, \lnum{ISO~32000-1:2008} describes as
\begin{quoting}
The Identity-H and Identity-V CMaps shall not be used with a non-embedded font.
Only standardized character sets may be used.
\end{quoting}
which had never appeared in Adobe's PDF References. This makes all PDF files
generated by \dvipdfmx\ with non-embedded CID-keyed fonts non-compliant to
the ISO standards.

\subsubsection{`Standard' CJK Fonts}

\deprecated{This feature is deprecated.}
\noindent{}Use of this feature shall be avoided for new documents. It is
described here since it might still be useful for some situations.

\dvipdfmx\ recognizes several `Standard' CJK fonts although there are no such
notion in PDF. In older days where there were not so many freely available CJK
fonts, it was sometimes useful to create PDF files without embedding fonts and
let PDF viewers or printers to use substitute fonts (tend to be higher quality)
installed in their systems. \dvipdfmx\ `knows' several fonts which might be
available in PostScript printers and PDF applications such as Acrobat Reader,
and uses them without actually having it.
See, Table~\ref{TABLE:StdCJKFont}, for the list of available `Standard' CJK
fonts.

\begin{table}
 \centering
 \begin{tabular}{lll}\hline
 Character Collection & Font Family & Description \\ \hline\hline
 Adobe-Japan1 & Ryumin-Light & PS printers \\
 & GothicBBB-Medium & \\
 Adobe-CNS1 & MHei-Medium-Acro & Acrobat Reader 4 \\
 & MSung-Light-Acro & \\
 Adobe-GB1 & STSong-Light-Acro & \\
 & STHeiti-Regular-Acro & \\
 Adobe-Japan1 & HeiseiMin-W3-Acro & \\
 & HeiseiKakuGO-W5-Acro & \\
 Adobe-Korea1 & HYGoThic-Medium-Acro & \\
 & HYSMyeongJo-Medium-Acro & \\
 Adobe-CNS1 & MSungStd-Light-Acro & Acrobat Reader 5 \\
 Adobe-GB1 & STSongStd-Light-Acro & \\
 Adobe-Korea1 & HYSMyeongJoStd-Medium-Acro \\
 Adobe-CNS1 & AdobeMingStd-Light-Acro & Adobe Reader 6 \\
 Adobe-GB1 & AdobeSongStd-Light-Acro & \\
 Adobe-Japan1 & KozMinPro-Regular-Acro & \\
 & KozGoPro-Medium-Acro & \\
 Adobe-Korea1 & AdobeMyungjoStd-Medium-Acro & \\
 Adobe-CNS1 & AdobeHeitiStd-Regular & Adobe Reader 7 \\
 Adobe-Japan1 & KozMinProVI-Regular & Adobe Reader 8\\
 \hline
 \end{tabular}
 \caption{List of available `Standard' CJK font. Most of them are
 available as a part of Adobe Asian Font Packs for each versions of
 Adobe or Acrobat Reader.}\label{TABLE:StdCJKFont}
\end{table}

Only fixed-pitch glyphs (i.e., quarter, third, half, and full widths) are
supported for those fonts.

\subsubsection{Stylistic Variants}

\deprecated{Use of this option is deprecated.}
\noindent{}Keywords \code{,Bold}, \code{,Italic}, and \code{,BoldItalic} can be
used to create synthetic bold, italic, and bolditalic style variants from other
font using PDF viewer's (or OS's) function.
\begin{lstlisting}
jbtmo@UKS@ UniKSCms-UCS2-H :0:!batang,Italic
\end{lstlisting}

Availability of this feature highly depends on the implementation of PDF
viewers. This feature is usually not supported for embedded fonts.
Notice that this option automatically disables font embedding thus
use of it is deprecated.

\subsection{Specifying Unicode Plane}

As there is no existing TFM format supporting 3-byte or 4-byte character
encodings, the only way to use Unicode characters other than the BMP is to
map the code range 0-65535 to different planes via (e.g., to plane 1)
the \option{-p 1} fontmap option. This option is
available only when \code{unicode} is specified in the encoding field.

\subsection{OpenType Layout Feature}

The OpenType Layout Feature fontmap options mentioned below are only meaningful
when \code{unicode} is specified in the encoding field.

With the \option{-w} option, writing mode can be specified.
\option{-w 1} denotes the font is for vertical writing. It automatically
enables an OpenType Layout Feature related to vertical writing, namely,
\code{vert} or \code{vrt2}, to choose proper glyphs for vertical text.

\newfeature{Addition in \TeX\ Live 2017.}

The \option{-l} (lower case el) option can be used to enable various
OpenType Layout GSUB Features. For example, \option{-l jp04} enables
\code{jp04} feature to select \lnum{JIS2004} forms for Kanjis.
Features can be specified as a ``:'' separated list of OpenType Layout
Feature tags like \option{-l vkna:jp04}. Script and language may be
additionally specified as
\option{-l kana.JAN.ruby}.

An example can be
\begin{lstlisting}
uprml-v unicode SourceHanSerifJP-Light.otf -w 1 -l jp90
\end{lstlisting}
which declares that font should be treated as for vertical writing and
use \lnum{JIS1990} form for Kanjis.

\begin{figure}
\centering
\jpzerofourexamples\hspace{30pt}\jpninezeroexamples%
\caption{\lnum{JIS2004} vs. \lnum{JIS1990} form.}\label{FIG:jp90}
\end{figure}

This feature is limited to the single substitution, there are no way to select
a glyph from multiple candidates, such as in the \code{aalt} feature, and specifying
general many-to-many glyph substitutions does not take effect.

\section{Other Improvements}

This section briefly describes other improvements made for \dvipdfmx.
There is an extension to glyph name handling in the \code{enc} file for
seamless support of both PostScript Type1 and TrueType fonts.
PostScript Type1 font support is enhanced although this format might be
considered obsolete.

\subsection{Extended Glyph Name Syntax}

\dvipdfmx\ accepts the following syntax for glyph names in the \code{enc} file:
\code{uni0130}, \code{zero.onum} and \code{T_h.liga}.
Each represents a glyph accessed with Unicode value \code{U+0130},
oldstyle number for zero and ``Th'' ligature accessed via the OpenType
Layout GSUB Feature \code{onum} and \code{liga}, respectively.
Note that \dvipdfmx\ does not understand glyph names which directly
use a glyph index such as \code{index0102} or \code{gid2104}.

When \dvipdfmx\ encounters a glyph name, e.g., \code{T_h.liga}, it first looks
for OpenType \code{post} table if such glyph name exists; if it exists, then
\dvipdfmx\ simply uses \code{post} table and maps the glyph name to the glyph index;
if not, \dvipdfmx\ tries to convert \code{T_h} to a Unicode sequence (U+0054
U+0068 in this example) via the AGL mapping; then, OpenType \code{cmap} table is used
to further convert the resulting Unicode sequence to the sequence of glyph indices;
finally, the OpenType Layout Feature \code{liga} is applied to get the desired glyph.

A glyph name of a form \code{a.swsh2} can be specified to denote the 2nd swash
variant form of the letter `a'.

\subsection{CFF Conversion}

\dvipdfmx\ supports on-the-fly PostScript Type1 to CFF (Type1C) conversion
which greatly reduces size of the resulting PDF file when using Type1 fonts.
Conversion is essentially `lossless' and there should not be any quality loss.
However, due to differences in the ability of rasterizers, there might be
noticeable differences on rendering result.

When an older Type1 font is used, \dvipdfmx\ may give the following warning
message:
\begin{lstlisting}
Obsolete four arguments of "endchar" will be used for Type1
"seac" operator.
\end{lstlisting}
It happens when there is an accented character made as a composite glyph using
the ``seac'' operator.
This warning is issued as conversion can't be done without relying on the
\emph{deprecated} usage of the \code{endchar} operator. However, as mentioned in
``Appendix C Compatibility and Deprecated Operators'' of Adobe Technical
Note \#5177,
``\href{https://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5177.Type2.pdf}{Type 2 Charstring Format}'',
PDF applications should support this operator and hence this warning
message can be ignored.

Use of Type1 font should be avoided as much as possible.
Please consider using OpenType version instead.

\section{Font Licensing}

In OpenType font format, information regarding how a font should be treated
when creating a document can be recorded.%
\footnote{See,
``\href{https://www.microsoft.com/typography/otspec/os2.htm}{OpenType Specification:
OS/2 -- OS/2 and Windows Metrics Table}''}.
\dvipdfmx\ uses this information to decide whether font embedding is permitted.

This font licensing information is indicated by the flag called \code{fsType}
recorded in OpenType font files; each bits representing different restrictions on
font embedding. If multiple flag bits are set in \code{fsType}, the least restrictive
license granted takes precedence in \dvipdfmx.
The \code{fsType} flag bit recognized by \dvipdfmx\ is as follows:
\begin{itemize}
 \item Installable embedding
 \item Editable embedding
 \item Embedding for Preview \& Print only
\end{itemize}
\dvipdfmx\ issues the following warning message for fonts with `Preview \& Print only'
setting:
\begin{verbatim}
 This document contains 'Preview & Print' only licensed font
\end{verbatim}

For a font with this type of licensing, font embedding is allowed solely for the
purpose of (on-screen) viewing and/or printing; further editing of the document
or extracting embedded font data for other purposes are not allowed.
One way to ensure this condition is to protect your document with a non-empty
password.

All other flags are treated as more restrictive license than any of
the above flags and treated as ``No embedding allowed''; e.g., if both
of the editable-embedding flag and unrecognized license flag is set,
the font is treated as editable-embedding allowed, however, if only
unrecognized flags are set, the font is not embedded.

Font Embedding flags are preserved in the embedded font if they are embedded
as a TrueType font or a CIDFontType2 CID-keyed font.
For all fonts embedded as a PostScript font (Type1C and CIDFontType0
CID-keyed font), they are not preserved.
Only \code{Copyright} and \code{Notice} in the \keyword{FontInfo} dictionary
are preserved in this case.

Some font vendors put different embedding restrictions for different
condition; e.g., font embedding might not be permitted for the commercial
use unless you acquire the ``commercial license'' separately.
Please read EULA carefully before making decision on the font usage.

See, for example,
\href{https://www.adobe.com/products/type/font-licensing/font-embedding-permissions.html}{Adobe's site on font embedding permissions}
for the font in the Adobe Type Library.
Microsoft also has a
\href{https://www.microsoft.com/typography/RedistributionFAQ.mspx}{FAQ page on Font Redistribution}.

For Japanese fonts in general, embedding permission tend to be somewhat
restrictive. Japanese users should read the statement regarding font
embedding from Japan Typography Association (in Japanese):\medskip

\url{https://www.typography.or.jp/act/morals/moral4.html}
\medskip

\dvipdfmx\ does not support full embedding. Only subset embedding is supported.

\chapter{Encryption}

\section{Encryption Support}\label{SEC:encryption}

\dvipdfmx\ offers basic PDF password security support including the 256-bit AES encryption.
Only the ``Standard'' security handler is supported and the Public-key security handler is not
supported.

Encryption is enabled by \option{-S} command line option.
\begin{lstlisting}
 dvipdfmx -S -K 128 -P 0x14
\end{lstlisting}
where \code{-K} and \code{-P} options are used to specify encryption key length and
permission flags respectively, and are briefly explained in Table~\ref{TABLE:enc-options}.

\begin{table}
 \centering
 \begin{tabular}{lp{8cm}}\hline
 Option & Description \\ \hline\hline
 \code{-S} & Enable PDF encryption. \\
 \code{-K} \textit{number} & Set encryption key length. The default value
 is 40.\\
 \code{-P} \textit{number} & Set permission flags for PDF encryption.
 The \textit{number} is a 32-bit unsigned integer representing permission
 flags.
 See, Table~\ref{TABLE:flags}. The default value is \code{0x003C}.\\
 \hline
 \end{tabular}
 \caption{Command line options for encryption.}%
 \label{TABLE:enc-options}
\end{table}

When \dvipdfmx\ is invoked with encryption via the \code{-S} option,
passwords will be asked.
However, in some circumstances, it might be desirable to avoid being prompted for
passwords. In that case, use the \code{pdf:encrypt} special to supply passwords in
the \TeX\ file, as,
\begin{lstlisting}
 \special{pdf:encrypt userpw (foo) ownerpw (bar) length 128 perm 20}
\end{lstlisting}
Here, user and owner passwords are supplied as PDF string objects (\code{foo} and \code{bar}
in the example above) which can be empty.

Up to two passwords can be specified for a document -- an owner password and a user password.
If a user attempts to open an encrypted document with user password being set, PDF application
should prompt for a password. Users are allowed to access the contents of the document only when
either password is correctly supplied.
Depending on which password (user or owner) was supplied, additional operations
allowed for the opened document is determined; full access for users who opened
with the correct owner password or additional operations
controlled by permission flags for users who opened with the correct user password.

Although PDF specification allows various character encodings other than \code{US-ASCII}
for entering password, \dvipdfmx\ is unable to handle it properly.
Thus it must be assumed that \code{US-ASCII} is used for password strings.

Access permission flags can be specified via \option{-P} command-line option.
Each bits of (32-bit unsigned) integer number given to this option represents user
access permissions; e.g., bit position 3 for allowing ``print'', 4 for
``modify'', 5 for ``copy or extract'', and so on. See, Table~\ref{TABLE:flags}.
For example, \code{-P 0x34} allows printing, copying and extraction of text, and adding and
modifying text annotation and filling in interactive form fields (but disallows
modification of the contents of the document).
\begin{table}
 \centering
 \begin{tabular}{lp{.7\hsize}}\hline
 Bit Position & Meaning \\ \hline\hline
 3 & (Revision 2) Print the document. \\
 & (Revision 3 or greater) Print the document. Print quality depending on bit 12.\\
 4 & Modify the contents of the document by operations other than those controlled
 by bits 6, 9, and 11. \\
 5 & Copy or extract text and graphics from the document. \\
 6 & Add or modify text annotations, fill in interactive form fields.
 Creation and modification of interactive form field is also
 allowed if bit 4 is set.\\
 9 & (Revision 3 or greater) Fill in existing interactive form fields
 (including signature fields), even if bit 6 is clear.\\
 10 & \em{Deprecated in PDF 2.0} \\
 & (Revision 3 or greater) Extract text and graphics (in support of accessibility to
 users with disabilities or for other purposes).\\
 11 & (Revision 3 or greater) Assemble the document
 (insert, rotate, or delete pages and create document outline items or thumbnail
 images), even if bit 4 is clear.\\
 12 & (Revision 3 or greater) High-quality printing.
 When this bit is clear (and bit 3 is set), printing shall be limited to a low-level,
 possibly of degraded quality.\\
 \hline
 \end{tabular}
 \caption{Flag bits and brief explanations.
 Revision~2 is used when the encryption key length is 40 bits
 or when PDF output version is less than 1.5. Otherwise,
 Revision~3 or greater is used.}\label{TABLE:flags}
\end{table}

The \option{-K} option can be used to specify the encryption key length.
The key length must be multiple of 8 in the range 40 to 128, or 256 (for PDF
version 1.7 plus Adobe Extension or PDF version 2.0). Please note
that when key length 256 is specified for PDF version 1.7 output, it requires
Adobe's Extension to \lnum{PDF-1.7} and hence PDF applications may not support it.
PDF version 1.4 is required for key length more than 40 bits. AES encryption algorithm requires
PDF version 1.6.

To show some examples:\\
128-bit AES encryption with print-only (high-quality) setting,
\begin{lstlisting}
 dvipdfmx -V 5 -S -K 128 -P 0x804 input.dvi
\end{lstlisting}
256-bit AES encryption with print (low-quality), adding and modifying text annotations
allowed,
\begin{lstlisting}
 dvipdfmx -V 2.0 -S -K 256 -P 0x24 input.dvi
\end{lstlisting}

The default value for \option{-K} is 40 and for \option{-P} is \code{0x003C0}
(all bits from bit-position 3 to 6 set).

\chapter{Compatibility}

\section{Incompatible Changes}\label{SEC:compatibility}

There are various minor incompatible changes to \dvipdfm.

The \option{-C} command line option may be used for compatibility to
\dvipdfm\ or older versions of \dvipdfmx. The \option{-C} option takes flags
meaning
\begin{itemize}
 \item bit position 2: Use semi-transparent filling for tpic shading
 command, instead of opaque gray color. (requires PDF 1.4)
 \item bit position 3: Treat all CID-keyed font as fixed-pitch font. This is
 only for compatibility.
 \item bit position 4: Do not replace duplicate fontmap entries.
 \dvipdfm\ behavior.
 \item bit position 5: Do not optimize PDF destinations. Use this if you
 want to refer from other files to destinations in the current file.
 \item bit position 6: Do not use predictor filter for Flate compression.
 \item bit position 7: Do not use object stream.
\end{itemize}

The remap option \option{-r} in fontmaps is no longer supported and is
silently ignored. The command line option \option{-e} to disable partial
(subset) font embedding is not supported.

\section{Important Changes}

Here is a list of important changes since the \TeX\ Live 2016 release:
\begin{itemize}
\item Changes to make PDF/A creation easier: Always write CIDSet and CharSet
for embedded fonts. Do not compress XMP metadata.
\item Merge from libdpx for p\TeX-ng by Clerk Ma.
\item Addition of \code{STHeiti-Regular-Acro} for CJK `Standard' fonts.
\item Command line option \option{-p} takes precedence over \code{papersize}
and \code{pagesize} specials.
\item Fixed serious bugs in supporting `\code{unicode}' encoding:
OpenType Layout Feature \code{vert} and \code{vrt2} was not enabled.
Support for format 2 CFF charsets was broken.
\item Added simplified version of OpenType Layout support: The `\option{-l}'
option in fontmaps.
\end{itemize}
The full \code{ChangeLog} entries can be viewed via the web interface of the
\TeX\ Live SVN repository:
\medskip

\url{https://tug.org/svn/texlive/trunk/Build/source/texk/dvipdfm-x}
\medskip

There was an undocumented feature for supporting OpenType Layout but it was
dropped. Simplified support for the OpenType Layout was introduced instead.

%\renewcommand{\refname}{Further Reading}
\renewcommand{\bibname}{Further Reading}
\begin{thebibliography}{99}
\bibitem{DVIPDFM} ``\href{https://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf}%
{Dvipdfm User's Manual}'' written by Mark~A.~Wicks.
\bibitem{ADOBE} Adobe's PDF References and a free copy of
\lnum{ISO 32000-1:2008} standard are available from
``\href{https://www.adobe.com/devnet/pdf.html}{PDF Technology Center}''
on \href{https://www.adobe.com/devnet.html}{Adobe Developer Connection}.
\bibitem{MICROSOFT} The OpenType Specification is available from Microsoft's
site:
``\href{https://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx}%
{OpenType Specification}''.
\bibitem{PNGSPEC} ``\href{https://www.w3.org/TR/2003/REC-PNG-20031110/}%
{Portable Network Graphics (PNG) Specification (Second Edition)}''.
\bibitem{CHOF} An article regarding DVI specials: Jin-Hwan Cho,
``\href{https://tug.org/TUGboat/tb30-1/tb94cho.pdf}{DVI specials for PDF generation}'',
TUGboat 30(1):6--11, 2009.
\end{thebibliography}

\appendix

\twocolumn
{\footnotesize
\emergencystretch=1.5em \hbadness=2000 \hfuzz=.25pt
\chapter{GNU Free Documentation License v1.3}
\label{SEC:FDL}
\input{fdl-1.3.tex}
}
\end{document}

The Dvipdfmx User's Manual
The Dvipdmfx User's Manual
XeLaTeX source file of this manual.

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

/F (\jobname.tex)
/EF << /F @SourceFile >>

>>
/Name /PushPin
/C [0.8 0.2 0.2]
/T (The Dvipdfmx User's Manual)
/Subj (The Dvipdfmx User's Manual)
/Contents (XeLaTeX source file of the manual.)

>>

A push-pin image must be shown on the margin if viewer supports this kind of annotation.
PDF viewer applications are required to provide predefined icon appearances at least for the
following standard icons: Graph, PushPin, PaperClip, and Tag.

Special Color Space

This section shows various examples of using Special color spaces. Examples in this section have
a common structure. They consist of essentially three parts. The first part is for defining color
space itself. PDF object creation commands like pdf:obj and pdf:stream are used for this
purpose. Next is for registering color space resources in the page’s Resource Dictionary. It can
be done via pdf :put command as,

\special{pdf:put @resource <<
/Category << ...key-value pairs... >>
>>}

where @resource is a special keyword representing current page’s Resource Dictionary and
Category (to be replaced by actual category name) is a category name such as ColorSpace.
Finally, graphics objects are placed, with or with a combination of text and, PDF drawing
operators inserted by the pdf:code or the pdf:contents special.

The first example is the Separation color space:

and Green

\special{pdf:stream @TintTransforml
({0 exch dup 0.62 mul exch 03})
<< /FunctionType 4
/Domain [0.0 1.
/Range [0.0 1.
>>

0]
00.01.00.01.00.01.0]1]

}
\special{pdf:stream @TintTransform2

({dup 0.78 mul exch dup 0.05 mul exch 0.71 mul 0})
<< /FunctionType 4

27

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

/Domain [0.0
/Range [0.0
>>

1.0]
1.0 0.0 1.0 0.0 1.0 0.0 1.0 1]
}
\special{pdf:obj @Orange [
/Separation /Orange /DeviceCMYK @TintTransforml
]
}
\special{pdf:obj @Green [
/Separation /Green /DeviceCMYK @TintTransform2
]
}
\mbox{%
\special{pdf:put @resources <<
/ColorSpace << /CS01 @Orange /CS02 @Green >>
>>
Y
\special{pdf:code q /CS01 cs 1.0 scn}
Orange
\special{pdf:code Q}
and
\special{pdf:code q /CS02 cs 1.0 scn}
Green
\special{pdf:code Q}

TintTransform’s defined here are functions for transforming tint values into approximate
colors in the alternate color space (DeviceCMYK in this example). PostScript calculator functions
are used for converting a single component value representing “Orange” or “Green” into four
component CMYK values to approximate those colors. The “Orange” color v is approximated
as (0,0.62v,v,0) in CMYK color space for alternate display here.

The cs operator for selecting color space and the scn operator for color values are used in
the pdf:code special. Be sure that the pdf:put command, which puts color space resources
into the current page’s Resource Dictionary, goes into the same page as subsequent drawing
commands.

dvipdfmx currently does not have an easy interface for using various color space families
such as CIE-Based color spaces (e.g., calibrated colors and color space with an ICC profile) and
Special color spaces (e.g., indexed, separation, shading and patterns).

Another example is a shading pattern:

\special{pdf:put @resources <<
/Shading <<
/SHO1 <<
/ShadingType 2
/ColorSpace @Orange
/Coords [0 0 320 20]
/Extend [true true]

28

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

/Function << /FunctionType 2 /Domain [0 1] /N 1.0 >>
>>
>>
>>}
\special{pdf:content 0 O 320 20 re W n /SHO1 sh}

where the “Orange” separation color space defined before is used again. This example shows
an axial shading (ShadingType 2) pattern.

The shading pattern requires coordinate values to be mapped into color values. Type 2
(Exponential Interpolation) Function is used for defining how this mapping should occur here.
The above example, with the exponent N = 1, is just a simple linear-gradient.

The final examples is a tiling pattern.

\special{pdf:stream @MyPattern
(0.16 0 0 0.16 0 O cm 4 w
50 O m 50 28 28 50 0 50 ¢ S 100 50
m 72 50 50 28 50 0 ¢ S
50 100 m 50 72 72 50 100 50 c S
0 50 m 28 50 50 72 50 100 c S
100 50 m 100 78 78 100 50 100 c 22 100 0 78 0 50 c
022220500 c 78 0 100 22 100 50 c S
0Om20 10255250 c £f0O0m10 205 250 25 c f
100 O m 80 10 75 5 75 0 ¢ £
100 O m 90 20 95 25 100 25 ¢ f£
100 100 m 80 90 75 95 75 100 c f£
100 100 m 90 80 95 75 100 75 c f£
0 100 m 20 90 25 95 25 100 c £
0 100 m 10 80 5 75 0 75 ¢
50 50 m 70 60 75 55 75 50 c 75 45 70 40 50 50 c f£
50 50 m 60 70 55 75 50 75 c 45 75 40 70 50 50 c £
50 50 m 30 60 25 55 25 50
25 45 30 40 50 50 ¢ £
50 50 m 60 30 55 25 50 25 ¢ 45 25 40 30 50 50 c f)
<<
/BBox [0 0 16 16]
/PaintType 2
/PatternType 1
/Resources <<

/ProcSet [/PDF]

O 0O 0 Hh

>>
/TilingType 3
/Type /Pattern
/XStep 16
/YStep 16

>>

29

4.1. PDF SPECIALS CHAPTER 4. SPECIALS

The above example defines a tiling pattern. The content stream containing painting opera-
tors, m for “move-to”, ¢ for “curve-to”, £ for “fill”, and S for “stroke”, defines the appearance
of the pattern cell for this tiling pattern. With the following code,

\special{pdf :put @resources
<<
/ColorSpace << /CSO01 [/Pattern /DeviceRGB] >>
/Pattern << /PTO1 @MyPattern >>
>>
}
\special{pdf:content
q 0.8 0.3 0.3 RG /CS01 cs 0.8 0.3 0.3 /PTO1 scn
0 0 320 100 re £

a box filled with the tiling pattern defined above is drawn.

ONONOINONONINONONINONONOINONONINONONOINONYG,
NZNININININININININININININININININININ
INININININININININININININOINININOINININYE,
NZNINININININONININONININONININONINININ

Y,
N

N
N7,

N
N7,

N
N7,

N
N7,

>
N,

N N
Y, .

;QQQDQQQQQDQ&
&

N/
ININININININY,

;QQQDQQQQQQQ&
&
N
AQOOO@QQOOO@D
A

;QQQQQQQQQQQ&
&
N/
AQOOO@QQOOO@D
A

;QQQQQQQQQQQ&
&
N/
AQOOO@QQOOO@D
A

;QQQQQQQQQQQ&
&
N/
AQOOO@QQOOO@D
A
;QQQQQQQQQQQ&
&
N/
AQOOO@QQOOO@D
A

ONTNIIN %& (YA
N
AQOOO@QQOOO@D
A

7,
INININY,

7,
INININY,

7,
INININY,
RINININ

N
NN,

Transparency

XATEX’s transparency feature is currently lost in xdvipdfmx, but the same effect can be achieved
by setting graphics state parameters with ExtGState resources and gs operator. Here is a simple
transparency example:

\special{pdf:obj @GSOl <<
/Type /ExtGState /CA 0.5 /ca 0.5 /AIS false
>>},
\mbox{%
\special{pdf:put @resources <<
/ExtGState << /GSO01 @GS01 >>
>>}
\special{pdf:code q /GSO1 gs 1.0 0.8 0.2 rg}i
oh
\special{pdf:code 0.4 0.8 0.4 rg}/
\hspace{-0.3em}/
B%
\hspace{-0.3em}\raisebox{0.5ex}{%

30

4.2. DVIPDFMX EXTENSIONS CHAPTER 4. SPECIALS

\special{pdf:code 0.4 0.4 0.8 rg}tl
wh

/A

\special{pdf:code 1.0 0.2 0.4 rgl}
\hspace{-0.2em}%

.

\special{pdf:code Q}/

where values for CA and ca represent opacity of stroke and fill color respectively. Again, pdf :put
command must go into the same page as subsequent graphics and text drawing operators.

4.2 Dvipdfmx Extensions

A new special dvipdfmx:config was introduced in TEXLive 2016 which makes it possible to in-
voke a command line option. Several single letter command line options except ‘D’ are supported.
For example,

dvipdfmx:config C 0x10

sets the dvipdfmx’s compatibility flags. See, the section “Incompatible Changes” for an expla-
nation of compatibility flags.

4.3 PS Specials

PS (PostScript) specials can be used to insert a raw PostScript code for drawing graphics
objects and transforming subsequent text and graphics. Please note that support for PostScript
operators in dvipdfmx is very limited. It is just enough for interpreting PostScript figures output
by METAPOST. Only a basic set of operators for arithmetic and math, stack operation and

31

Addition in
TrX Live
2016

4.3. PS SPECIALS

CHAPTER 4. SPECIALS

Classification

Operators

Arithmetic & Math
Stack Operation
Graphis State
Coordinate System
Path Construction

Painting
Glyph & Font

add sub mul div neg truncate

clear pop exch

gsave grestore setlinewidth setdash setlinecap
setlinejoin setmiterlimit setgray setrgbcolor
setcmykcolor

concat scale translate rotate idtransform
dtransform

currentpoint newpath closepath moveto rmoveto
lineto rlineto curveto rcurveto arc arcn clip
eoclip

stroke fill

show findfont scalefont setfont currentfont
stringwidth

Table 4.1: List of PostScript operators recognized by dvipdfmx.

manipulation, graphics state, path construction and painting, glyph and font, are supported.
See, Table 4.1 for the list of recognized PostScript operators.

It might be enough for the purpose of basic graphics drawings but as there are no support
for conditionals and controls it is not enough for complicated tasks, especially, the PSTricks

package is not supported.

In dvipdfmx, text handling is extended to support CJK text. The following code draws
Japanese text like shown in Figure 1.1:

\special{pdf:mapline urml UniJIS-UTF8-H ipaexm.ttf}
\special{ps: urml findfont 16 scalefont setfont

currentpoint moveto

(...some Japanese text goes here...) show

¥

32

Chapter 5

Fonts and Encodings

5.1 Fonts and Encodings Support

In dvipdfmx, all font formats supported by dvipdfm are also supported with many improve-
ments: The CFF conversion for PostScript Typel fonts' is implemented which greatly reduces
the output file size. Embedded TrueType fonts are now subsetted. The OpenType font format
is also supported.?

There are various enhancements made for supporting Unicode and legacy multi-byte char-
acter encodings for East Asian languages.

5.2 Font Mappings

The Syntax of font-mapping (fontmap) files is basically the same as in dvipdfm. There are few
extensions available in dvipdfmx. In addition to the 8-bit enc file and keywords builtin and
none, dvipdfmx accepts a PostScript CMap Resource name and the keyword unicode in the
encoding field.

When the keyword unicode is specified in the encoding field of fontmap files, it is assumed
that Unicode values are used in the input DVI file.

urml unicode SourceHanSerifJP-Light.otf

Although the DVI format allows 3-byte and 4-byte character codes to be used, dvipdfmx
only supports up to 2-byte range since there is no TFM format supporting 3-byte or 4-byte
codes.

For PostScript Typel fonts which do not support Unicode natively, an auxiliary file, the
Adobe Glyph List, is required to make it possible to use fonts with Unicode access.

As a general framework for supporting legacy multi-byte encodings, dvipdfmx employs
PostScript CMap Resources for handling input strings encoded in various character encod-
ings. A CMap name can be specified in the encoding field just like the encoding name for 8-bit
encodings. For example, to specify the CMap “UniJIS-UCS2-H”,

1PostScript Typel font support is restricted to the binary format as in dvipdfm.
2Its implementation is based on the OpenType specification version 1.4. Newly added features such as color fonts
and variable fonts are not supported yet.

33

5.2. FONT MAPPINGS CHAPTER 5. FONTS AND ENCODINGS

urml UniJIS-UCS2-H HiraMinPro-W3.otf

For information on the Adobe Glyph List and PostScript CMap Resources, see, the section
2, “Auxiliary Files”.
5.2.1 Extended Syntax and Options

Few options are available in dvipdfmx in addition to the original dvipdfm’s one. Please note
that all features which makes dvipdfmx to use non-embedded fonts are deprecated, as by doing
so it makes dvipdfmx to create PDF files which can be non-compliant to the ISO standards.

SFD Specification

For bundling up a font split into multiple subfonts via SFD back into a single font, dvipdfmx
supports extended syntax of the form

tfm_name@SFD@ encoding filename options

A typical example looks like:

gbsn@EUC@ GB-EUC-H gbsn00lp

where TFMs gbsn00, gbsn01, gbsn02... are mapped into a single font named gbsn001p via the
rule described in the SFD file EUC.
TrueType Collection Index

TrueType Collection index number can be specified with :n: in front of the TrueType font
name:

minl0 H :1:mincho

In this example, the option :1: tells dvipdfmx to select first TrueType font from the TTC font
mincho.ttc. Alternatively, the ‘=i’ option can be used in the option field to specify TTC index:

minl0 H mincho -i 1

Non-embedding Switch

The character *!” in front of the font name can be used to indicate that the font shall not be Use of this
embedded. This feature greatly reduces the size of the final PDF output, but the PDF file may (;””0 " ': .

aeprecarea.
not be viewed exactly the same in other systems on which appropriate fonts are not installed. !

34

5.2. FONT MAPPINGS CHAPTER 5. FONTS AND ENCODINGS

Character Collection Font Family Description
Adobe-Japanl Ryumin-Light PS printers
GothicBBB-Medium
Adobe-CNS1 MHei-Medium-Acro Acrobat Reader 4
MSung-Light-Acro
Adobe-GB1 STSong-Light-Acro
STHeiti-Regular-Acro
Adobe-Japanl HeiseiMin-W3-Acro
HeiseiKakuGO-W5-Acro
Adobe-Koreal HYGoThic-Medium-Acro
HYSMyeongJo-Medium-Acro
Adobe-CNS1 MSungStd-Light-Acro Acrobat Reader 5
Adobe-GB1 STSongStd-Light-Acro
Adobe-Koreal HYSMyeongJoStd-Medium-Acro
Adobe-CNS1 AdobeMingStd-Light-Acro Adobe Reader 6
Adobe-GB1 AdobeSongStd-Light-Acro
Adobe-Japanl KozMinPro-Regular-Acro
KozGoPro-Medium-Acro
Adobe-Koreal AdobeMyungjoStd-Medium-Acro
Adobe-CNS1 AdobeHeitiStd-Regular Adobe Reader 7
Adobe-Japanl KozMinProVI-Regular Adobe Reader 8

Table 5.1: List of available ‘Standard’ CJK font. Most of them are available as a part of Adobe
Asian Font Packs for each versions of Adobe or Acrobat Reader.

NOTE: dvipdfmx always converts input encodings to CIDs and then uses Identity CMaps? in
the output PDF. However, ISO 32000-1:2008 describes as

The Identity-H and Identity-V CMaps shall not be used with a non-embedded font.
Only standardized character sets may be used.

which had never appeared in Adobe’s PDF References. This makes all PDF files generated by
dvipdfmx with non-embedded CID-keyed fonts non-compliant to the ISO standards.

‘Standard’ CJK Fonts

Use of this feature shall be avoided for new documents. It is described here since it might still
be useful for some situations.

dvipdfmx recognizes several ‘Standard’ CJK fonts although there are no such notion in PDF.
In older days where there were not so many freely available CJK fonts, it was sometimes useful
to create PDF files without embedding fonts and let PDF viewers or printers to use substitute
fonts (tend to be higher quality) installed in their systems. dvipdfmx ‘knows’ several fonts
which might be available in PostScript printers and PDF applications such as Acrobat Reader,
and uses them without actually having it. See, Table 5.1, for the list of available ‘Standard’
CJK fonts.

Only fixed-pitch glyphs (i.e., quarter, third, half, and full widths) are supported for those
fonts.

3Predefined CMaps Identity-H and Identity-V for the identity mapping.

35

This feature
18
deprecated.

5.2. FONT MAPPINGS CHAPTER 5. FONTS AND ENCODINGS

H‘_‘T\\Z —F - —rA_._‘
= IR \J==

Figure 5.1: JIS2004 vs. JIS1990 form.

Stylistic Variants

Keywords ,Bold, ,Italic, and ,BoldItalic can be used to create synthetic bold, italic, and Use of this

bolditalic style variants from other font using PDF viewer’s (or OS’s) function. (}” tion ': .
aeprecatea.

jbtmo@UKS@ UniKSCms-UCS2-H :0:!batang,Italic

Availability of this feature highly depends on the implementation of PDF viewers. This
feature is usually not supported for embedded fonts. Notice that this option automatically
disables font embedding thus use of it is deprecated.

5.2.2 Specifying Unicode Plane

As there is no existing TFM format supporting 3-byte or 4-byte character encodings, the only
way to use Unicode characters other than the BMP is to map the code range 0-65535 to different
planes via (e.g., to plane 1) the ‘-p 1’ fontmap option. This option is available only when
unicode is specified in the encoding field.

5.2.3 OpenType Layout Feature

The OpenType Layout Feature fontmap options mentioned below are only meaningful when
unicode is specified in the encoding field.

With the ‘-w’ option, writing mode can be specified. ‘-w 1’ denotes the font is for vertical
writing. It automatically enables an OpenType Layout Feature related to vertical writing,
namely, vert or vrt2, to choose proper glyphs for vertical text.

The ‘-1’ (lower case el) option can be used to enable various OpenType Layout GSUB Fea- Addition in
tures. For example, ‘=1 jp04’ enables jp04 feature to select JIS2004 forms for Kanjis. Features 5% 170
can be specified as a “:” separated list of OpenType Layout Feature tags like ‘-1 vkna: jp04’. ’
Script and language may be additionally specified as ‘-1 kana.JAN.ruby’.

An example can be

uprml-v unicode SourceHanSerifJP-Light.otf -w 1 -1 jp90

which declares that font should be treated as for vertical writing and use JIS1990 form for
Kanjis.

This feature is limited to the single substitution, there are no way to select a glyph from
multiple candidates, such as in the aalt feature, and specifying general many-to-many glyph
substitutions does not take effect.

36

5.3. OTHER IMPROVEMENTS CHAPTER 5. FONTS AND ENCODINGS

5.3 Other Improvements

This section briefly describes other improvements made for dvipdfmx. There is an extension
to glyph name handling in the enc file for seamless support of both PostScript Typel and
TrueType fonts. PostScript Typel font support is enhanced although this format might be
considered obsolete.

5.3.1 Extended Glyph Name Syntax

dvipdfmx accepts the following syntax for glyph names in the enc file: uni0130, zero.onum
and T_h.liga. Each represents a glyph accessed with Unicode value U+0130, oldstyle number
for zero and “Th” ligature accessed via the OpenType Layout GSUB Feature onum and liga,
respectively. Note that dvipdfmx does not understand glyph names which directly use a glyph
index such as index0102 or gid2104.

When dvipdfmx encounters a glyph name, e.g., T_h.1liga, it first looks for OpenType post
table if such glyph name exists; if it exists, then dvipdfmx simply uses post table and maps
the glyph name to the glyph index; if not, dvipdfmx tries to convert T_h to a Unicode sequence
(U40054 U+0068 in this example) via the AGL mapping; then, OpenType cmap table is used
to further convert the resulting Unicode sequence to the sequence of glyph indices; finally, the
OpenType Layout Feature liga is applied to get the desired glyph.

A glyph name of a form a.swsh2 can be specified to denote the 2nd swash variant form of
the letter ‘a’.

5.3.2 CFF Conversion

dvipdfmx supports on-the-fly PostScript Typel to CFF (TypelC) conversion which greatly
reduces size of the resulting PDF file when using Typel fonts. Conversion is essentially ‘lossless’
and there should not be any quality loss. However, due to differences in the ability of rasterizers,
there might be noticeable differences on rendering result.

When an older Typel font is used, dvipdfmx may give the following warning message:

Obsolete four arguments of "endchar" will be used for Typel
"seac" operator.

It happens when there is an accented character made as a composite glyph using the “seac”
operator. This warning is issued as conversion can’t be done without relying on the deprecated
usage of the endchar operator. However, as mentioned in “Appendix C Compatibility and
Deprecated Operators” of Adobe Technical Note #5177, “Type 2 Charstring Format”, PDF
applications should support this operator and hence this warning message can be ignored.

Use of Typel font should be avoided as much as possible. Please consider using OpenType
version instead.

5.4 Font Licensing

In OpenType font format, information regarding how a font should be treated when creating a
document can be recorded.?. dvipdfmx uses this information to decide whether font embedding
is permitted.

4See, “OpenType Specification: OS/2 — 0S/2 and Windows Metrics Table”

37

https://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5177.Type2.pdf
https://www.microsoft.com/typography/otspec/os2.htm

5.4. FONT LICENSING CHAPTER 5. FONTS AND ENCODINGS

This font licensing information is indicated by the flag called £sType recorded in OpenType
font files; each bits representing different restrictions on font embedding. If multiple flag bits are
set in fsType, the least restrictive license granted takes precedence in dvipdfmx. The fsType
flag bit recognized by dvipdfmx is as follows:

e Installable embedding
o Editable embedding
o Embedding for Preview & Print only
dvipdfmx issues the following warning message for fonts with ‘Preview & Print only’ setting:
This document contains 'Preview & Print' only licensed font

For a font with this type of licensing, font embedding is allowed solely for the purpose of
(on-screen) viewing and/or printing; further editing of the document or extracting embedded
font data for other purposes are not allowed. One way to ensure this condition is to protect
your document with a non-empty password.

All other flags are treated as more restrictive license than any of the above flags and treated
as “No embedding allowed”; e.g., if both of the editable-embedding flag and unrecognized license
flag is set, the font is treated as editable-embedding allowed, however, if only unrecognized flags
are set, the font is not embedded.

Font Embedding flags are preserved in the embedded font if they are embedded as a True-
Type font or a CIDFontType2 CID-keyed font. For all fonts embedded as a PostScript font
(TypelC and CIDFontType0 CID-keyed font), they are not preserved. Only Copyright and
Notice in the FontInfo dictionary are preserved in this case.

Some font vendors put different embedding restrictions for different condition; e.g., font
embedding might not be permitted for the commercial use unless you acquire the “commercial
license” separately. Please read EULA carefully before making decision on the font usage.

See, for example, Adobe’s site on font embedding permissions for the font in the Adobe
Type Library. Microsoft also has a FAQ page on Font Redistribution.

For Japanese fonts in general, embedding permission tend to be somewhat restrictive. Ja-
panese users should read the statement regarding font embedding from Japan Typography
Association (in Japanese):

https://www.typography.or. jp/act/morals/moral4d.html
dvipdfmx does not support full embedding. Only subset embedding is supported.

38

https://www.adobe.com/products/type/font-licensing/font-embedding-permissions.html
https://www.microsoft.com/typography/RedistributionFAQ.mspx
https://www.typography.or.jp/act/morals/moral4.html

Chapter 6

Encryption

6.1 Encryption Support

dvipdfmx offers basic PDF password security support including the 256-bit AES encryption.
Only the “Standard” security handler is supported and the Public-key security handler is not
supported.

Encryption is enabled by ‘-S’ command line option.

dvipdfmx -S -K 128 -P 0x14

where -K and -P options are used to specify encryption key length and permission flags respec-
tively, and are briefly explained in Table 6.1.

When dvipdfmx is invoked with encryption via the -S option, passwords will be asked.
However, in some circumstances, it might be desirable to avoid being prompted for passwords.
In that case, use the pdf:encrypt special to supply passwords in the TEX file, as,

\special{pdf:encrypt userpw (foo) ownerpw (bar) length 128 perm 20}

Here, user and owner passwords are supplied as PDF string objects (foo and bar in the example
above) which can be empty.

Up to two passwords can be specified for a document — an owner password and a user
password. If a user attempts to open an encrypted document with user password being set,

Option Description

-S Enable PDF encryption.

-K number Set encryption key length. The default value is
40.

-P number Set permission flags for PDF encryption. The
number is a 32-bit unsigned integer representing
permission flags. See, Table 6.2. The default
value is 0x003C.

Table 6.1: Command line options for encryption.

39

6.1. ENCRYPTION SUPPORT CHAPTER 6. ENCRYPTION

Bit Position Meaning

3 (Revision 2) Print the document.
(Revision 3 or greater) Print the document. Print quality depend-
ing on bit 12.

4 Modify the contents of the document by operations other than
those controlled by bits 6, 9, and 11.

5 Copy or extract text and graphics from the document.

6 Add or modify text annotations, fill in interactive form fields. Cre-
ation and modification of interactive form field is also allowed if bit
4 is set.

9 (Revision 3 or greater) Fill in existing interactive form fields (in-
cluding signature fields), even if bit 6 is clear.

10 Deprecated in PDF 2.0

(Revision 3 or greater) Extract text and graphics (in support of
accessibility to users with disabilities or for other purposes).

11 (Revision 3 or greater) Assemble the document (insert, rotate, or
delete pages and create document outline items or thumbnail im-
ages), even if bit 4 is clear.

12 (Revision 3 or greater) High-quality printing. When this bit is clear
(and bit 3 is set), printing shall be limited to a low-level, possibly
of degraded quality.

Table 6.2: Flag bits and brief explanations. Revision 2 is used when the encryption key length
is 40 bits or when PDF output version is less than 1.5. Otherwise, Revision 3 or greater is used.

PDF application should prompt for a password. Users are allowed to access the contents of the
document only when either password is correctly supplied. Depending on which password (user
or owner) was supplied, additional operations allowed for the opened document is determined;
full access for users who opened with the correct owner password or additional operations
controlled by permission flags for users who opened with the correct user password.

Although PDF specification allows various character encodings other than US-ASCII for
entering password, dvipdfmx is unable to handle it properly. Thus it must be assumed that
US-ASCII is used for password strings.

Access permission flags can be specified via ‘-P’ command-line option. Each bits of (32-
bit unsigned) integer number given to this option represents user access permissions; e.g., bit
position 3 for allowing “print”, 4 for “modify”, 5 for “copy or extract”, and so on. See, Table 6.2.
For example, -P 0x34 allows printing, copying and extraction of text, and adding and modifying
text annotation and filling in interactive form fields (but disallows modification of the contents
of the document).

The ‘=K’ option can be used to specify the encryption key length. The key length must be
multiple of 8 in the range 40 to 128, or 256 (for PDF version 1.7 plus Adobe Extension or PDF
version 2.0). Please note that when key length 256 is specified for PDF version 1.7 output, it
requires Adobe’s Extension to PDF-1.7 and hence PDF applications may not support it. PDF
version 1.4 is required for key length more than 40 bits. AES encryption algorithm requires
PDF version 1.6.

To show some examples:
128-bit AES encryption with print-only (high-quality) setting,

40

6.1. ENCRYPTION SUPPORT CHAPTER 6. ENCRYPTION

dvipdfmx -V 5 -S -K 128 -P 0x804 input.dvi

256-bit AES encryption with print (low-quality), adding and modifying text annotations al-
lowed,

dvipdfmx -V 2.0 -8 -K 256 -P 0x24 input.dvi

The default value for ‘K’ is 40 and for ‘~P’ is 0x003CO (all bits from bit-position 3 to 6 set).

41

Chapter 7

Compatibility

7.1

Incompatible Changes

There are various minor incompatible changes to dvipdfm.
The ‘-C’ command line option may be used for compatibility to dvipdfm or older versions
of dvipdfmx. The ‘-C’ option takes flags meaning

The remap option

bit position 2: Use semi-transparent filling for tpic shading command, instead of opaque
gray color. (requires PDF 1.4)

bit position 3: Treat all CID-keyed font as fixed-pitch font. This is only for compatibility.
bit position 4: Do not replace duplicate fontmap entries. dvipdfm behavior.

bit position 5: Do not optimize PDF destinations. Use this if you want to refer from other
files to destinations in the current file.

bit position 6: Do not use predictor filter for Flate compression.
bit position 7: Do not use object stream.

3

-r’ in fontmaps is no longer supported and is silently ignored. The

command line option ‘-e’ to disable partial (subset) font embedding is not supported.

7.2 Important Changes

Here is a list of important changes since the TEX Live 2016 release:

Changes to make PDF /A creation easier: Always write CIDSet and CharSet for embedded
fonts. Do not compress XMP metadata.

Merge from libdpx for pTEX-ng by Clerk Ma.
Addition of STHeiti-Regular-Acro for CJK ‘Standard’ fonts.
Command line option ‘-p’ takes precedence over papersize and pagesize specials.

Fixed serious bugs in supporting ‘unicode’ encoding: OpenType Layout Feature vert
and vrt2 was not enabled. Support for format 2 CFF charsets was broken.

Added simplified version of OpenType Layout support: The “~1”" option in fontmaps.

42

7.2. IMPORTANT CHANGES CHAPTER 7. COMPATIBILITY

The full ChangeLog entries can be viewed via the web interface of the TEX Live SVN repository:
https://tug.org/svn/texlive/trunk/Build/source/texk/dvipdfm-x

There was an undocumented feature for supporting OpenType Layout but it was dropped.
Simplified support for the OpenType Layout was introduced instead.

43

https://tug.org/svn/texlive/trunk/Build/source/texk/dvipdfm-x

Further Reading

[1] “Dvipdfm User’s Manual” written by Mark A. Wicks.

[2] Adobe’s PDF References and a free copy of ISO 32000-1:2008 standard are available from
“PDF Technology Center” on Adobe Developer Connection.

[3] The OpenType Specification is available from Microsoft’s site: “OpenType Specification”.
[4] “Portable Network Graphics (PNG) Specification (Second Edition)”.

[5] An article regarding DVI specials: Jin-Hwan Cho, “DVI specials for PDF generation”,
TUGDboat 30(1):6-11, 20009.

44

https://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf
https://www.adobe.com/devnet/pdf.html
https://www.adobe.com/devnet.html
https://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx
https://www.w3.org/TR/2003/REC-PNG-20031110/
https://tug.org/TUGboat/tb30-1/tb94cho.pdf

Appendix A

GNU Free Documentation License

vl.3

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software
Foundation, Inc.

<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual,
textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without mod-
ifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher
a way to get credit for their work, while not being con-
sidered responsible for modifications made by others.

This License is a kind of “copyleft”, which means
that derivative works of the document must themselves
be free in the same sense. It complements the GNU Gen-
eral Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for
manuals for free software, because free software needs
free documentation: a free program should come with
manuals providing the same freedoms that the software
does. But this License is not limited to software man-
uals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed
book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use

that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any
work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated
into another language.

A “Secondary Section” is a named appendix or a
front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Docu-
ment is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The rela-
tionship could be a matter of historical connection with
the subject or with related matters, or of legal, commer-
cial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary
Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Doc-
ument is released under this License. If a section does
not fit the above definition of Secondary then it is not al-
lowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does
not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of
text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is re-
leased under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most
25 words.

A “Transparent” copy of the Document means a
machine-readable copy, represented in a format whose
specification is available to the general public, that is
suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a va-

45

APPENDIX A. GNU FREE DOCUMENTATION LICENSE V1.3

riety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers
is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that
is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies
include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming sim-
ple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the
title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear
in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

The “publisher” means any person or entity that
distributes copies of the Document to the public.

A section “Entitled XYZ” means a named sub-
unit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorse-
ments”, or “History”.) To “Preserve the Title” of
such a section when you modify the Document means
that it remains a section “Entitled XYZ” according to
this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are con-
sidered to be included by reference in this License, but
only as regards disclaiming warranties: any other impli-
cation that these Warranty Disclaimers may have is void
and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any
medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the
license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control
the reading or further copying of the copies you make
or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough

number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions
stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that
commonly have printed covers) of the Document, num-
bering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in cov-
ers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words
of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too volumi-
nous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must either
include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the gen-
eral network-using public has access to download using
public-standard network protocols a complete Transpar-
ent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will re-
main thus accessible at the stated location until at least
one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact
the authors of the Document well before redistributing
any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version
under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribu-
tion and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any)
a title distinct from that of the Document, and
from those of previous versions (which should, if
there were any, be listed in the History section of

46

APPENDIX A. GNU FREE DOCUMENTATION LICENSE V1.3

the Document). You may use the same title as a
previous version if the original publisher of that
version gives permission.

. List on the Title Page, as authors, one or more per-
sons or entities responsible for authorship of the
modifications in the Modified Version, together
with at least five of the principal authors of the
Document (all of its principal authors, if it has
fewer than five), unless they release you from this
requirement.

. State on the Title page the name of the publisher
of the Modified Version, as the publisher.

. Preserve all the copyright notices of the Docu-
ment.

. Add an appropriate copyright notice for your mod-
ifications adjacent to the other copyright notices.

. Include, immediately after the copyright notices,
a license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below.

. Preserve in that license notice the full lists of In-
variant Sections and required Cover Texts given
in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled “History”, Preserve
its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Doc-
ument, create one stating the title, year, authors,
and publisher of the Document as given on its Ti-
tle Page, then add an item describing the Modified
Version as stated in the previous sentence.

. Preserve the network location, if any, given in the
Document for public access to a Transparent copy
of the Document, and likewise the network loca-
tions given in the Document for previous versions
it was based on. These may be placed in the “His-
tory” section. You may omit a network location
for a work that was published at least four years
before the Document itself, or if the original pub-
lisher of the version it refers to gives permission.

. For any section Entitled “Acknowledgements” or
“Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and
tone of each of the contributor acknowledgements
and/or dedications given therein.

. Preserve all the Invariant Sections of the Docu-
ment, unaltered in their text and in their titles.
Section numbers or the equivalent are not consid-
ered part of the section titles.

. Delete any section Entitled “Endorsements”. Such
a section may not be included in the Modified Ver-
sion.

. Do not retitle any existing section to be Entitled
“Endorsements” or to conflict in title with any In-
variant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you
may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”,
provided it contains nothing but endorsements of your
Modified Version by various parties—for example, state-
ments of peer review or that the text has been approved
by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-
Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previ-
ously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add an-
other; but you may replace the old one, on explicit per-
mission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING
DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms de-
fined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work
in its license notice, and that you preserve all their War-
ranty Disclaimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multi-
ple Invariant Sections with the same name but different
contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the
section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections
Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements”.

47

APPENDIX A. GNU FREE DOCUMENTATION LICENSE V1.3

6. COLLECTIONS OF
DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this License,
and replace the individual copies of this License in the
various documents with a single copy that is included in
the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this License,
provided you insert a copy of this License into the ex-
tracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or works,
in or on a volume of a storage or distribution medium,
is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of
the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate,
this License does not apply to the other works in the ag-
gregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the Doc-
ument is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the elec-
tronic equivalent of covers if the Document is in elec-
tronic form. Otherwise they must appear on printed cov-
ers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copy-
right holders, but you may include translations of some or
all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a transla-
tion of this License, and all the license notices in the Doc-
ument, and any Warranty Disclaimers, provided that you
also include the original English version of this License
and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled “Acknowl-
edgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sub-
license, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License,
then your license from a particular copyright holder is re-
instated (a) provisionally, unless and until the copyright
holder explicitly and finally terminates your license, and
(b) permanently, if the copyright holder fails to notify
you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means,
this is the first time you have received notice of violation
of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your
receipt of the notice.

Termination of your rights under this section does
not terminate the licenses of parties who have received
copies or rights from you under this License. If your
rights have been terminated and not permanently rein-
stated, receipt of a copy of some or all of the same mate-
rial does not give you any rights to use it.

10. FUTURE REVISIONS
OF THIS LICENSE

The Free Software Foundation may publish new,
revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See
https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a particu-
lar numbered version of this License “or any later version”
applies to it, you have the option of following the terms
and conditions either of that specified version or of any
later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not
specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a
proxy can decide which future versions of this License
can be used, that proxy’s public statement of acceptance
of a version permanently authorizes you to choose that
version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that publishes
copyrightable works and also provides prominent facili-
ties for anybody to edit those works. A public wiki that

48

APPENDIX A. GNU FREE DOCUMENTATION LICENSE V1.3

anybody can edit is an example of such a server. A “Mas-
sive Multiauthor Collaboration” (or “MMC?”) contained
in the site means any set of copyrightable works thus
published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribu-
tion-Share Alike 3.0 license published by Creative Com-
mons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as
well as future copyleft versions of that license published
by that same organization.

“Incorporate” means to publish or republish a Docu-
ment, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed
under this License, and if all works that were first pub-
lished under this License somewhere other than this
MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invari-
ant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use
this License for your
documents

To use this License in a document you have written,
include a copy of the License in the document and put
the following copyright and license notices just after the
title page:

Copyright © YEAR YOUR NAME. Per-
mission is granted to copy, distribute
and/or modify this document under the
terms of the GNU Free Documentation
License, Version 1.3 or any later version
published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy
of the license is included in the section en-
titled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the “with .. Texts.” line
with this:

with the Invariant Sections being LIST
THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-
Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of pro-
gram code, we recommend releasing these examples in
parallel under your choice of free software license, such
as the GNU General Public License, to permit their use
in free software.

49

	1 Getting Started
	1.1 Introduction
	1.1.1 xdvipdfmx
	1.1.2 Legal Notice

	1.2 Installation and Usage
	1.3 Quick Guide
	1.3.1 XeTeX
	1.3.2 pTeX
	1.3.3 upTeX
	1.3.4 CJK-LaTeX

	1.4 Overview of Extensions
	1.4.1 CJK Support
	1.4.2 Unicode Support
	1.4.3 Other Extensions

	2 Auxiliary Files
	2.1 PostScript CMap Resources
	2.1.1 Subfont Definition Files
	2.1.2 The Adobe Glyph List and ToUnicode Mappings

	3 Graphics
	3.1 Image Inclusion
	3.1.1 Supported Graphics File Formats
	3.1.2 Image Cache
	3.1.3 Custom Stream Dictionary Entries

	3.2 Graphics Drawing
	3.2.1 The pdf:content Special
	3.2.2 Guide to PDF Graphics Operators

	4 Specials
	4.1 PDF Specials
	4.1.1 Additions to PDF Specials
	4.1.2 ToUnicode Special
	4.1.3 PDF Special Examples

	4.2 Dvipdfmx Extensions
	4.3 PS Specials

	5 Fonts and Encodings
	5.1 Fonts and Encodings Support
	5.2 Font Mappings
	5.2.1 Extended Syntax and Options
	5.2.2 Specifying Unicode Plane
	5.2.3 OpenType Layout Feature

	5.3 Other Improvements
	5.3.1 Extended Glyph Name Syntax
	5.3.2 CFF Conversion

	5.4 Font Licensing

	6 Encryption
	6.1 Encryption Support

	7 Compatibility
	7.1 Incompatible Changes
	7.2 Important Changes

	A GNU Free Documentation License v1.3
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

