
HiTEX

User Manual

Für Beatriz

Version 1.1 (Draft)

MARTIN RUCKERT Munich University of Applied Sciences

The author has taken care in the preparation of this document, but makes

no expressed or implied warranty of any kind and assumes no responsibility

for errors or omissions. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or

programs contained herein.

Internet page http://hint.userweb.mwn.de/hint/hitex.html may

contain current information, downloadable software, and news.

Copyright c⃝ 2022 by Martin Ruckert

All rights reserved.

This publication is protected by copyright, and permission must be

obtained prior to any prohibited reproduction, storage in a retrieval system,

or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise. To obtain permission to use material

from this work, please submit a written request to Martin Ruckert,

Hochschule München, Fakultät für Informatik und Mathematik, Lothstrasse

64, 80335 München, Germany.

ruckert_@cs.hm.edu

Last commit: Tue Feb 10 19:35:41 2026

Contents iii

Contents

Contents iii

1 Introduction 1

2 HiTEX primitives 3
2.1 Syntax Description . 3
2.2 Version and Revision . 3
2.3 UTF8 Input . 4
2.3.1 Working with character codes . 4
2.3.2 Setting and retrieving character information 5
2.3.3 \catcode and \sfcode . 6
2.3.4 \uccode and \lccode . 6
2.3.5 \mathcode, \delcode and friends . 6
2.4 OpenType fonts . 8
2.4.1 Embedding subsets of fonts . 10
2.5 Images . 10
2.6 Colors . 10
2.6.1 Foreground Color . 11
2.6.2 Defining and Using Colors . 12
2.6.3 Default Colors . 13
2.6.4 Nesting Colors . 13
2.6.5 Colors for Pages . 14
2.6.6 Colors for Links . 14
2.6.7 LATEX Support . 15
2.6.8 Differences between LATEX and HiLATEX 16
2.7 Links, Labels, and Outlines . 18
2.8 Page Templates and Streams . 19

3 Other Primitives 23
3.1 ε-TEX . 23
3.2 LATEX and PRoTE . 23
3.3 kpathsearch and \input . 24

4 Replacing TEX’s Page Builder 25
4.1 TEX’s page building mechanism . 25
4.2 HINT Page Templates . 27

Index 31

1

1 Introduction

When I started the HINT project in 2017, I tried to keep the project as small
as possible to increase the chances that I would be able to complete it. So one
design decision was to keep things simple—or to quote an aphorism attributed to
Albert Einstein: “Make things as simple as possible, but not simpler”. The other
imperative was: keep things out of the viewer if possible because I do not know
how much processing power or battery power is available.

As a consequence, I focused on Donald Knuth’ original TEX, disregarding
all later developments like ε-TEX or LATEX, and I decided that the TEX interpreter
would not need to run in the viewer. Of course TEX’s line breaking routine will run
in the viewer and modifications of TEX’s page breaking routine. But the decision
to keep the TEX interpreter out of the HINT viewer implies that HINT files do not
contain token lists and that there are neither output routines nor marks. To replace
them, the HINT file format includes page templates. I have described the technical
means to specify page templates below and try to explain the rationale behind it,
but HINT’s page templates are at the time of this writing a largely untested area.

By now, the state of the HINT project is far beyond of what I had expected
then, and the processing power of even low-cost mobile devices is far better than
expected especially when programming the graphics card directly using OpenEGL.

The following sections will describe all the primitive control sequences that
are special for HiTEX. I tried to be as close to similar primitives that have proven
to be useful in other engines, notably pdfTEX, to make it easy for package writers
to support the HiTEX engine.

While currently HiTEX is the only TEX engine that supports output in the
HINT file format, this might not be so forever. To avoid unnecessary complications
for package writers, it is strongly suggested that all such TEX engines implement
the same primitives according to the same specification. The following is the first
draft of this specification. All the primitives use HINT as a prefix to avoid name
conflicts. The prefix HINT, as opposed to e.g. HiTeX, was chosen to stress the idea
that these primitives are specific for the output format—not for the TEX engine.

It is common practice in other TEX engines to support the \special primitive
to insert raw code snippets in the output. Using this primitive, it is possible
to insert PostScript code into a PS file, or PDF code in a PDF output file. It
is currently not planed to support this mechanism for HINT output files for two
reasons: First, the development of HiTEX is closely related to the development of

2 1 Introduction

the HINT file format and therefore features that are part of the HINT file format
will enjoy support in HiTEX by corresponding primitives. Everything that is not
available through primitives in HiTEX should be considered “internal” and might
change in the future. Second, HiTEX is not considered a replacement for but a
supplement to other engines. If your aim is the production of a printed book, your
will target one of the engines that produce PDF output. But if, on occasion, you
want to read what you wrote on a computer screen, you might just use HiTEX
to process your source file. At this point you do not want to write \special

commands for the new target; you want HiTEX as a plug-in replacement for your
main target engine, even if it is not completely faithful to your final printed book.

3

2 HiTEX primitives

Because this is the first specification that will reach a wider user base, it is rea-
sonable to expect changes to occur in the future. Therefore it is recommended
that these primitives should not be used directly in a TEX document; instead they
should be encapsulated in suitable macros so that the consequences of any change
to the primitives will be local to these macros.

2.1 Syntax Description

In the following, we describe the syntax of primitive control sequences which were
added to TEX.

• We use a typewriter font for text that occurs verbatim in the TEX docu-
ment.

• We use ⟨italics⟩ enclosed in pointed brackets to denote symbols.

• We use rules to define the meaning of symbols. A rule starts with the symbol
to be explained, followed by a colon “:”, and then the text that this symbol
stands for. A rule ends with a period “.”.

• Optional parts of the rule’s text are enclosed in [square brackets].

• Alternatives are separated by a vertical bar “ | ”.

• Some symbols refer to text that is defined as part of standard TEX. These are
explained here by an example:

⟨integer⟩ −→ an integer as in \penalty⟨integer⟩
⟨number⟩ −→ a general number as in \kern⟨number⟩pt
⟨normal dimension⟩ −→ a dimension as in \hrule width ⟨normal dimension⟩
⟨dimension⟩ −→ a dimension as in \vskip 0pt plus ⟨dimension⟩
⟨name⟩ −→ a name as in \input ⟨name⟩
⟨vertical list⟩ −→ a token list with matching braces as in \vbox{⟨vertical list⟩}
⟨horizontal list⟩ −→ a token list with matching braces as in

\hbox{⟨horizontal list⟩}
⟨general text⟩ −→ a token list with matching braces as in

\write{⟨general text⟩}

4 2 HiTEX primitives

2.2 Version and Revision

The control sequences \HINTversion and \HINTminorversion are used to deter-
mine the major and minor version numbers of the HINT output format that is
generated by HiTEX. It can be used as part of the output as in \the\HINTversion.
The most important use, however, is testing whether the current TEX engine will
in fact produce HINT output. As an example the file ifhint.tex contains the
following code:

\newif\ifhint

\expandafter

\ifx\csname HINTversion\endcsname\relax

\hintfalse\else\hinttrue\fi

2.3 UTF8 Input

Starting with HiTEX version 2.0, published with TEX Live 2026, the one and only
input encoding supported by HiTEX is UTF8. While other input encodings may be
supported by loading special packages, it is recomended not to use such packages
but instead use one of the commonly available tools, like iconv or Notepad++ to
convert the input files before processing them with HiTEX.

On the technical level, HiTEX converts any (multibyte) UTF8 codepoint from
an input file into a single character token with a character value in the range 0 to
"10FFFF. On output, a character token with a value within the ASCII range 0 to
"7F is conveted using the “classic” output routines of TEX that attempt to present
even non-printable characters in a readable form, while a character token with a
value greater than "7F is converted to its multibyte UTF8 encoding.

Following the example of LuaTEX and XETEX, a number of primitives were
extended and others were added to cope with the larger range of character codes.
The syntax and semantics of these primitives are described in the following.

2.3.1 Working with character codes

A character code in HiTEX is no longer an ⟨8-bit number⟩ but an ⟨utf character code⟩:

⟨utf character code⟩ −→ a ⟨number⟩ in the range 0 to "10FFFF

Some traditional primitives are simply extended to handle these larger charac-
ter codes. To get access to any character whatsoever, you can type \char⟨utf character code⟩.
Similarly, you can write \chardef⟨control sequence⟩=⟨utf character code⟩.

New are the primitives \Uchar and \Ucharcat as defined by the XETEX man-
ual. \Uchar⟨utf character code⟩ expands to a character token with the specified
⟨utf character code⟩ with category code 12. While it looks superficially like the TEX
primitive \char, \Uchar is an expandable operation. \Ucharcat⟨utf character code⟩
⟨catcode⟩ expands to a character token with the specified ⟨utf character code⟩ and
the given ⟨catcode⟩. The values allowed for ⟨catcode⟩ are: 1–4, 6–8 and 10–13.

2.3 UTF8 Input 5

With a small exception, \if, \ifcat, and \ifx work for unicode characters
exactly as described in the TEX book: If the argument of \if is a control sequence,
TEX considers it to have category code 16 and character code 256 which is 1 bigger
than TEX’s largest character code; HiTEX will consider it to have category code 16
as well, but the character code will be "110000 which is 1 bigger than the largest
unicode character code.

HiTEX makes it possible to use any unicode character as an active character
or define a single character control sequence using such a character.

TEX keeps multibyte character control sequences in a hash table and single byte
control sequences in a separate table with 256 entries. Since the range of single
byte UTF8 codes is only 0 to "7F, HiTEX needs only a smaller table with 127
entries for these controll sequences. Characters outside this range are coded with
multiple bytes and go into TEX’s hash table. The same schema is used for active
characters. It is, however, necessary to use a separate hash table for characters
that have a multibyte UTF8 coding, because, the control sequence associated with
an active character is not the same thing as the single character control sequence
for the same character.

TEX allows the use of the ‘ (left quote) character as a prefix to any character
to specify its numeric value. For example \count1=98 is equivalent to \count1=‘b.
HiTEX allows this for all unicode characters. For example \count1=8491 is equiv-
alent to \count1=‘Å using the Angström symbol.

2.3.2 Setting and retrieving character information

To typeset characters correctly, TEX relies on a number of properties associated
with a character: its \catcode, \sfcode, \uccode, \lccode, \mathcode, and
\delcode.

While TEX traditionaly stores this information in arrays indexed by the char-
acter code, this approach is no longer appropriate if character codes span a range
from 0 to 1114111 as is the case for UTF coded characters. For this reason, HiTEX
uses a compressed tree representation that is compact (about 40kByte) and al-
lows very fast access. Modifying the data stored this way is less convenient and
will run out of table space if more than a few dozend character codes need to be
changed. Since traditionaly character data is changed only for code vales less than
256, HiTEX assumes that most changes of \catcode, \sfcode, \mathcode, and
\delcode occur in this range and keeps this data in TEX’s traditional arrays where
changes will not affect the compressed tables.

It is to bee seen if this approach will work in practice or some other data
structure will deliver similar performance while allowing large scale across the whole
range of unicode characters.

Because the compression is a complicated operation, it is not done at run time,
but a separate program computes the compressed tables which are loaded into the
HiTEX engine at compiletime. Therefore HiTEX is different from other unicode
TEX engines: With HiTEX, it is not a good idea to load the unicode character
data at runtime. The loading would destroy the compression and would sooner or

6 2 HiTEX primitives

later produce and overflow error. Instead the character data is already part of the
HiTEX engine when it starts with exactly the same values it would and should have
after the runtime initialization.

Now let’s consider the details.

2.3.3 \catcode and \sfcode

These primitives work pretty much as usual, except that their argument is no longer
an ⟨8-bit number⟩ but ⟨utf character code⟩:

The values—category codes are in the range from 1 to 15 and space factor
codes are in the range from 0 to 32767—can be retrieved like this:

⟨internal integer⟩ −→ \catcode⟨utf character code⟩
⟨internal integer⟩ −→ \sfcode⟨utf character code⟩

Setting new values is equaly simple. The assigned ⟨number⟩ must be in the
propper range.

⟨code assignment⟩ −→ \catcode⟨utf character code⟩ [=] ⟨number⟩
⟨code assignment⟩ −→ \sfcode⟨utf character code⟩ [=] ⟨number⟩

2.3.4 \uccode and \lccode

These primitives are again extended to work with the full range of unicode charac-
ters. It is expected that the assignment of new lower case or upper case values is
relatively rare. Sometimes it is used in certain coding tricks. So TEX’s traditional
tables are not retained and all information is stored in the new compressed format.
Take this into accound before attempting to large scale rearangements of these
assignments. Information about “title case” is currently not implemented.

⟨internal integer⟩ −→ \lccode⟨utf character code⟩
⟨internal integer⟩ −→ \uccode⟨utf character code⟩
⟨code assignment⟩ −→ \lccode⟨utf character code⟩ [=] ⟨utf character code⟩
⟨code assignment⟩ −→ \uccode⟨utf character code⟩ [=] ⟨utf character code⟩

2.3.5 \mathcode, \delcode and friends

Before diving deeper into this section, there is a confession due: using HiTEX
with unicode fonts in math mode is a largely untested area. But the basics are
implemented in the HiTEX engine.

Making the \mathcode primitive work nicely with unicode values requires some
extra work because TEX packs three different values, the class, the family, and the
character code into one integer. In hexadecimal notation a mathcode contains
four hexadecimal digits: the leading hex-digit specifies the class, the next hex-digit
specifies the familiy and the lowest two digits a one byte character code.

⟨class⟩ −→ ⟨hexdigit⟩
⟨family⟩ −→ ⟨hexdigit⟩

2.3 UTF8 Input 7

⟨byte⟩ −→ ⟨hexdigit⟩⟨hexdigit⟩
⟨math code⟩ −→ ⟨class⟩⟨familiy⟩⟨byte⟩

It is not strictly necessary to give the number in hexadecimal; it is possible to
convert the hexadecimal number into a decimal number and write it down in dec-
imal; or in any other format that TEX provides for the representation of numbers.

To be compatible with existing TEX code this format is retained when using
\mathcode, only the argument of \mathcode now can be any unicode character.

⟨math code⟩ −→ \mathcode⟨utf character code⟩
⟨code assignment⟩ −→ \mathcode⟨utf character code⟩ [=] ⟨math code⟩

So you can say \mathcode96 as well as \mathcode9600 and in both cases, you
will get a math code in the range 0 to "FFFF. If however the class stored for the
character in question is not in the range 0 to "F, or the family is not in the range
"F, or the character code does not fit into one byte, \mathcode will return zero.
You can also use \mathcode9600 to give a new math code value to the unicode
character 9600, but the new value is limited to a one byte character code. Note
also that you can continue to use the special math code value "8000 to make an
“active” math character.

To set or retrieve math codes with arbitrary unicode characters, HiTEX follows
the example of LuaTEX and XETEX and packs a 3-bit class number, a 8-bit family
number and a 21-bit unicode character into a 32-bit value: the 8 most siginficant
bits contain the family, the next 3 bits contain the class, and the 21 least significant
bits contain the unicode character.

⟨Uclass⟩ −→ ⟨3-bit⟩
⟨Ufamily⟩ −→ ⟨8-bit⟩
⟨Ucode⟩ −→ ⟨21-bit⟩
⟨Umath code⟩ −→ ⟨Ufamily⟩⟨Uclass⟩⟨Ucode⟩

Because the three values are not nicely aligned on the four bit boundaries of
an hexadecimal notation two new primitives \Umathcode and \Umathcodenum are
provided. \Umathcodenum is a simple extension of \mathcode. It returns a single
number in the bit-packed format as just described and when a new value is set it
must already be in the correct bit-packed format.

⟨Umath code⟩ −→ \Umathcodenum⟨utf character code⟩
⟨code assignment⟩ −→ \Umathcodenum⟨utf character code⟩ [=] ⟨Umath code⟩

\Umathcode is a little easier to use because it does not require the user to
do the bit packing. Instead a new math code can be set by giving three separate
numbers: one for the class, one for the family and one for the character code.

⟨class number⟩ −→ a ⟨number⟩ in the range 0 to 7
⟨family number⟩ −→ a ⟨number⟩ in the range 0 to 255
⟨Umath code⟩ −→ \Umathcode⟨utf character code⟩
⟨code assignment⟩ −→ \Umathcode⟨utf character code⟩ [=] ⟨class number⟩

⟨family number⟩ ⟨utf character code⟩

8 2 HiTEX primitives

HiTEX’s \delcode primitive offers no surprise. For any unicode character, you
can use \delcode to set or retrieve its delimiter code. The traditional delimiter
code is in the range -1 to "FFFFFF.

⟨internal integer⟩ −→ \delcode⟨utf character code⟩
⟨code assignment⟩ −→ \delcode⟨utf character code⟩ [=] ⟨number⟩

The primitives \Udelcode and \Udelcodenum, as known from XETEX or LuaTEX,
are not yet implemented.

2.4 OpenType fonts

When TEX was invented, digital fonts, especially fonts suitable to typeset mathe-
matics, were a scarce commodity. But TEX came with a companion, METAFONT,
to create digital fonts. These fonts had their own glyph encoding and their own
file format for glyphs (.pk files) and for font metrics (.tfm files). Soon after that,
the American Mathematical Society commissioned a collection of TEX font files in
the PostScript Type 1 format, which allowed the creation of PostScript (and much
later PDF) output files with TEX. The PostScript Type 1 fonts largely replaced the
original .pk files. A replacement for the font metric files was not necessary and so
the .tfm files are still in use today.

In the meantime, the number of high quality, freely available, digital fonts
has exploded. And “high quality” is no longer equivalent to “PostScript Type
1”. Today, the most popular file format for fonts is the OpenType format, an
extension of the slightly simpler TrueType format. So it seems natural to extend
the capabilities of TEX to work with these types of font files. OpenType font files
not only contain the glyphs, but they also contain the necessary font metrics. So
an OpenType font file can replace both the .pk file and the .tfm file.

To define fonts, HiTEX extents the syntax and semantics of TEX’s \font prim-
itive. It tries to be simple and as much as possible compatible with the implemen-
tation of the \font primitive in LuaTEX and XETEX.

The syntax is:

⟨font assignment⟩ −→ \font⟨control sequence⟩ [=] ⟨input file⟩ [⟨at clause⟩]
⟨input file⟩ −→ "⟨font specifier⟩"
⟨input file⟩ −→ {⟨font specifier⟩}
⟨input file⟩ −→ ⟨font specifier⟩
⟨font specifier⟩ −→ ⟨pathname⟩
⟨at clause⟩ −→ at ⟨dimen⟩ | scaled ⟨number⟩

The ⟨at clause⟩ to adjust the font size is described in the TEX book and has
not changed.

In modern TEX engines, an ⟨input file⟩ can be more than just a sequence of
characters terminated by a space token or a \relax. If the name of the ⟨input file⟩
contains spaces, it is possible to enclose it in " (double quote) characters. In fact,
if a file name contains double quote characters they switch quoting alternatingly
on and off and are otherwise ignored as parts of the file name. Inside the quoted

2.4 OpenType fonts 9

parts, space characters are part of the file name; the first space character outside
of a quoted part terminates the file name. A more convenient way to define an
arbitrary ⟨input file⟩ is enclosing it in curly braces {. . . }. In this case the general
text inside the braces—with spaces, special symbols, expanded macros, and all
double quotes removed—is considered the ⟨input file⟩.

After HiTEX has done all this preprocessing of the ⟨input file⟩, the result is
a ⟨font specifier⟩ Before we look at the more complex forms of a ⟨font specifier⟩
we look at the simple case of a ⟨pathname⟩. In this case, HiTEX passes it to the
kpathsearch library to find a matching .tfm file. If the .tfm file is found, HiTEX
will assume that the font is one of the traditional TEX fonts, using TEX’s traditional
encoding. Later, HiTEX will then use again the kpathsearch library to find and
open the matching PostScript Type 1 font and if that is not possible a matching
.pk file. Thats all.

If the kpathsearch library can not find a suitable .tfm file, HiTEX assumes
that an OpenType or TrueType file should be loaded. In this case, a ⟨font specifier⟩
is not just simply the name of a file, but it has a very sophisticated syntax—mostly
due to the attempt to be compatibel with existing implementations.

⟨font specifier⟩ −→ ⟨font file name⟩ [: ⟨font features⟩]
⟨font file name⟩ −→ file:⟨pathname⟩ [⟨font selector⟩]
⟨font file name⟩ −→ [⟨pathname⟩][⟨font selector⟩]
⟨font selector⟩ −→ (⟨number⟩)
⟨font specifier⟩ −→ name:⟨font name⟩ [: ⟨font features⟩]

• Note that the use of ⟨font features⟩ is currently not yet implemented. Any
⟨font features⟩ given will be silently ignored.

• Note that font lookup using the name: prefix to indicate the use of “font
names” as opposed to “file names” is currently not yet implemented. Currently
only file name lookup is implemented.

• Note that a ⟨font selector⟩ must be an index number. Using the PostScript
name to select a font is not yet implemented.

• Note that HiTEX in an attempt to maintain compatibility with other engines
will not give up on a font specifier that neither leads to a matching .tfm file nor
has a file: or name: prefix and is not bracketed either. Instead HiTEX will issue
a warning and tries to resolve the problem. First, it tries to assume that the file

prefix is missing, and if that does not help, it tries to assume that the name: prefix
is missing. Only if none of this leads to a usable font file, HiTEX succumbs.

The extended font specifiers used for OpenType fonts assign special meaning
to the colon “:”, the slash “/”, and the opening parenthesis “(”. If these characters
occur in the ⟨pathname⟩ of a font file, it is possible to use a bracketed notation
of the ⟨pathname⟩ as a alternative to using the file: prefix. If the pathname is
enclosed in square brackets, it may contain any character except the closing square
bracket; otherwise it must not contain the colon “:”, the slash “/”, nor the opening
parenthesis “(”. Since the colon can be necessary after a drive letter in Windows
and the slash serves as a directory separator in Linux, the bracketed verions is

10 2 HiTEX primitives

quite common. The paraenthesis is excluded from the unbracketed version because
is start the optional ⟨font selector⟩.

Once HiTEX has determined the ⟨pathname⟩, it uses the kpathsearch library
to find a matching OpenType font and if this does not succeed, it tries to find a
matching TrueType font. Once the file is found, the Harfbuzz library is used to
open the font file.

• Note that it is possible to open PostScript Type 1 font files without a .tfm

file using Harfbuzz. The use of Type 1 fonts with Harfbuzz, however, requires the
use of .afm files, and this does not work well and is deprecated. Therefore HiTEX
does not support it. For Type 1 fonts, one should use afm2tfm to convert the .afm
files to tfm files and put the new tfm files in a place where the kpathsearch library
can find them. Then run mktexls.

2.4.1 Embedding subsets of fonts

2.5 Images

The primitive \HINTimage includes an image in a document. The syntax is as
follows:

\HINTimage [=] ⟨name⟩ [⟨width⟩] [⟨height⟩]

The optional equal sign can be added to make the code look nicer. The ⟨name⟩
specifies the image file. The width specification determines the width of the image.
If omitted, HiTEX tries to determine the image’s width from the image file. The
same holds for the height specification.

⟨width⟩ −→ width ⟨normal dimension⟩
⟨height⟩ −→ height ⟨normal dimension⟩

Note that a ⟨normal dimension⟩ that is computed from \hsize or \vsize

retains this dependency when processed by HiTEX. This allows an image to adapt
to the size of the viewing area. Scaling in the HINT viewer will, however, never
change the aspect ratio of an image. So it may become smaller or larger, but it will
never be distorted. For this reason, HiTEX will inspect the image file to determine
the aspect ratio of the stored image. The width and height values as given in
the TEX file serve as the maximum values for the actual width and height. When
rendering, the image will become as large as possible within the given bounds. If
TEX does not specify neither width nor height, the image file must specify the
absolute width and height of the image. It is considered an error if valid settings
for the image’s width and height can not be obtained.

2.6 Colors 11

2.6 Colors

Since the HINT file format is designed for on-screen viewing, the only color model
supported is the RGBA model, where a color is specified by four values: the red, the
green, the blue, and the alpha value. The first three determine the light intensity
of the red, green, and blue component of a pixel; the alpha value determines the
relative share of a color when displaying one color on top of another color. Because
in practice most display devices use one byte for each of the four values that define
a color, the HINTfile format stores the four color components using integer values
in the range 0 to 255. Independent of the input format, HiTEX will convert all
colors to this format when storing them in the output file.

2.6.1 Foreground Color

The most common color specification is the specification of a foreground color. (We
will consider background colors below.) A foreground color can be specified using
the following syntax:

⟨foreground⟩ −→ FG{ ⟨integer⟩ ⟨integer⟩ ⟨integer⟩ [⟨integer⟩] }

Note that for convenience, the alpha value is optional; if no alpha value is
given, the value 255 will be used and the color is completely opaque.

Here are some examples: FG{255 0 0}, FG{255 0 0 255}, both specify the same
plain opaque red; FG{0 0 255} is plain blue; FG{255 255 0 127} is a transparent
yellow. Because each value fits in a single byte, the values are often given in
hexadecimal notation. In TEX, hexadecimal values are written with a " prefix.
The same colors as before are then written FG{"FF 0 0}, FG{"FF 0 0 "FF}, FG{0
0 "FF} and FG{"FF "FF 0 "7F}. Values greater than 255 or less than 0 are not
allowed.

A common alternative to the color representation just described is the device
independent notation where each value is a real number in the interval from 0 to 1.
To keep both representations apart, the device independent representation (with
the smaller numbers) uses the lowercase keyword fg instead of FG. Here is the
syntax:

⟨foreground⟩ −→ fg{ ⟨number⟩ ⟨number⟩ ⟨number⟩ [⟨number⟩] }

Using the new syntax, the colors above are written fg{1 0 0}, fg{1 0 0 1},
fg{0 0 1} and fg{1 1 0 0.5}. Values greater than 1 and less than 0 are not
allowed. Note that fg{1 1 1} is pure white while FG{1 1 1} is the darkest possible
gray, which on most devices is indistinguishable from pure black.

When specifying colors for computer screen, using red, green, and blue com-
ponents is natural. For printing on paper, the specification using cyan, magenta,
yellow, and black is the default. Since collections of named colors using the latter
format are common, HiTEX allows the use of this format by prefixing the numbers
with the keyword cmyk. Specifying the keyword rgb is also possible and has the
same effect as giving no keyword. Using the new syntax the transparent yellow can

12 2 HiTEX primitives

be written fg{cmyk 0 0 1 0 0.5}, FG{cmyk 0 0 "FF 0 "7F}, fg{rgb 1 1 0 0.5}, or
FG{rgb "FF "FF 0 "7F}.

The additional syntax rules are:

⟨foreground⟩ −→ fg{ rgb ⟨number⟩ ⟨number⟩ ⟨number⟩ [⟨number⟩] }
⟨foreground⟩ −→ fg{ cmyk ⟨number⟩ ⟨number⟩ ⟨number⟩ ⟨number⟩ [⟨number⟩] }
⟨foreground⟩ −→ FG{ rgb ⟨integer⟩ ⟨integer⟩ ⟨integer⟩ [⟨integer⟩] }
⟨foreground⟩ −→ FG{ cmyk ⟨integer⟩ ⟨integer⟩ ⟨integer⟩ ⟨integer⟩ [⟨integer⟩] }

2.6.2 Defining and Using Colors

As we will see, colors come in whole sets of colors. To define such a set of colors,
HiTEX provides the primitive \HINTcolor. Its syntax is

\HINTcolor { ⟨color specification⟩ }

Before we give the complete definition of a ⟨color specification⟩, we start with
some examples. In its simplest form this primitive just specifies a single color. For
example \HINTcolor{fg{0 0 0}} specifies the foreground color black which is then
used for rules and glyphs. In addition to the foreground color, you can specify a
background color. For example, black text on white background is specified by
\HINTcolor{fg{0 0 0} bg{1 1 1}} or \HINTcolor{fg{0 0 0} BG{"FF "FF "FF}}.

The viewer for HINT files may provide a “dark” mode, and as a document
author, you can specify the colors also for dark mode. If you like white letters on
dark blue background you can write \HINTcolor{fg{0 0 0} bg{1 1 1} dark fg{1

1 1} bg{0 0 0.3}}.

There are two more colors that an author might care about: When searching
for a text, all occurrences of the search phrase are highlighted by using a different
color. And while the user iterates over the occurrences on the page, one occurrence
has the “focus” and is rendered again in a different color. You can specify the
highlight color right after the normal text color and the focus color right after the
highlight color. The same can be done for the colors in “dark” mode.

Here are the remaining rules that complete the ⟨color specification⟩:

⟨color specification⟩ −→ ⟨color set⟩ [dark ⟨color set⟩]
⟨color set⟩ −→ ⟨color⟩ [⟨color⟩ [⟨color⟩]]
⟨color⟩ −→ ⟨foreground⟩ [⟨background⟩]
⟨background⟩ −→ FG{ [rgb] ⟨integer⟩ ⟨integer⟩ ⟨integer⟩ [⟨integer⟩] }
⟨background⟩ −→ fg{ [rgb] ⟨number⟩ ⟨number⟩ ⟨number⟩ [⟨number⟩] }
⟨background⟩ −→ FG{ cmyk ⟨integer⟩ ⟨integer⟩ ⟨integer⟩ ⟨integer⟩ [⟨integer⟩] }
⟨background⟩ −→ fg{ cmyk ⟨number⟩ ⟨number⟩ ⟨number⟩ ⟨number⟩ [⟨number⟩] }

If some of the optional parts in the ⟨color specification⟩ are missing, the cor-
responding colors from the set of default colors, as described below, are used.

Note that the background colors for highlighted text and focus text can be
given, but current viewers ignore these background specifications. Further note

2.6 Colors 13

that the current specification of the HINT file format limits the total number of
different color specifications in a document to 255.

The colors given in \HINTcolor will have an immediate effect on all following
rules and glyphs and the background of the enclosing box. The effect will persist
until the next change of colors or until the end of the box—whatever occurs first.

The line breaking algorithm of HiTEX tracks changes in color within a para-
graph and reinsert an appropriate color change at the start of every \hbox that
contains a new line. In this way local color changes inside a paragraph can span
multiple lines but do not affect the inter line glue or material that is inserted with
\vadjust. Similarly, spliting off the initial part of a vertical box with \vsplit will
insert a color node in the remaining part if necessary to keep the color consistent
accross the split.

Special care is needed if background colors are used. Unless the background
color is completely transparent with an alpha value equal to zero, the background
color will fill a vertical box from left to right and a horizontal box from top to
bottom. Since height, depth, and width of boxes often depend on the text that is
inside, which in turn might depend on the outcome of line breaking, it is strongly
recommended to use background colors with caution, and use \struts to enforce
a fixed height and depth of horizontal boxes.

2.6.3 Default Colors

The HINT file format specifies default values for all colors. HiTEX provides the
primitive \HINTdefaultcolor to overwrite these default colors. This primitive
must not be used after defining any custom colors using \HINTcolor. Its syntax is

\HINTdefaultcolor { ⟨color specification⟩ }

The HINT format specifies the following default colors: Normal text is black
FG{0 0 0}, highlight text is a slightly dark red FG{"EE 0 0}, and focus text is
slighty dark green FG{0 "EE 0}. The background is transparent white BG{"FF "FF

"FF 0}. In dark mode the background is transparent black BG{0 0 0 0}, normal
text is white FG{"FF "FF "FF}, and a slightly lighter red FG{"FF "11 "11}, and
green FG{"11 "FF "11}, are used for highlighted and focus text.

2.6.4 Nesting Colors

A color change is limited to the enclosing box. Hence the nesting of boxes leads
to a nesting of color definitions. So for example a transparent background color
in the inner box will not completely replace the background color of the enclosing
box but will only modify this color like seeing it through colored glas.

A color change ends not only at the end of the enclosing box, it will also end
at the next use of the \HINTcolor or \HINTendcolor primitive: The \HINTcolor

primitive will replace the current colors by a new set of colors; the \HINTend-

color primitive will resume the color specification that was valid just before the
matching use of \HINTcolor. HiTEX maintains a color stack tracking local color

14 2 HiTEX primitives

changes within a box or paragraph, and uses it to insert appropriate color changes
so that the \HINTendcolor primitive will simply cancel the color change by the
matching \HINTcolor primitive. If there is no matching \HINTcolor primitive,
the \HINTendcolor primitive is silently ignored. Note that within a single box,
there is at any point only a single background color: The color stack will switch
from one background color to an other background color but will not overlay an
“inner” background color over an “outer” background color. This is only the case
when multiple boxes are nested as described above.

Here is an example: Suppose we want the TEX logo to be rendered in light
red, and notes in dark green. You can write

\def\redTeX{\HINTcolor{fg{1 0.3 0.3}}\TeX\HINTendcolor}

\def\beginnote{\HINTcolor{fg{0 0.5 0}}}% dark green

\def\endnote{\HINTendcolor}

This is an example showing the \redTeX\ logo in red color.

\beginnote Note how the \redTeX\ logo is still red inside this

note.\endnote

After the first occurrence of the red TEX logo, the color will be switched back
to normal black, while after the second occurrence the color will be switched back
to dark green. The color switching will work as intended even if the paragraph is
spread over several lines by the line breaking routine.

2.6.5 Colors for Pages

When a page get rendered in the HINT file viewer, the renderer starts with the
default colors and the page is initially cleared using the default background color.
If a different page color is desired, color changes can be added to the page templates.

In a vertical box, the color stack of HiTEX has a similar effect as in a horizontal
box. Similar to the precautions in the line breaking routine, HiTEX will insert color
changes when splitting a vertical box with \vsplit. Complications arise from color
changes in the top level vertical list which is split into pages in the HINT viewer
at runtime. Because the page builder in the viewer has no global information and
should not need global information, HiTEX will insert copies of the local color
information after every possible breakpoint in the top level vertical list. This will
ensure that page breaks will not affect the colors of the displayed material. Note,
however, that TEX considers glue (and kerns) as discardable and will remove these
items from the top of a new page. Because glues and kerns are colored using the
current background color, these items might be visible on a page but disappear
when they follow immediately after a page break. So if you want the effect of a
colored glue or kern that is not affected by a page break, you should include it
inside a box or use a colored rule instead.

2.6 Colors 15

2.6.6 Colors for Links

The most common change in color is caused by the use of links. To support this
changing of colors, the primitives \HINTstartlink and \HINTendlink (see sec-
tion 2.7) cause an automatic change of the color specification. A document author
can set the default colors used for links with the primitive \HINTdefaultlink-

color and change the current link color with the primitive \HINTlinkcolor. The
syntax is:

\HINTdefaultlinkcolor { ⟨color specification⟩ }
\HINTlinkcolor { ⟨color specification⟩ }

For convenience, the HINT file format specifies default colors for links as well:
links use dark blue FG{0 0 "EE} and in dark mode light blue FG{"11 "11 "FF}. The
primitive \HINTdefaultlinkcolor is used to partly or completely redefine these
defaults.

Later uses of \HINTlinkcolor will set new current link colors. Colors that
are missing in the new link color specification are taken from the corresponding
default colors for links.

Whenever the \HINTstartlink primitive is used, its effect on the colors is
equivalent to the \HINTcolor primitive using the current link color. This implies
that the color change caused by \HINTstartlink is local to the enclosing box.

Whenever the \HINTendlink primitive is used, it will restore the color stack
of HiTEX to its state before the matching \HINTstartlink. It is the responsibility
of the TEX source code (or package) to keep the sequence of \HINTstartlink,
\HINTendlink, \HINTcolor, and \HINTendcolor properly nested. A sequence
like “\HINTstartlink . . . \HINTcolor . . . \HINTendlink . . . \HINTendcolor” is
possible, but it will cause \HINTendlink to restore the colors to those in effect
before the \HINTstartlink. The following \HINTendcolor will then either restore
a color of a matching \HINTcolor preceeding the link in the same box or it will
restore the color in the outer box, or it will be ignored. In effect, the color changes
inside a link stay local to the link.

2.6.7 LATEX Support

Starting with TEX Live 2025, there is a limited support for the xcolor package.

After \usepackage{xcolor} you can use the predefined standard colors; for
example \color{red}. If you add one (or several) of the named color options
x11names, svgnames, or dvipsnames to the package, you can also use commands
like \color{Tomato4} (x11), \color{BlanchedAlmond} (svg), or \color{Plum}

(dvips).

To define your own colors you can use for example

\definecolor{mypink1}{rgb}{0.858, 0.188, 0.478},

\definecolor{mypink2}{RGB}{219, "30, 122},

\definecolor{mypink3}{cmyk}{0, 0.7808, 0.4429, 0.1412}, or

16 2 HiTEX primitives

\definecolor{mygray}{gray}{0.2}.

The mixing of colors is supported as well. For example a mixture of 40% green
and 60% yellow look is produced by \color{green!40!yellow}.

The colors for links and other references can be given as options to the hy−

perref package. For example as in

\usepackage[linkcolor=green,urlcolor=red]{hyperref}

2.6.8 Differences between LATEX and HiLATEX

Colors and Groups

In LATEX, colors are local to the group. So by writing “text 1 {\color{blue}

text 2 } text 3” after text␣1 the color of text␣2 will change to blue and after
} marking the end of the group, the color of text␣3 will revert to the color of
text␣1. HiLATEX emulates this behaviour by inserting \HINTendcolor at the end
of the group.

When it comes to paragraphs, the scoping rules of colors in HiLATEX are how-
ever slightly different from the LATEX scoping rules. In TEX and LATEX, boxes and
references all have there own group, but this is not true for paragraphs. So TEX or
LATEX will allow you to start a new group in one paragraph and end the group in
the next paragraph, while it is not possible to start a group in one box and end the
group in another box. As a consequence, you can switch to blue text color in the
middle of a paragraph and end the blue color in the middle of the next paragraph.
In HiTEX, on the other hand, when it comes to colors, paragraphs behave pretty
much like boxes: The effect of a color change inside a paragraph will not extend
past the end of the paragraph. The closing of the group in the next paragraph will
then have no effect.

Colors in vertical Lists

The HINT file format allows color specifications in horizontal boxes and—unlike
the PDF file format—in vertical boxes as well. Together with the mode switching
of TEX, which goes into horizontal mode when it sees the beginning of a paragraph
and back into vertical mode at the end of the paragraph, this can cause unexpected
color effects.

There is for example a big difference between

\color{blue}

The first paragraph ...

The second paragraph ...

and

\indent

\color{blue}

2.6 Colors 17

The first paragraph ...

The second paragraph ...

In the first case, the color change is part of the vertical list and the letter “T”
starts the paragraph. As a consequence, the color change is still in effect when the
second paragraph starts. In the second case, the \indent command puts TEX into
horizontal mode and the color change becomes part of the first paragraph. As a
consequence, the color change will end with the first paragraph, as explained in
the previous section.

Even more surprising is this:

{\color{blue} Blue} The first paragraph ...

The second paragraph ...

TEX finds the begining of the group { and the color change in vertical mode
and it puts the color change into the vertical list. Then it finds the letter “B” and
starts the paragraph. When TEX encounters the end of the group, there is no local
color change inside the paragraph and the text continues to be blue. Even the
second paragraph and all following paragraphs will continue in blue until the end
of the vertical list.

The confusion that such behaviour might create has its root in TEX’s mode
switching which is not synchronized with TEX’s grouping. While grouping is typi-
cally visible in the source text, the mode switching remains largely invisible.

Future Changes

While it may be questionable whether all the color changes shown above makes
sense, it is definitely undesirable if HiLATEX and LATEX behave differently. As a
consequence, HiLATEX might very well change in this respect in a later version,
so that HiTEX will no longer treat the begining and ending of paragraphs as the
beginning and ending of a group. It is an open question how HiTEX should handle
the end of a group in the middle of a paragraph ending a color change that started
in the enclosing vertical list. Currently a \HINTendcolor at that position would
be silently ignored because it can only undo local changes inside the paragraph.
Should HiTEX instead change the color of the enclosing vertical box immediately?
What does it mean to do this change immediately? At the baseline? Before the
next interline glue? What are the implications for the rendering engine? How
complicated can it be to look ahead for color changes that occur depply nested
inside a vertical list? Would it not be better to demand the use of \vadjust for
such an effect? Should HiTEX postpone the color change in the enclosing vertical
box until the end of the paragraph?

Default Colors

18 2 HiTEX primitives

Because complete color specifications are pretty long. It is important to provide
usefull defaults. Currently missing elements of a color specification are taken from
a single default color specification. It might be convenient to be able to provide
a way to define color specifications using the current color as a basis for missing
elements.

Color Numbers

The HINT file format references a color set by a number in the range 0 to 254. So
HiTEX assigns each color specification a number, using the same number for two
identical color specifications. One extension to the above specification of HiTEX’s
color primitives could be to make these numbers accessible to document authors or
package programmers. For example \the\HINTcolor could expand to the number
n of the current color set and \HINTcolorn would be equivalent to a use of \HINT-
color with a full color specification that is equivalent to the color specification
belonging to n. This would be quite efficient; it would not be necessary to scan
the color specification and search the existing color specifications for the matching
specification with number n.

The LATEX named colors are stored as macros, which has the advantage that
loading a whole package of color names does not use any of HiTEX’s color numbers.
Only colors that actually get used (probably only a few) will get a color number.
This works well in practice. So currently, there are no plans to implement this
extension.

2.7 Links, Labels, and Outlines

A link in a HINT document refers to another location in the same document.
It can be used to navigate to that location. A link is defined using the primitives
\HINTstartlink and \HINTendlink. Neither of them can be used in vertical mode.
The text between the start and the end of the link constitutes the visible part of the
link. Depending on the user interface, clicking or tapping or otherwise activating
the link (e.g. pronouncing) will navigate to the destination of the link. The user
interface might provide a visual clue to make the user aware of the available links
for example using a special cursor when hovering over a link. But it also may
choose to leave the visual clues completely to the author of the document (e.g.
using a special colors, images, or fonts).

The syntax is \HINTstartlink ⟨destination⟩ and \HINTendlink with

⟨destination⟩ −→ goto ⟨label⟩
⟨label⟩ −→ name {⟨general text⟩} | num ⟨integer⟩

As you can see, the link refers to its destination using a label which is either
a name or a number. The destination can be defined by using the \HINTdest

primitive. Forward and backward links are allowed; the definition of a label can
either precede or follow the use of the label. If at the end of the document a label
is undefined, a warning is given, and the label will reference the beginning of the
document.

2.7 Links, Labels, and Outlines 19

The syntax is

\HINTdest ⟨label⟩ [⟨placement⟩]

with

⟨placement⟩ −→ top | bot

The optional placement argument specifies how to build the page containing
the destination location. top demands a page starting with the destination loca-
tion. This is useful if the destination is for example the start of a section or chapter
heading. Similarly bot asks for a page that ends with the destination location. The
most common case is to omit the placement argument. In this case, the viewer
will build a “good” page that includes the given destination. In case of a section
heading, for example, it will most probably start the page with the section heading
because section headings are usually preceded by a negative penalty that will con-
vince the page builder that this is a good place to break the page. But if the section
heading is immediately preceded by a chapter heading, the negative penalty found
there will probably persuade the page builder to start with the chapter heading
instead.

There is a special label that has the form name {HINT.home}. It is used to
mark the “home page” of the document. User interfaces are encouraged to offer
a button or keyboard shortcut to navigate to the document location labeled this
way. The page should be a convenient starting point to explore the document. The
typical place for this label would be the documents table of content.

The labels that identify destinations in a document can also be used to de-
fine document outlines. A document outline is a document summary given as a
hierarchical list of headings where each of them refers to a specific location in the
document.

The syntax is

\HINToutline ⟨destination⟩ [⟨depth⟩] {⟨horizontal list⟩}

⟨depth⟩ −→ depth ⟨integer⟩

The user interface can format the ⟨horizontal list⟩ much like a \hbox would
do and display it to the user. When the user selects this text, the document will
be repositioned to show the destination location in the same way as with a link.
In order to support also simpler user interfaces, the current HINT backend also
extracts the characters (and spaces) from the horizontal list (in top-left to bottom-
right order) and makes this character string available to the user interface.

The order in which outline items are defined is important because this is the
order in which they will be presented to the reader of the document. The optional
depth argument allows to structure the list of outline items as a hierarchy. Outline
items with a higher depth value are considered to be sub-items of items earlier in
the list with lower depth values. If no depth value is given, the depth value is set
to zero. It is not necessary to define depth values strictly consecutive.

20 2 HiTEX primitives

2.8 Page Templates and Streams

To produce the final page, TEX uses a special piece of program called the output
routine. Because a HINT file is pure data, it can not contain output routines.
Instead it uses page templates to assemble pages from the main text, footnotes,
floating illustrations, and other material. I start here by describing how HINT’s
page templates work and the special syntax used to specify them in a TEX file that is
about to be processed with HiTEX. For those interested in how the design decision
was made and how page templates relate to TEX’s page building mechanism, a
separate section follows at the end.

The syntax of a page template specification is:

\HINTsetpage ⟨integer⟩ [=] ⟨name⟩ [⟨priority⟩] [⟨width⟩] [⟨height⟩]
{⟨vertical list⟩ ⟨stream definition list⟩}

The ⟨integer⟩ specifies the page templates number in the range 1 to 255. The
number 0 is reserved for the build in page template of the HINT file format, which
is used if no other page template has been defined. The page template 0 can not
be redefined. The ⟨name⟩ associates a name with the page template. The name
can be displayed by the HINT viewer to help the user selecting a suitable page
template.

After the name follows an optional priority; it is used to select the “best page
template” if multiple templates are available. The default value is 1. The build-in
template has priority 0.

⟨priority⟩ −→ priority ⟨integer⟩

After that follows an optional width and height of the full page including the
margins. After subtracting \hsize from the width and \vsize from the height,
the remainder is used for the margins around the displayed text. For example
giving the width as 1.2\hsize will leave 0.1\hsize for the margins on both sides.
In this case the margins will grow together with the available width of the display.
If the width is computed by adding 20pt to \hsize, the margin will be 10pt on
both sides. In this case the margin will not grow with the size of the display, but
it will grow with the magnification factor. Of course both methods can be used
together. The default is \hsize for the width and \vsize for the height so there
are no margins.

The following ⟨vertical list⟩ defines the page itself. It should assign suitable
values to \topskip and \maxdepth because the values valid at the end of the
vertical list are stored in the page template and are used in the page building
process. The vertical list usually also specifies the insertion of content streams
using a ⟨stream insert point⟩.

⟨stream insert point⟩ −→ \HINTstream ⟨integer⟩

Here the ⟨integer⟩ must be in the range 0 to 254. The value 255 is invalid; the
value 0 indicates the main body of text (what TEX’s page builder would normally
put into box 255 before calling the output routine). Otherwise, the ⟨integer⟩ is

2.8 Page Templates and Streams 21

TEX’s insertion number, that is the number of TEX’s box containing the insertions.
As usual, this box is filled using TEX’s \insert primitive. So after plain TEX
has defined \footins, the footnotes for the current page can be inserted after
the main body of text in the ⟨vertical list⟩ by saying \HINTstream0 followed by
\HINTstream\footins. Of course you might want to have a footnote rule and a
small skip to separate the footnotes —if there are any—from the main text. This
can be achieved by a suitable ⟨stream definition⟩ in the ⟨stream definition list⟩.

⟨stream definition list⟩ −→ | ⟨stream definition list⟩ ⟨stream definition⟩
⟨stream definition⟩ −→ \HINTsetstream ⟨integer⟩ [=] [preferred ⟨integer⟩]

[next ⟨integer⟩] [ratio ⟨integer⟩] {⟨vertical list⟩}

The first ⟨integer⟩ is the streams insertion number i, and it must match the
⟨integer⟩ previously used in the ⟨stream insert point⟩. Then follows the optional
specification of a preferred stream with insertion number p, a next stream with
insertion number n, and a split ratio r. If r > 0, the contributions to stream i are
split between stream p and n in the ratio r/1000 for p and 1− r/1000 for n before
contributing streams p and r to the page. Else if p ≥ 0 any insertion to stream i is
moved to stream p as long as possible, and if n ≥ 0 we move an insert to stream
n if there is “no room left” in p nor in i. How much “room” is available for the
insertions is specified inside the vertical list that follows. Here \dimeni should be
set to the maximum total height of the insertions in class i per page. \counti
should be set to the magnification factor f , such that inserting a box of height h
will contribute h ∗ f/1000 to the main page; and \skipi should be set to the extra
space needed if an insertion in class i is present.

This extra space is usually taken up by material that is inserted before and
after the insertions, such as for example the footnote rule. This material can be
defined by a ⟨before list⟩ and an ⟨after list⟩.

⟨before list⟩ −→ \HINTbefore [=] {⟨vertical list⟩}
⟨after list⟩ −→ \HINTafter [=] {⟨vertical list⟩}

If you are interested in the design decision that motivate the definitions that
have be given in this section, you should read section 4.

23

3 Other Primitives

Since I consider the support for LATEX to be crucial for the success of the HINT
project, quite a few primitives have been added to HiTEX that go beyond TEX’s
original specification.

3.1 ε-TEX

First, the primitives of ε-TEX have been added with the exception of those primi-
tives that deal with line breaking, with right to left reading, and with marks. Here
is a list of ε-TEX primitives that are missing in HiTEX:

• \TeXXeTstate (current reading direction)

• \beginL, \endL (switching reading direction)

• \beginR, \endR (switching reading direction)

• \predisplaydirection (reading direction)

• \lastlinefit (line breaking)

• \marks (multiple marks)

• \botmarks, \splitbotmarks (multiple marks)

• \firstmarks, \splitfirstmarks (multiple marks)

• \topmarks (multiple marks)

3.2 LATEX and PRoTE

Second, the primitives required to support LATEX were added using Thierry Laron-
des implementation of PRoTE.

• \Proteversion, \Proterevision (version information)

• \resettimer, \elapsedtime (timing information)

• \creationdate, \filemoddate, \filesize, \filedump, \mdfivesum (file in-
formation)

• \shellescape (Currently only a dummy implementation.)

24 3 Other Primitives

• \setrandomseed, \randomseed, \normaldeviate, \uniformdeviate (random
numbers)

• \expanddepth, \expanded (programming)

• \ifincsname, \ifprimitive \primitive (programming)

• \savepos, \lastxpos, \lastypos, \pageheight, \pagewidth (Only dummy
implementations since this information is not available to HiTEX at runtime.)

• \strcmp (comparing strings)

3.3 kpathsearch and \input

In Don Knuth’s implementation of TEX, the \input primitive will add the extension
.tex to any filename that does not have an extension. This implies that a file
without extension cannot be opened as an input file. The usual engines do not
add such an extension but pass the filename as given to kpse_find_file function.
HiTEX does the same. The kpathsearch library will find files in a variety of
directories and yes, it will also find files without extension. Using this library,
or equivalent functionality, is just about mandatory for any engine that wants to
process LATEX input.

25

4 Replacing TEX’s Page Builder

TEX uses an output routine to finalize the page. The output outline takes the
material which the page builder had accumulated in box255 and attaches headers,
footers, and floating material like figures, tables, and footnotes. The latter material
is specified by insert nodes while headers and footers are often constructed using
mark nodes. Running an output routine requires the full power of the TEX engine
and is not part of the HINT viewer. Therefore, HINT replaces output routines
by page templates. TEX can use different output routines for different parts of a
book—for example the index might use a different output routine than the main
body of text.

TEX uses insertions to describe floating content that is not necessarily dis-
played where it is specified. Three examples may illustrate this:

• Footnotes* are specified in the middle of the text but are displayed at the
bottom of the page. Several footnotes on the same page are collected and
displayed together. The page layout may specify a short rule to separate
footnotes from the main text, and if there are many short footnotes, it may
use two columns to display them. In extreme cases, the page layout may
demand a long footnote to be split and continued on the next page.

• Illustrations may be displayed exactly where specified if there is enough room
on the page, but may move to the top of the page, the bottom of the page,
the top of next page, or a separate page at the end of the chapter.

• Margin notes are displayed in the margin on the same page starting at the top
of the margin.

HINT uses page templates and content streams to achieve similar effects. But
before I describe the page building mechanisms of HINT, let me summarize TEX’s
page builder.

* Like this one.

26 4 Replacing TEX’s Page Builder

4.1 TEX’s page building mechanism

TEX’s page builder ignores leading glue, kern, and penalty nodes until the first
box or rule node is encountered; whatsit nodes do not really contribute anything*
to a page; mark nodes are recorded for later use. Once the first box, rule, or
insert arrives, TEX makes copies of all parameters that influence the page build-
ing process and uses these copies. These parameters are the page_goal and the
page_max_depth. Further, the variables page total, page shrink, page stretch,
page depth, and insert penalties are initialized to zero. The top skip adjust-
ment is made when the first box or rule arrives—possibly after an insert. Now
the page builder accumulates material: normal material goes into box255 and will
change page total, page shrink, page stretch, and page depth. The latter is
adjusted so that is does not exceed page max depth.

The handling of inserts is more complex. TEX creates an insert class using
newinsert. This reserves a number i and four registers: boxi for the inserted
material, counti for the magnification factor f , dimeni for the maximum size per
page d, and skipi for the extra space needed on a page if there are any insertions
of class i.

For example plain TEX allocates n = 254 for footnotes and sets count254

to 1000, dimen254 to 8in, and skip254 to \bigskipamount.

An insertion node will specify the insertion class i, some vertical material, its
natural height plus depth x, a split top skip, a split max depth, and a floa-

ting penalty.

Now assume that an insert node with subtype 254 arrives at the page builder.
If this is the first such insert, TEX will decrease the page goal by the width of
skip254 and adds its stretchability and shrinkability to the total stretchability
and shrinkability of the page. Later, the output routine will add some space and
the footnote rule to fill just that much space and add just that much shrinkability
and stretchability to the page. Then TEX will normally add the vertical material
in the insert node to box254 and decrease the page goal by x× f/1000.

Special processing is required if TEX detects that there is not enough space
on the current page to accommodate the complete insertion. If already a previous
insert did not fit on the page, simply the floating penalty as given in the insert
node is added to the total insert penalties. Otherwise TEX will test that the
total natural height plus depth of box254 including x does not exceed the maximum
size d and that the page total + page depth + x × f/1000 − page shrink ≤
page goal. If one of these tests fails, the current insertion is split in such a way as
to make the size of the remaining insertions just pass the tests just stated.

Whenever a glue node, or penalty node, or a kern node that is followed by glue
arrives at the page builder, it rates the current position as a possible end of the
page based on the shrinkability of the page and the difference between page total

and page goal. As the page fills, the page breaks tend to become better and better
until the page starts to get overfull and the page breaks get worse and worse until

* This changes when images are implemented as whatsit nodes.

4.2 HINT Page Templates 27

they reach the point where they become awful bad. At that point, the page builder
returns to the best page break found so far and fires up the output routine.

4.2 HINT Page Templates

Let’s look at the problems that show up when implementing a replacement for
TEX’s page building mechanism.

1. An insertion node can not always specify its height x because insertions may
contain paragraphs that need to be broken in lines and the height of a para-
graph depends in some non obvious way on its width.

2. Before the viewer can compute the height x, it needs to know the width of the
insertion. Just imagine displaying footnotes in two columns or setting notes in
the margin. Knowing the width, it can pack the vertical material and derive
its height and depth.

3. TEX’s plain format provides an insert macro that checks whether there is still
space on the current page, and if so, it creates a contribution to the main text
body, otherwise it creates a topinsert. Such a decision needs to be postponed
to the HINT viewer.

4. HINT has no output routines that would specify something like the space and
the rule preceding the footnote.

5. TEX’s output routines have the ability to inspect the content of the boxes,
split them, and distribute the content over the page. For example, the output
routine for an index set in two column format might expect a box containing
index entries up to a height of 2 × vsize. It will split this box in the middle
and display the top part in the left column and the bottom part in the right
column. With this approach, the last page will show two partly filled columns
of about equal size.

6. HINT has no mark nodes that could be used to create page headers or foot-
ers. Marks, like output routines, contain token lists and need the full TEX
interpreter for processing them. Hence, HINT does not support mark nodes.

Instead of output routines, HINT uses page templates. Page templates are
basically vertical boxes with ⟨stream insert points⟩ marking the positions where
the content of the box registers, filled by the page builder, should appear. To
output the page, the viewer traverses the page template, replaces the placeholders
by the appropriate box content, and sets the glue.

It is only natural to treat the page’s main body, inserts, and marks using the
same mechanism. We call this mechanism a content stream. Content streams are
identified by a stream number in the range 0 to 254; the number 255 is used to
indicate an invalid stream number. The stream number 0 is reserved for the main
content stream; it is always defined.

It is planed to implement a replacement for TEX’s mark nodes using

different types of streams:

28 4 Replacing TEX’s Page Builder

• normal streams correspond to TEX’s inserts and accumulate content

on the page,

• first streams correspond to TEX’s first marks and will contain only

the first insertion of the page,

• last streams correspond to TEX’s bottom marks and will contain only

the last insertion of the page, and

• top streams correspond to TEX’s top marks. Top streams are not yet

implemented.

Nodes from the content section are considered contributions to stream 0 except
for insert nodes which will specify the stream number explicitly. If the stream is not
defined or is not used in the current page template, its content is simply ignored.

The page builder needs a mechanism to redirect contributions from one content
stream to another content stream based on the availability of space. Hence a HINT
content stream can optionally specify a preferred stream number, where content
should go if there is still space available, a next stream number, where content
should go if the present stream has no more space available, and a split ratio if the
content is to be split between these two streams before filling in the template.

Various stream parameters govern the treatment of contributions to the stream
and the page building process.

• The magnification factor f : Inserting a box of height h to this stream will
contribute h × f/1000 to the height of the page under construction. For
example, a stream that uses a two column format will have an f value of 500;
a stream that specifies notes that will be displayed in the page margin will
have an f value of zero.

• The height h: The extended dimension h gives the maximum height this stream
is allowed to occupy on the current page. To continue the previous example,
a stream that will be split into two columns will have h = 2 · vsize , and a
stream that specifies notes that will be displayed in the page margin will have
h = 1 · vsize. You can restrict the amount of space occupied by footnotes to
the bottom quarter by setting the corresponding h value to h = 0.25 · vsize.

• The depth d: The dimension d gives the maximum depth this stream is allowed
to have after formatting.

• The width w: The extended dimension w gives the width of this stream when
formatting its content. For example margin notes should have the width of
the margin less some surrounding space.

• The “before” list b: If there are any contributions to this stream on the current
page, the material in list b is inserted before the material from the stream itself.
For example, the short line that separates the footnotes from the main page
will go, together with some surrounding space, into the list b.

4.2 HINT Page Templates 29

• The top skip glue g: This glue is inserted between the material from list b and
the first box of the stream, reduced by the height of the first box. Hence it
specifies the distance between the material in b and the first baseline of the
stream content.

• The “after” list a: The list a is treated like list b but its material is placed
after the material from the stream itself.

• The “preferred” stream number p: If p ̸= 255, it is the number of the preferred
stream. If stream p has still enough room to accommodate the current con-
tribution, move the contribution to stream p, otherwise keep it. For example,
you can move an illustration to the main content stream, provided there is
still enough space for it on the current page, by setting p = 0.

• The “next” stream number n: If n ̸= 255, it is the number of the next stream.
If a contribution can not be accommodated in stream p nor in the current
stream, treat it as an insertion to stream n. For example, you can move con-
tributions to the next column after the first column is full, or move illustrations
to a separate page at the end of the chapter.

• The split ratio r: If r is positive, both p and n must be valid stream num-
bers and contents is not immediately moved to stream p or n as described
before. Instead the content is kept in the stream itself until the current page
is complete. Then, before inserting the streams into the page template, the
content of this stream is formatted as a vertical box, the vertical box is split
into a top fraction and a bottom fraction in the ratio r/1000 for the top and
(1000−r)/1000 for the bottom, and finally the top fraction is moved to stream
p and the bottom fraction to stream n. You can use this feature for example
to implement footnotes arranged in two columns of about equal size. By col-
lecting all the footnotes in one stream and then splitting the footnotes with
r = 500 before placing them on the page into a right and left column. Even
three or more columns can be implemented by cascades of streams using this
mechanism.

HINT allows multiple page templates but HiTEX currently does not implement
restricting them to individual page ranges and the viewer selects the page template
with the highest priority. To support different output media, the page templates are
named and a suitable user interface may offer the user a selection of possible page
layouts. In this way, the page layout remains in the hands of the book designer,
and the user has still the opportunity to pick a layout that best fits the display
device.

The build-in page template with number 0 is always defined and has priority
0. It will display just the main content stream. It puts a small margin of hsize/8−
4.5pt all around it. Given a letter size page, 8.5 inch wide, this formula yields a
margin of 1 inch, matching TEX’s plain format. The margin will be positive as long
as the page is wider than 1/2 inch. For narrower pages, there will be no margin at
all. In general, the HINT viewer will never set hsize larger than the width of the
page and vsize larger than its height.

31

Index

Symbols

| 3

A

⟨after list⟩ 21
alternative 3
aspect ratio 10

B

⟨background⟩ 12
⟨before list⟩ 21
bot 19
box 255 26
box node 26

C

⟨color⟩ 12
⟨color set⟩ 12
⟨color specification⟩ 12

D

⟨depth⟩ 19
⟨destination⟩ 18
⟨dimension⟩ 3

F

first stream 28
footnote 25, 26
⟨foreground⟩ 11, 12

G

⟨general text⟩ 3
glue 26

H

⟨height⟩ 10
HINT.home 19
\HINTafter 21
\HINTbefore 21
\HINTdest 18
\HINTendlink 15, 18
\HINTimage 10
\HINTminorversion 4
\HINToutline 19
\HINTsetpage 20
\HINTstartlink 15, 18
\HINTversion 4
home page 19
⟨horizontal list⟩ 3

I

ifhint.tex 4
illustration 25
image 10
insert node 26
⟨integer⟩ 3

K

kern 26

L

⟨label⟩ 18
last stream 28
link 18

M

margin note 25
mark node 26

32 Index

N

⟨name⟩ 3
⟨normal dimension⟩ 3
⟨number⟩ 3

O

[optional] 3
outline 19
output routine 20, 25

P

page building 25
page template 20
penalty 26
⟨placement⟩ 19
⟨priority⟩ 20

R

rule 3
rule node 26

S

split ratio 29
stream 20, 27
⟨stream definition⟩ 21
⟨stream definition list⟩ 21
⟨stream insert point⟩ 20
⟨symbol⟩ 3

T

template 25
top 19
top skip 26
top stream 28
typewriter font 3

U

⟨utf character code⟩ 4

V

verbatim 3
⟨vertical list⟩ 3

W

whatsit node 26

⟨width⟩ 10

33

