Kpathsea library

for version 6.4.2/dev
January 2026

Karl Berry

Olaf Weber

Taco Hoekwater
https://tug.org/kpathsea

https://tug.org/kpathsea

This file documents the Kpathsea library for path searching.
Copyright (©) 19962026 Karl Berry & Olaf Weber.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the TEX Users Group.

Table of Contents

1 Introduction.................,
1.1 HiStOry oo e
2 unixtex.ftp: Obtaining TEX
3 Security..........
3.1 Global font cache and securityoooiiiiiiiiiiL.
4 TgX directory structure.........................
5 Path searching
5.1 Searching OVervIeWoiiiiriie i,
5.2 Path soUrces 10
5.2.1 Config files. ... 10
5.3 Path expansion........... ..o 12
5.3.1 Default expansionc.ooiiiiiiiiiiiiiiiiii 12
5.3.2 Variable expansionc. i 13
5.3.3 Tilde expansionc.ouiiiiiiiiiiiiiiiiiii 13
5.3.4 Brace eXpansionuiiiiiii e 14
5.3.5 KPSE_DOT €XPANSION « .« v vttt eettnieeeeeeeennnnnns 14
5.3.6 Subdirectory eXxpansionc..oiiiiiiiiiiiiiieaa. 14
5.4 Casefolding search........... ... 15
5.4.1 Casefolding rationale i, 15
5.4.2 Casefolding examples. ...t 15
5.5 Filename database (1S=R)c.ouiuiiiiiininiinnnnnnn... 17
DDl LS R it 17
5.5.2 Filename aliasesttt 18
5.5.3 Database format.......... 18
5.6 kpsewhich: Standalone path searching.......................... 19
5.6.1 kpsewhich examples..... ...t .. 19
5.6.2 Path searching options............. il 20
5.6.3 Specially-recognized files for kpsewhich.................... 24
5.6.4 Auxiliary tasks. ... 25
5.6.5 Standard options........ ... i 26
TEX supporto 27
6.1 Supported file formats......... ... 27
6.2 File looKUpDot e 30
6.3 Glyph loOKUpD ...t 31
6.3.1 Basic glyph lookup o 31

6.3.2 Fontmap ...t e 32

6.3.3 Fallback fontco i 33
6.4 Suppressing Warnings.ooeueiiiii i 33
6.9 MEteX SCTiPES. .o v vt 33

6.5.1 mktex configuration i il 34

6.5.2 mktex SCript NAMES ov vttt 36

6.5.3 mktex script arguments........ L 36

Programming, 37
7.1 Programming overview 37
7.2 Calling sequence.ouui i 37
7.3 Safe filenameso 39
7.4 Program-specific files......... ... 40
7.5 Programming with config filesl 40

Reporting bugs ... 42
8.1 Bug checklist...... ..o 42
8.2 Mailing lists. ... 43
8.3 Debuggingo 43
84 LOgEINg . o o 45
8.5 Common Problemst 45

8.5.1 Unable to find files i, 45

8.5.2 Slow path searching L 46

8.5.3 Unable to generate fonts.............. L. 47

8.5.4 TEX or Metafont failing...........o 47

ii

1 Introduction

This manual corresponds to version 6.4.2/dev of the Kpathsea library, released in January
2026.

The library’s fundamental purpose is to return a filename from a list of directories
specified by the user, similar to what shells do when looking up program names to execute.

The following software, all of which is maintained in parallel, uses this library:
e Dviljk (see the ‘dvilj’ man page)
e Dvipsk (see Dvips: A DVI driver)
e GNU font utilities (see GNU font utilities)
e Web2c (see Web2c: A TgX implementation)
e Xdvik (see the ‘xdvi’ man page)

Other software that we do not maintain also uses it.

Kpathsea is now maintained as part of the TEX Live distribution (https://tug.org/
texlive), which includes several more Kpathsea-using programs. For information on con-
figuration, building, installing, and more, see Building TgX Live.

The library is still actively maintained. If you have comments or suggestions, please
send along (see Chapter 8 [Reporting bugs|, page 42).

The Kpathsea library is distributed under the GNU Library General Public License
(LGPL), version 2.1 or (at your option) any later version. In short, this means if you write
a program using the library, you must (offer to) distribute the source to the library, along
with any changes you have made, and allow anyone to modify the library source and dis-
tribute their modifications. It does not mean you have to distribute the source to your
program using the library, although we hope you will. See accompanying files for the text
of the GNU licenses, or https://gnu.org/licenses.

If you know enough about TEX to be reading this manual, then you (or your institution)
should consider joining the TEX Users Group (if you're already a member, thanks!). TUG
produces the periodical TUGboat, sponsors an annual meeting and publishes the proceed-
ings, and arranges courses on TEX for all levels of users throughout the world. See https://
tug.org for information.

1.1 History

This section is for those people who are curious about how the library came about. If you like
to read historical accounts of software, we urge you to seek out the GNU Autoconf manual
and the “Errors of TEX” paper by Don Knuth, published in his book Digital Typography,
among other places.

[Karl writes.] My first ChangeLog entry for Web2c seems to be February 1990, but
I may have done some work before then. In any case, Tim Morgan and I were jointly
maintaining it for a time. (I should mention here that Tim had made Web2c into a real
distribution long before I had ever used it or even heard of it, and Tom Rokicki did the
original implementation. When I started, I was using pxp and pc on VAX 11/750’s and the
hot new Sun 2 machines.)

https://tug.org/texlive
https://tug.org/texlive
https://gnu.org/licenses
https://tug.org
https://tug.org

Chapter 1: Introduction 2

It must have been later in 1990 and 1991 that I started working on TgX for the Impatient.
Dvips, Xdvi, Web2c, and the GNU fontutils (which I was also writing at the time) all
used different environment variables, and, more importantly, had different bugs in their
path searching. This became extremely painful, as I was stressing everything to the limit
working on the book. I also desperately wanted to implement subdirectory searching, since
I couldn’t stand putting everything in one big directory, and also couldn’t stand having to
explicitly specify cm, pandora, ... in a path.

In the first incarnation, I just hacked separately on each program—that was the original
subdirectory searching code in both Xdvi and Dvips. That is, I tried to go with the flow
in each program, rather than changing the program’s calling sequences to conform to new
routines.

Then, as bugs inevitably appeared, I found I was fixing the same thing three times
(Web2c and fontutils were already sharing code, since I maintained both of those—there
was no Dvipsk or Xdvik or Dviljk at this point). After a while, I finally started sharing
source files. They weren’t yet a library, though. I just kept things up to date with shell
scripts. (I was developing on a 386 running ISC 2.2 at the time, and so didn’t have symbolic
links. An awful experience.)

The ChangeLogs for Xdvik and Dvipsk record initial releases of those distributions in
May and June 1992. I think it was because I was tired of the different configuration
strategies of each program, not so much because of the path searching. Autoconf was being
developed by David MacKenzie and others, and I was adapting it to TEX and friends.

I started to make a separate library that other programs could link with on my birthday
in April 1993, according to the Changel.og. I don’t remember exactly why I finally took
the time to make it a separate library; a conversation with david zuhn initiated it. Just
seemed like it was time.

Dviljk got started in March 1994 after I bought a Laserjet 4. (Kpathsea work got
suspended while Norm Walsh and I, with Gustaf Neumann’s help, implemented a way for
TEX to get at all those neat builtin LJ4 fonts . . . such a treat to have something to typeset
in besides Palatino!)

By spring of 1995, I had implemented just about all the path-searching features in
Kpathsea that I plan to, driven beyond my initial goals by Thomas Esser and others. I
then started to integrate Web2c with Kpathsea. After the release of a stable Web2c, 1
hope to be able to stop development, and turn most of my attention back to making fonts
for GNU. (Always assuming Micros**t hasn’t completely obliterated Unix by then, or that
software patents haven’t stopped software development by anybody smaller than a company
with a million-dollar-a-year legal budget. Which is actually what I think is likely to happen,
but that’s another story. . .)

[Olaf writes.] At the end of 1997, Unix is still alive and kicking, individuals still develop
software, and Web2c development still continues. Karl had been looking for some time for
someone to take up part of the burden, and I volunteered.

[Karl writes again.] Indeed, time goes on. As of 2006 or so, Olaf’s available time for
Kpathsea was reduced, and I started taking overall care of it again, although I did not
do any significant new development. In 2009, Taco Hoekwater implemented a major rear-
rangement to make the library suitable for use within the MetaPost library (see Section 7.1
[Programming overview|, page 37). Also, for some years now, Peter Breitenlohner has made

Chapter 1: Introduction 3

many improvements to the infrastructure and kept it up-to-date with respect to the overall
TEX Live build, where Kpathsea is now maintained.

2 unixtex.ftp: Obtaining TEX

This chapter is ftp://tug.org/tex/unixtex.ftp, a.k.a. https://tug.org/unixtex.ftp,
last updated 29 February 2020. Email tex-k@tug.org with comments or questions.

The principal free TEX distribution for Unix-like systems is TEX Live, on the web at
http://tug.org/texlive. The pages there describe many ways to acquire and/or build
TEX, over the Internet or on physical media, both the sources and precompiled binaries for
many systems, either standalone or as part of various operating system distributions.

Web2c, Kpathsea, Dvips, and Dviljk, among others, are no longer released as a separate
packages. Their sources are now maintained as part of TEX Live.

The host ftp.cs.stanford.edu is the original source for the files for which Donald
Knuth is directly responsible: tex.web, plain.tex, etc. However, unless you want to
undertake the project of building your TEX system from scratch, it is more reliable and less
work to retrieve these files as part of a larger package.

In any case, the Stanford ftp site is not the canonical source for anything except what
was created as part of Knuth’s original TEX, so do not rely on any other files available there
being up-to-date. The best place to check for up-to-date files is CTAN (the Comprehensive
TEX Archive Network), https://ctan.org.

ftp://tug.org/tex/unixtex.ftp
https://tug.org/unixtex.ftp
mailto:tex-k@tug.org
http://tug.org/texlive
https://ctan.org

3 Security

None of the programs in the TEX system require any special system privileges, so there’s
no first-level security concern of people gaining illegitimate root access.

Thus, the general goal of our security measures is to make an untrusted TEX document
safe to execute, in the sense of no document being able to change the system or user
configuration, or transmit information to an attacker. Here are some of the steps that have
been taken to make the TEX system safe in this regard:

e A TEX document can write to arbitrary files via \openout, e.g., ~/.profile, and thus
an unwitting user who runs TEX on an untrusted document is vulnerable to a trojan
horse attack. This loophole is closed by default, but you can be permissive if you so
desire in texmf.cnf; see the variable openout_any. See Section “tex invocation” in
Web2c. MetaPost has the same issue (Metafont cannot write arbitrary files).

e Dvips, Xdvi, TEX, and others can execute shell commands. By default, only a handful
of commands that are believed to be safe, to the best of our ability to check, are allowed.
For the list, see the shell_escape_commands variable in texmf . cnf (see Section “Shell
escapes” in Web2c). For more information, e.g., to disable this completely, see the ‘-R’
option in Section “Option details” in Dvips, the xdvi man page, and Section “tex
invocation” in Web2c, respectively.

e LuaTgX is a special case. Since Lua is a general-purpose programming language, it
has all the usual functionality for writing files, executing shell commands, opening
network connections, and plenty more. When LuaTgX is used in its so-called “kpse”
mode, as with LualATEX, we have nevertheless done our best to also make it safe to
execute by default, by disabling or restricting the various problematic Lua features.
See Section 7.3 [Safe filenames|, page 39, for a bit more about this. (When LuaTgX is
run in non-kpse mode, as with ConTEXt MKIV, everything is allowed; thus, untrusted
documents should not be processed.)

e There are some well-known ways to crash TEX, using arithmetic overflow, which Knuth
deliberately left unchecked, and other nefarious constructs; some are listed at https://
tug.org/texmfbug/nobug.html. While disturbing, TEX has no special system access
and so these crashes don’t present a security risk.

e One more issue is the desire for a globally writable font cache directory; see the section
below for this (Section 3.1 [Global font cache and security], page 5).

3.1 Global font cache and security

It’s useful to make arbitrary fonts on user demand with mktexpk and friends. Where do
these files get installed? By default, the mktexpk distributed with Kpathsea assumes a
world-writable /var/tmp directory; this is a simple and convenient approach, but it does
not suit all situations, because it means that a local cache of fonts is created on every user’s
system.

To avoid this duplication, many people consider a shared, globally writable font tree
desirable, in spite of the potential security problems. To do this you should change the value
of VARTEXFONTS in texmf .cnf to refer to some globally known directory. See Section 6.5.1
[mktex configuration], page 34.

https://tug.org/texmfbug/nobug.html
https://tug.org/texmfbug/nobug.html

Chapter 3: Security 6

The first restriction you can apply is to make newly-created directories under texmf be
append-only with an option in mktex.cnf. See Section 6.5.1 [mktex configuration], page 34.

Another approach is to establish a group (or user) for TEX files, make the texmf tree
writable only to that group (or user), and make mktexpk et al. setgid to that group (or
setuid to that user). Then users must invoke the scripts to install things. (If you're worried
about the likelihood of security holes in scripts, you could write a C wrapper to exec the
script.)

The mktex. .. scripts install files with the same read and write permissions as the di-
rectory they are installed in. The executable, sgid, suid, and sticky bits are always cleared.

Any directories created by the mktex... scripts have the same permissions as their
parent directory, unless the appendonlydir feature is used, in which case the sticky bit is
always set.

Nowadays, with bitmap files rarely used, and with individual systems being so much
more powerful, this is less of an issue than in the past. But the question still comes up
occasionally.

4 TgX directory structure

This section describes the default installation hierarchy of the distribution. It conforms
to both the GNU coding standards and the TEX directory structure (TDS) standard. For
rationale and further explanation, please see those documents. The GNU document is
available from https://gnu.org/prep/standards. The TDS document is available from
https://ctan.org/pkg/tds (see Chapter 2 [unixtex.ftp|, page 4).

In short, here is a skeleton of the default directory structure, extracted from the TDS
document:

prefix/ installation root (/usr/local by default)
bin/ executables
man/ man pages
include/ C header files
info/ GNU info files
lib/ libraries (1ibkpathsea. *)
share/ architecture-independent files
texmf/ TDS root
bibtex/ BibTEX input files
bib/ BibTEX databases
base/ base distribution (e.g., ‘xampl.bib’)
misc/ single-file databases
pkg/ name of a package
bst/ BibTEX style files
base/ base distribution (e.g., ‘plain.bst’, ‘acm.bst’)
misc/ single-file styles
pkg/ name of a package
doc/ additional documentation
dvips/ ‘.pro’, ‘.ps’, ‘psfonts.map’
fonts/ font-related files
type/ file type (e.g., ‘tfm’, ‘pk’)
mode/ type of output device (types ‘pk’ and ‘gf’ only)
supplier/ name of a font supplier (e.g., ‘public’)
typeface/ name of a typeface (e.g., ‘cm’)
dpinnn/ font resolution (types ‘pk’ and ‘gf’ only)
metafont/ Metafont (non-font) input files
base/ base distribution (e.g., ‘plain.mf’)
misc/ single-file packages (e.g., ‘modes.mf’)
pkg/ name of a package (e.g., ‘mfpic’)
metapost/ MetaPost input files
base/ base distribution (e.g., ‘plain.mp’)
misc/ single-file packages
pkg/ name of a package
support/ support files for MetaPost-related utilities (e.g., ‘trfonts.map’)
mft/ ‘MFT’ inputs (e.g., ‘plain.mft’)
tex/ TEX input files

format/ name of a format (e.g., ‘plain’)

https://gnu.org/prep/standards
https://ctan.org/pkg/tds

Chapter 4: TEX directory structure

base/ base distribution for format (e.g., ‘plain.tex’)

misc/ single-file packages (e.g., ‘webmac.tex’)

local/ local additions to or local configuration files for format

pkg/ name of a package (e.g., ‘graphics’, ‘mfnfss’)
generic/ format-independent packages

hyphen/ hyphenation patterns (e.g., ‘hyphen.tex’)

images/ image input files (e.g., Encapsulated PostScript)

misc/ single-file format-independent packages (e.g., ‘null.tex’).
pkg/ name of a package (e.g., ‘babel’)

web2c/ implementation-dependent files (.pool, .fmt, texmf.cnf, etc.)

Some concrete examples for most file types:

/usr/local/bin/tex

/usr/local/man/manl/xdvi.1

/usr/local/info/kpathsea.info

/usr/local/lib/libkpathsea.a
/usr/local/share/texmf/bibtex/bst/base/plain.bst
/usr/local/share/texmf/fonts/pk/ljfour/public/cm/cmr10.600pk
/usr/local/share/texmf/fonts/source/public/pandora/pnr10.mf
/usr/local/share/texmf/fonts/tfm/public/cm/cmr10.tfm
/usr/local/share/texmf/fonts/typel/adobe/utopia/putr.pfa
/usr/local/share/texmf/metafont/base/plain.mf
/usr/local/share/texmf/metapost/base/plain.mp
/usr/local/share/texmf/tex/plain/base/plain.tex
/usr/local/share/texmf/tex/generic/hyphen/hyphen.tex
/usr/local/share/texmf/web2c/tex.pool
/usr/local/share/texmf/web2c/tex.fmt
/usr/local/share/texmf/web2c/texmf . cnf

5 Path searching

This chapter describes the generic path searching mechanism Kpathsea provides. For in-
formation about searching for particular file types (e.g., TEX fonts), see the next chapter.

This section, with minor differences, has been translated into several other languages
(Chinese, Spanish, Russian, Japanese, French, German, . . .) as part of the TEX Live guide;
see https://tug.org/texlive/doc.html for links.

5.1 Searching overview

A search path is a colon-separated list of path elements, which are directory names with a
few extra frills. A search path can come from (a combination of) many sources; see below.
To look up a file ‘foo’ along a path ‘. :/dir’, Kpathsea checks each element of the path in
turn: first ./foo, then /dir/foo, returning the first match (or possibly all matches).

The “colon” and “slash” mentioned here aren’t necessarily ‘:” and ‘/’ on non-Unix sys-
tems. Kpathsea tries to adapt to other operating systems’ conventions.

To check a particular path element e, Kpathsea first sees if a prebuilt database (see
Section 5.5 [Filename database], page 17) applies to e, i.e., if the database is in a directory
that is a prefix of e. If so, the path specification is matched against the contents of the
database.

If the database does not exist, or does not apply to this path element, or contains no
matches, the filesystem is searched (if this was not forbidden by the specification with ‘1!’
and if the file being searched for must exist). Kpathsea constructs the list of directories
that correspond to this path element, and then checks in each for the file being searched
for. (To help speed future lookups of files in the same directory, the directory in which a
file is found is floated to the top of the directory list.)

The “file must exist” condition comes into play with VF files and input files read by the
TEX ‘\openin’ command. These files might very well not exist (consider cmr10.vf), and so
it would be wrong to search the disk for them. Therefore, if you fail to update 1s-R when
you install a new VF file, it will not be found.

Each path element is checked in turn: first the database, then the disk. If a match is
found, the search stops and the result is returned (unless the search explicitly requested all
matches). This avoids possibly-expensive processing of path specifications that are never
needed on a particular run.

On Unix-like systems, if no match is found by any of the above, and the path element
allows checking the filesystem (per the above), a final check is made for a case-insensitive
match. Thus, looking for a name like ‘. /FooBar.TeX’ will match a file ‘. /foobar.tex’, and
vice versa. This is not done on Windows. See Section 5.4 [Casefolding search], page 15.

Although the simplest and most common path element is a directory name, Kpathsea
supports additional features in search paths: layered default values, environment variable
names, config file values, users’ home directories, and recursive subdirectory searching.
Thus, we say that Kpathsea expands a path element, meaning transforming all the magic
specifications into the basic directory name or names. This process is described in the
sections below. It happens in the same order as the sections.

https://tug.org/texlive/doc.html

Chapter 5: Path searching 10

Exception to all of the above: If the filename being searched for is absolute or explicitly
relative, i.e., starts with ‘/’ or *./ or ‘. ./’, Kpathsea simply checks if that file exists, with
a fallback to a casefolding match if needed and enabled, as described above.

Ordinarily, if Kpathsea tries to access a file or directory that cannot be read, it gives a
warning. This is so you will be alerted to directories or files that accidentally lack any read
permission (for example, a lost+found directory). If you prefer not to see these warnings,
include the value ‘readable’ in the TEX_HUSH environment variable or config file value.

This generic path searching algorithm is implemented in kpathsea/pathsearch.c. It
is employed by a higher-level algorithm when searching for a file of a particular type (see
Section 6.2 [File lookup]|, page 30, and Section 6.3 [Glyph lookup], page 31).

5.2 Path sources

A search path or other configuration value can come from many sources. In the order in
which Kpathsea looks for them:

1. A command-line option such as --cnf-line, available in kpsewhich and most TEX
engines. See Section 5.6.2 [Path searching options], page 20.

A user-set environment variable, e.g., TEXINPUTS. Environment variables with an un-
derscore and the program name appended override; for example, TEXINPUTS_latex
overrides TEXINPUTS if the program being run is named ‘latex’.

2. A program-specific configuration file, e.g., an ‘S /a:/b’ line in Dvips’ config.ps (see
Section “Config files” in Dvips).

3. A line in a Kpathsea configuration file texmf . cnf, e.g., ‘TEXINPUTS=/c:/d’ (see below).
4. The compile-time default (specified in kpathsea/paths.h).

You can see each of these values for a given search path by using the debugging options
(see Section 8.3 [Debugging], page 43).

These sources may be combined via default expansion (see Section 5.3.1 [Default expan-
sion], page 12).

5.2.1 Config files

As mentioned above, Kpathsea reads runtime configuration files named texmf.cnf for
search path and other definitions. The search path used to look for these configuration
files is named TEXMFCNF, and is constructed in the usual way, as described above, except
that configuration files cannot be used to define the path, naturally; also, an 1s-R database
is not used to search for them.

Kpathsea reads all texmf.cnf files in the search path, not just the first one found;
definitions in earlier files override those in later files. Thus, if the search path is ‘. : $TEXMF’,
values from ./texmf.cnf override those from $TEXMF/texmf . cnf.

If Kpathsea cannot find any texmf.cnf file, it reports a warning including all the di-
rectories it checked. If you don’t want to see this warning, set the environment variable
KPATHSEA_WARNING to the single character ‘0’ (zero, not oh).

While (or instead of) reading this description, you may find it helpful to look at the
distributed texmf.cnf, which uses or at least mentions most features. The format of
texmf . cnf files follows:

Chapter 5: Path searching 11

e Comments start with ‘%4’ or ‘#’, either at the beginning of a line or preceded by white-
space, and continue to the end of the line. That is, similar to most shells, a comment
character in the “middle” of a value does not start a comment. Examples:

% this is a comment
var = a%b % but the value of var will be "a%b"

e Blank lines are ignored.

e A ‘\’ at the end of a line acts as a continuation character, i.e., the next line is appended.
Whitespace at the beginning of continuation lines is not ignored.

e FEach remaining line will look like:
variable [. progname] [=| value

where the ‘=" and surrounding whitespace is optional.

e The variable name may contain any character other than whitespace, ‘=’, or ‘.’, but

sticking to ‘A-Za-z_’ is safest.

e If ‘. progname’ is present (preceding spaces are ignored), the definition only applies if
the program that is running is named (i.e., the last component of argv [0] is) progname
or progname.{exe,bat,cmd,...}. Most notably, this allows different flavors of TEX
to have different search paths. The progname value is used literally, without variable
or other expansions.

e Considered as strings, value may contain any character. However, in practice most
texmf . cnf values are related to path expansion, and since various special characters
are used in expansion, such as braces and commas, they cannot be used in directory
names.

The ‘$var. prog’ feature is not available on the right-hand side; instead, you must use
an additional variable (see below for example).

A *;’ in value is translated to ‘:’ if running under Unix, in order to have a single
texmf . cnf that can support both Unix and Windows systems. This translation hap-
pens with any value, not just search paths, but fortunately in practice ‘;’ is not needed

in other values.
e All definitions are read before anything is expanded, so you can use variables before
they are defined (like Make, unlike most other programs).
Here is a configuration file fragment illustrating most of these points:

% TeX input files -- i.e., anything to be found by \input or \openin ...

latex209_inputs = .:$TEXMF/tex/latex209//:$TEXMF/tex//
latex2e_inputs = .:$TEXMF/tex/latex//:$TEXMF/tex//
TEXINPUTS = .:$TEXMF/tex//

TEXINPUTS.latex209 = $latex209_inputs
TEXINPUTS.latex2e = $latex2e_inputs
TEXINPUTS.latex = $latex2e_inputs

The combination of spaces being ignored before the . of a program name qualifer and
the optional ‘=’ for the assignment has an unexpected consequence: if the value begins with
a literal ‘.” and the ‘=’ is omitted, the intended value is interpreted as a program name.
For example, a line var .;/some/path is taken as an empty value for var running under
the program named ‘; /some/path’. To diagnose this, Kpathsea warns if the program name

Chapter 5: Path searching 12

contains a path separator or other special character. The simplest way to avoid the problem
is to use the =.

Exactly when a character will be considered special or act as itself depends on the
context in which it is used. The rules are inherent in the multiple levels of interpretation
of the configuration (parsing, expansion, search, ...) and so cannot be concisely stated,
unfortunately. There is no general escape mechanism; in particular, ‘\’ is not an “escape
character” in texmf.cnf files. When it comes choosing directory names for installation, it
is safest to avoid them all.

The implementation of all this is in kpathsea/cnf . c.

5.3 Path expansion

Kpathsea recognizes certain special characters and constructions in search paths, similar to
that in shells. As a general example: ‘~$USER/{foo,bar}//baz’ expands to all subdirec-
tories under directories foo and bar in $USER’s home directory that contain a directory or
file baz.

These expansions are explained in the sections below.

5.3.1 Default expansion

If the highest-priority search path (see Section 5.2 [Path sources], page 10) contains an
extra colon (i.e., leading, trailing, or doubled), Kpathsea inserts at that point the next-
highest-priority search path that is defined. If that inserted path has an extra colon, the
same happens with the next-highest. (An extra colon in the compile-time default value has
unpredictable results, so installers beware.)

For example, given an environment variable setting
setenv TEXINPUTS /home/karl:
and a TEXINPUTS value from texmf.cnf of
. :$TEXMF//tex
then the final value used for searching will be:
/home/karl:.:$TEXMF//tex

Put another way, default expansion works on “formats” (search paths), and not directly

on environment variables. Example, showing the trailing ‘:’ ignored in the first case and
expanded in the second:

$ env TTFONTS=/tmp: kpsewhich --expand-path '$TTFONTS'
/tmp

$ env TTFONTS=/tmp: kpsewhich --show-path=.ttf

/tmp: . :/home/olaf/texmf/fonts/truetype//: ...

Since Kpathsea looks for multiple configuration files, it would be natural to
expect that (for example) an extra colon in ./texmf.cnf would expand to the path
in $TEXMF/texmf.cnf. Or, with Dvips’ configuration files, that an extra colon in
config.$PRINTER would expand to the path in config.ps. This doesn’t happen. It’s not
clear this would be desirable in all cases, and trying to devise a way to specify the path to
which the extra colon should expand seemed truly baroque.

Chapter 5: Path searching 13

Technicality: Since it would be useless to insert the default value in more than one place,
Kpathsea changes only one extra ‘:” and leaves any others in place (they will eventually be
ignored). Kpathsea checks first for a leading ‘:’, then a trailing ‘:’, then a doubled ‘:’.

You can trace this by debugging “paths” (see Section 8.3 [Debugging], page 43). Default
expansion is implemented in the source file kpathsea/kdefault.c.

5.3.2 Variable expansion

‘$foo’ or ‘${foo}’ in a path element is replaced by (1) the value of an environment variable
‘foo’ (if defined); (2) the value of ‘foo’ from texmf.cnf (if defined); (3) the empty string.

If the character after the ‘$’ is alphanumeric or ‘_’, the variable name consists of all

consecutive such characters. If the character after the ‘$’ is a ‘{’, the variable name con-
sists of everything up to the next ‘}’ (braces may not be nested around variable names).
Otherwise, Kpathsea gives a warning and ignores the ‘¢’ and its following character.

You must quote the $’s and braces as necessary for your shell. Shell variable values
cannot be seen by Kpathsea, i.e., ones defined by set in C shells and without export in
Bourne shells.

For example, given

setenv tex /home/texmf
setenv TEXINPUTS .:$tex:${tex}prev

the final TEXINPUTS path is the three directories:
. :/home/texmf : /home/texmfprev

The ‘. progname’ suffix on variables and ‘_progname’ on environment variable names are
not implemented for general variable expansions. These are only recognized when search
paths are initialized (see Section 5.2 [Path sources|, page 10).

Variable expansion is implemented in the source file kpathsea/variable.c.

5.3.3 Tilde expansion

A leading ‘~’ in a path element is replaced by the value of the environment variable HOME,
or . if HOME is not set. On Windows, the environment variable USERPROFILE is checked
instead of HOME.

A leading ‘“user’ in a path element is replaced by user’s home directory from the system
passwd database.

For example,
setenv TEXINPUTS ~/mymacros:
will prepend a directory mymacros in your home directory to the default path.

As a special case, if a home directory ends in ‘/’, the trailing slash is dropped, to avoid
inadvertently creating a ‘//’ construct in the path. For example, if the home directory of
the user ‘root’ is ‘/’, the path element ‘“root/mymacros’ expands to just ‘/mymacros’; not
‘//mymacros’.

Tilde expansion is implemented in the source file kpathsea/tilde.c.

Chapter 5: Path searching 14

5.3.4 Brace expansion
‘x{a, b}y’ expands to ‘xay:xby’. For example:
foo/{1,2}/baz

expands to ‘foo/1/baz:foo/2/baz’. ‘:’ is the path separator on the current system; e.g.,
on a Windows system, it’s *;’.

Braces can be nested; for example, ‘x{A,B{1,2}}y’ expands to ‘xAy:xBly:xB2y’.

Multiple non-nested braces are expanded from right to left; for example, ‘x{A,B}{1,2}y’
expands to ‘x{A,B}1y:x{A,B}2y’, which expands to ‘xAly:xBly:xA2y:xB2y’.

This feature can be used to implement multiple TEX hierarchies, by assigning a brace
list to $TEXMF, as mentioned in texmf.in.

You can also use the path separator instead of the comma. The last example could have
been written ‘x{A:B}{1:2}y’ (on Unix).

Brace expansion is implemented in the source file kpathsea/expand.c.

5.3.5 KPSE_DOT expansion

When KPSE_DOT is defined in the environment, it names a directory that should be con-
sidered the current directory for the purpose of looking up files in the search paths. This
feature is needed by the ‘mktex...’ scripts Section 6.5 [mktex scripts|, page 33, because
these change the working directory. You should not ever define it yourself.

5.3.6 Subdirectory expansion

Two or more consecutive slashes in a path element following a directory d is replaced by all
subdirectories of d: first those subdirectories directly under d, then the subsubdirectories
under those, and so on. At each level, the order in which the directories are searched is
unspecified. (It’s “directory order”, and definitely not alphabetical.)

If you specify any filename components after the ‘//’; only subdirectories which match
those components are included. For example, ‘/a//b’ would expand into directories /a/1/b,
/a/2/b, /a/1/1/b, and so on, but not /a/b/c or /a/1.

You can include multiple ‘//’ constructs in the path.

‘//’ at the beginning of a path is ignored. Searching every directory on the system is
not relevant for TEX.

We need to discuss one related implementation trick, originally taken from GNU find.
Matthew Farwell suggested it, and David MacKenzie implemented it.

The trick is that in normal Unix implementations (though not in the POSIX specifica-
tion), a directory which contains no subdirectories will have exactly two links (namely, one
for . and one for ..). That is to say, the st_nlink field in the ‘stat’ structure will be two.
Thus, we don’t have to stat everything in the bottom-level (leaf) directories—we can just
check st_nlink, notice it’s two, and do no more work.

Kpathsea never does this st_nlink=2 check (or any disk checking) for !! trees (see Sec-
tion 5.5.1 [Is-R], page 17). And the non-!! trees in a TEX Live installation are typically
extremely small. Therefore the st_nlink check is not performed by default at all, as of
2025 (Kpathsea 6.3.4). That way, two not-uncommon situations work out: 1) all gvisor-
handled filesystems return st_nlink=1 before some post-2025 release (https://tug.org/

https://tug.org/pipermail/texhax/2025-July/026772.html

Chapter 5: Path searching 15

pipermail/texhax/2025-July/026772.html); 2) a symbolic link to another directory in
such an apparent leaf directory will get followed even though st_nlink=2 (https://tex.
stackexchange.com/questions/132908).

If you have an extremely large non-!! tree, most likely TEXMFHOME, you may find it useful
to enable the check: you can do this by setting the configuration variable texmf_nlink_
for_leaf to 1. Alternatively, with such a large tree, you may find it even more useful to
add the tree to TEXMFDBS so that only 1s-R lookups are done (again, see Section 5.5.1 [Is-R],
page 17).

Unfortunately, in some cases files in leaf directories are stat’d anyway: if the path
specification is, say, ‘$TEXMF/fonts//pk//’, then files in a subdirectory ‘. . ./pk’, even if it is
a leaf, are checked. The reason cannot be explained without reference to the implementation,
so read kpathsea/elt-dirs.c (search for ‘may descend’) if you are curious. And if you
find a way to solve the problem, please let me know.

Subdirectory expansion is implemented in the source file kpathsea/elt-dirs.c.

5.4 Casefolding search

In Kpathsea version 6.3.0 (released with TEX Live 2018), a new fallback search was imple-
mented on Unix-like systems, including Macs: for each path element in turn, if no match
is found by the normal search, and the path element allows for checking the filesystem, a
second check is made for a case-insensitive match.

This is enabled at compile-time on Unix systems, and enabled at runtime by setting the
configuration variable texmf_casefold_search, to a true value, e.g., ‘1’; this is done by
default in TEX Live.

5.4.1 Casefolding rationale

The purpose of the fallback casefolding search is to ease moving complex documents between
case-insensitive (file)systems and case-sensitive ones. In particular, Apple decided to make
the default filesystem on Macs be case-insensitive some years ago, and this has exacerbated
a problem of people creating documents that use, say, an image under the name foo. jpg,
while the actual file is named foo.JPG or Foo. jpg. It works on the Mac but if the document
is transferred and run on a standard case-sensitive Unix (file)system, the file can’t be found,
due only to differences in case.

This same problematic scenario has always existed on Windows, but for whatever reason,
it has become much more common since Apple also went to a case-insensitive filesystem.
Hence the relatively late change to the Kpathsea behavior.

The fallback case-insensitive search is omitted at compile-time on Windows, where (for
practical purposes) all file names are case-insensitive at the kernel level, and so the normal
search will already have definitively matched or not. Therefore, search results in unusual
cases can be different on Windows and Unix—but this has always been true.

5.4.2 Casefolding examples

The casefolding implementation prefers exact matches to casefolded matches within a given
path element, so as to retain most compatibility. Backward compatibility is not perfect,
however, as a casefolded match may be found in an earlier path element than an exact
match was previously found (see example #4 below). Still, preferring the match in the

https://tug.org/pipermail/texhax/2025-July/026772.html
https://tug.org/pipermail/texhax/2025-July/026772.html
https://tex.stackexchange.com/questions/132908
https://tex.stackexchange.com/questions/132908

Chapter 5: Path searching 16

earlier element seemed potentially less confusing than otherwise, and is in fact consistent
with past behavior on Windows. Since case mismatches are rare to begin with, and name
collisions with respect only to case thus even more rare, the hope is that it will not cause
difficulties in practice.

If it’s desirable in a given situation to have the exact same search behavior as previously,
that can be accomplished by setting the configuration variable texmf_casefold_search to
‘0’ (see Section 5.2 [Path sources], page 10).

Some examples to illustrate the new behavior follow.

Example #1: suppose the file ./foobar.tex exists. Now, searching for ./FooBar.TeX
(or any other case variation) will succeed, returning ./foobar.tex—the name as stored on
disk. In previous releases, or if texmf_casefold_search is false, the search would fail.

Example #2: suppose we are using a case-sensitive (file)system, and the search path
is ‘. :/somedir’, and the files ./foobar.tex and /somedir/FooBar.TeX both exist. Both
now and previously, searching for foobar.tex returns ./foobar.tex. However, searching
for FooBar.TeX now returns ./foobar.tex instead of /somedir/FooBar.TeX; this is the
incompatibility mentioned above. Also (as expected), searching for FOOBAR.TEX (or what-
ever variation) will now return ./foobar.tex, whereas before it would fail. Searching for
all (‘kpsewhich --all’) foobar.tex will return both matches.

Example #3: same as example #2, but on a case-insensitive (file)system: both now and
previously, searching for FooBar.TeX returns . /foobar.tex, since the system considers that
a match. The Kpathsea casefolding never comes into play.

Example #4: if we have (on a case-sensitive system) both ./foobar.tex and
./FOOBAR.TEX, searching with the exact case returns that exact match, now and
previously. Searching for FooBar.tex will now return one or the other (chosen arbitrarily),
rather than failing. Perhaps unexpectedly, searching for all foobar.tex or FooBar.tex
will also return only one or the other, not both (see more below).

Example #5: the font file STIX-Regular.otf is included in TEX Live in the system
directory texmf-dist/fonts/opentype/public/stix. Because Kpathsea never searches
the disk in the big system directory, the casefolding is not done, and a search for
‘stix-regular.otf’ will fail (on case-sensitive systems), as it always has.

The caveat about not searching the disk amounts to saying that casefolding does not
happen in the trees specified with ‘11’ (see Section 5.5.1 [Is-R], page 17), that is, where only
database (1s-R) searching is done. In TgX Live, that is the ‘texmf-local’ and ‘texmf-dist’
trees (also $TEXMFSYSCONFIG and $TEXMFSYSVAR, but those are rarely noticed). The ratio-
nale for this is that in practice, case mangling happens with user-created files, not with
packages distributed as part of the TEX system.

One more caveat: the purpose of kpsewhich is to exercise the path searching in Kpathsea
as it is actually done. Therefore, as shown above, ‘kpsewhich --all’ will not return all
matches regardless of case within a given path element. If you want to find all matches in
all directories, find is the best tool, although the setup takes a couple steps:

kpsewhich -show-path=tex >/tmp/texpath # search path specification
kpsewhich -expand-path=""cat /tmp/texpath " >/tmp/texdirs # all dirs
tr ':' '\n' </tmp/texdirs >/tmp/texdirlist # colons to newlines

find “cat /tmp/texdirlist” -iname somefile.tex -print </tmp/texdirlist

Chapter 5: Path searching 17

Sorry that it’s annoyingly lengthy, but implementing this inside Kpathsea would be a
lot of error-prone trouble for something that is only useful for debugging. If your find does
not support —iname, you can get GNU Find from https://gnu.org/software/findutils.

The casefolding search is implemented in the source file kpathsea/pathsearch.c. Two
implementation points:

e Kpathsea never tries to check if a given directory resides on a case-insensitive filesystem,
because there is no efficient and portable way to do so. All it does is try to see if a
potential file name is a readable normal file (with, usually, the access system call).

e Kpathsea does not do any case-insensitive matching of the directories along
the path. It’s not going to find /Some/Random/file.tex when looking for
/some/random/file.tex. The casefolding only happens with the elements of the leaf
directory.

5.5 Filename database (1s-R)

Kpathsea goes to some lengths to minimize disk accesses for searches (see Section 5.3.6 [Sub-
directory expansion|, page 14). Nevertheless, in practice searching every possible directory
in typical TEX installations takes an excessively long time.

Therefore, Kpathsea can use an externally-built filename database file named 1s-R that
maps files to directories, thus avoiding the need to exhaustively search the disk.

A second database file aliases allows you to give additional names to the files listed in
1s-R.

The 1s-R and aliases features are implemented in the source file kpathsea/db.c.

5.5.1 1s-R

As mentioned above, you must name the main filename database 1s-R. You can put one
at the root of each TEX installation hierarchy you wish to search ($TEXMF by default, which
expands to a braced list of several hierarchies in TEX Live).

Kpathsea looks for 1s-R files along the TEXMFDBS path. It is best for this to contain all
and only those hierarchies from $TEXMF which are specified with !!—and also to specify
them with !! in TEXMFDBS. (See the end of this section for more on !!.)

The recommended way to create and maintain ‘1s-R’ is to run the mktexlsr script, which
is installed in ‘¢ (bindir)’ (/usr/local/bin by default). That script goes to some trouble
to follow symbolic links as necessary, etc. It’s also invoked by the distributed ‘mktex...’
scripts.

At its simplest, though, you can build 1s-R with the command
cd /your/texmf/root && 1ls -LAR ./ >1s-R
presuming your 1s produces the right output format (see the section below). GNU 1s, for
example, outputs in this format. Also presuming your 1s hasn’t been aliased in a system
file (e.g., /etc/profile) to something problematic, e.g., ‘1s ——color=tty’. In that case,
you will have to disable the alias before generating 1s-R. For the precise definition of the
file format, see Section 5.5.3 [Database format|, page 18.

Regardless of whether you use the supplied script or your own, you will almost certainly
want to invoke it via cron, so when you make changes in the installed files (say if you install

https://gnu.org/software/findutils

Chapter 5: Path searching 18

a new IATEX package), 1s-R will be automatically updated. However, for those using TEX
Live or system distributions, the package managers should run mktexlsr as needed.

The ‘-A’ option to 1s includes files beginning with ‘.’ (except for . and ..), such as
the file . tex included with the IXTEX tools package. (On the other hand, directories whose
names begin with ‘.’ are always ignored.)

If your system does not support symbolic links, omit the ‘-L’.

1s -LAR /your/texmf/root will also work. But using ‘./’ avoids embedding absolute
pathnames, so the hierarchy can be easily transported. It also avoids possible trouble with
automounters or other network filesystem conventions.

Kpathsea warns you if it finds an 1s-R file, but the file does not contain any us-
able entries. The usual culprit is running plain ‘ls -R’ instead of ‘1s -LR ./’ or ‘ls -R
/your/texmf/root’. Another possibility is some system directory name starting with a .’
(perhaps if you are using AFS); Kpathsea ignores everything under such directories.

If a particular path element begins with ‘! !’, only the database will be searched for that
element, never the disk; and if the database does not exist, nothing at all will be searched.
In TEX Live, most of the trees are specified with ‘1!’

For path elements that do not begin with ‘! !’ if the database exists, it will be used, and
the disk will not be searched. However, in this case, if the database does not exist, the disk
will be searched. In TEX Live, the most notable case of this is the TEXMFHOME tree, to allow
users to add and remove files from their own tree without having to worry about 1s-R.

(Aside: there are uncommon cases where a ‘!!” tree will be searched on disk even if the
1s-R file exists; they are too obscure to try to explain here. See pathsearch.c in the source
if you need to know.)

To sum up: do not create an 1s-R file unless you also take care to keep it up to date.
Otherwise newly-installed files will not be found.

5.5.2 Filename aliases

In some circumstances, you may wish to find a file under several names. For example, sup-
pose a TEX document was created using a DOS system and tries to read longtabl.sty. But
now it’s being run on a Unix system, and the file has its original name, longtable.sty. The
file won’t be found. You need to give the actual file longtable.sty an alias ‘longtabl.sty’.

You can handle this by creating a file aliases as a companion to the 1s-R for the
hierarchy containing the file in question. (You must have an 1s-R for the alias feature to
work.)

The format of aliases is simple: two whitespace-separated words per line; the first is
the real name longtable.sty, and second is the alias (Longtabl.sty). These must be base
filenames, with no directory components. longtable.sty must be in the sibling 1s-R.

Also, blank lines and lines starting with ‘%4’ or ‘#’ are ignored in aliases, to allow for
comments.

If a real file longtabl.sty exists, it is used regardless of any aliases.

5.5.3 Database format

The “database” read by Kpathsea is a line-oriented file of plain text. The format is that
generated by GNU (and most other) 1s programs given the ‘-R’ option, as follows.

e Blank lines are ignored.

Chapter 5: Path searching 19

e If a line begins with /" or *./” or ../’ and ends with a colon, it’s the name of a

directory. (‘. ./’ lines aren’t useful, however, and should not be generated.)

e All other lines define entries in the most recently seen directory. /’s in such lines will
produce possibly-strange results.

e Files with no preceding directory line are ignored.

For example, here’s the first few lines of 1s-R (which totals about 30K bytes) on my

system:

bibtex

dvips

fonts

1s-R

metafont

metapost

tex

web2c

./bibtex:
bib
bst
doc

./bibtex/bib:
asi.bib
btxdoc.bib

5.6 kpsewhich: Standalone path searching

The Kpsewhich program exercises the path searching functionality independent of any par-
ticular application. This can also be useful as a sort of £ind program to locate files in your
TEX hierarchies, perhaps in administrative scripts. It is used heavily in the distributed
‘mktex. ..’ scripts.

Synopsis:
kpsewhich option... filename...

The options and filename(s) to look up can be intermixed. Options can start with either
or ‘--’, and any unambiguous abbreviation is accepted.

(o

Kpsewhich looks up each non-option argument on the command line as a filename, and
outputs (by default) the first file found to standard output. If a file is not found, and more
than filename is given, a blank line is output for that file. See examples below.

The exit status is zero if all files were found, nonzero otherwise.

5.6.1 kpsewhich examples

Some examples of running kpsewhich with a typical TEX tree. A basic successful search
(exit status 0):

$ kpsewhich plain.tex

Chapter 5: Path searching 20

/usr/local/texlive/2024/texmf-dist/tex/plain/base/plain.tex

Searching for multiple files, one of which is not found (exit status is 1 for this):

$ kpsewhich plain.tex foobar plain.mf
/usr/local/texlive/2024/texmf-dist/tex/plain/base/plain.tex

/usr/local/texlive/2024/texmf-dist/metafont/base/plain.mf

Using --all to see all files by the same name (exit status 0):

$ kpsewhich --all language.dat
/usr/local/texlive/2024/texmf-dist/tex/generic/config/language.dat
/usr/local/texlive/2024/texmf-dist/lambda/generic/config/language.dat

5.6.2 Path searching options

Various options alter the path searching behavior. Options apply to all lookups.

‘——all’

Report all matches found, one per line. By default, if there is more than one
match, just one will be reported (chosen effectively at random). Exception:
with the glyph formats (pk, gf), this option has no effect and only the first
match is returned.

With both -all and multiple input files, there’s no easy way to discern which
matches belong to which files; you have to check the basename of the output.
This could be improved, if there is any demand.

‘——casefold-search’
‘——no-casefold-search’

Explicitly enable or disable the fallback to a case-insensitive search on Unix
platforms (see Section 5.4 [Casefolding search], page 15); no effect on Windows.
The default is enabled, set in texmf.cnf. Disabling (--no-casefold-search)
does not mean that searches magically become case-sensitive when the under-
lying (file)system is case-insensitive, it merely means that Kpathsea does not
do any casefolding itself.

‘——cnf-line=str’

Parse str as if it were a line in the texmf . cnf configuration file (see Section 5.2.1
[Config files], page 10), overriding settings in the actual configuration files,
and also in the environment (see Section 5.2 [Path sources|, page 10). This is
implemented by making any settings from str in the environment, overwriting
any value already there. Thus, an extra colon in a ‘--cnf-1line’ value will refer
to the value from a configuration file, not a user-set environment variable.

Furthermore, any variable set from str will also be set with the program
name suffix. For example, pdftex --cnf-1ine=TEXINPUTS=/foo: will set
both TEXINPUTS and TEXINPUTS_pdftex in the environment (and the value
will be /foo followed by the setting from texmf.cnf, ignoring any user-set
TEXINPUTS).

This behavior is desirable because, in practice, many variables in the distributed
texmf . cnf are program-specific, and the intuitive behavior is for values set on
the command line with ——cnf-1line to override them.

Chapter 5: Path searching 21

‘——dpi=num’
Set the resolution to num; this only affects ‘gf’ and ‘pk’ lookups. ‘-D’ is a
synonym, for compatibility with Dvips. Default is 600.

‘-—engine=name’
Set the engine name to name. By default it is not set in kpsewhich (TEX
engines set it to the appropriate string). The engine name is used in some
search paths to allow files with the same name but used by different engines to
coexist.

In particular, since the memory dump files (.fmt/.base/.mem) are now stored
in subdirectories named for the engine (tex, pdftex, xetex, etc.), you must
specify an engine name in order to find them. For example, cont-en.fmt
typically exists for both pdftex and xetex. With the default path settings,
you can use ‘-—engine=/’ to look for any dump file, regardless of engine; if
a dump file exists for more than one engine, it’s indeterminate which one is
returned. (The ‘/’ ends up specifying a normal recursive search along the path

where the dumps are stored, namely ‘$TEXMF/web2c{/$engine,}’.)

‘--format=name’
Set the format for lookup to name. By default, the format is guessed from the
filename, with ‘tex’ being used if nothing else fits. The recognized filename

(3]

extensions (including any leading ‘.’) are also allowable names.

All formats also have a name, which is the only way to specify formats with
no associated suffix. For example, for Dvips configuration files you can use
‘~—format="dvips config"’. (The quotes are for the sake of the shell.)

Here’s the current list of recognized names and the associated suffixes. See
Section 6.1 [Supported file formats|, page 27, for more information on each of
these.

The strings in parentheses are abbreviations recognized only by kpsewhich (not
the underlying library calls). They are provided when it would otherwise require
an argument containing a space to specify the format, to simplify quoting of
calls from shells.

gf: gf

pk: pk

bitmap font (bitmapfont):

tfm: .tfm

afm: .afm

base: .base

bib: .bib
bst: .bst
cnf: .cnf
1s-R: 1s-R 1ls-r
fmt: .fmt

map: .map
mem: .mem

mf: .mf
mfpool: .pool

Chapter 5: Path searching

mft: .mft

mp: .mp

mppool: .pool

MetaPost support (mpsupport):

ocp: .ocp

ofm: .ofm .tfm

opl: .opl .pl

otp: .otp

ovf: .ovf .vf

ovp: .ovp .vpl

graphic/figure: .eps .epsi

tex: .tex .sty .cls .fd .aux .bbl .def .clo .1ldf
TeX system documentation (doc):

texpool: .pool

TeX system source (source, src): .dtx .ins
PostScript header (psheader): .pro

Troff fonts (trofffont):

typel fonts: .pfa .pfb

vi: .vf
dvips config (dvipsconfig):
ist: .ist

truetype fonts (truetype, ttf): .ttf .ttc .TTF .TTC .dfont
type42 fonts (typed2): .t42 .T42

web2c files (web2c):

other text files (othertext):

other binary files (otherbin):

misc fonts (miscfont):

web: .web .ch

cweb: .w .web .ch

enc files (enc): .enc

cmap files (cmap):

subfont definition files (sfd): .sfd
opentype fonts (opentype, otf): .otf .OTF
pdftex config (pdftexconfig):

lig files (lig): .lig

texmfscripts:

lua: .lua .luatex .luc .luctex .texlua .texluc .tlu
font feature files (fea): .fea

cid maps (cidmap): .cid .cidmap

mlbib: .mlbib .bib

mlbst: .mlbst .bst

clua: .dll .so

ris: .ris

bltxml: .bltxml

This option and ‘--path’ are mutually exclusive.

Chapter 5: Path searching 23

‘-—interactive’
After processing the command line, read additional filenames to look up from
standard input.

‘--mktex=filetype’

‘-—no-mktex=filetype’
Turn on or off the ‘mktex’ script associated with filetype. Usual values for
filetype are ‘pk’, ‘mf’, ‘tex’; and ‘tfm’. By default, all are off in Kpsewhich,
even if they are enabled for TpX. This option implies setting —-must-exist.
See Section 6.5 [mktex scripts], page 33.

‘--mode=string’
Set the mode name to string; this also only affects ‘gf’ and ‘pk’ lookups. No
default: any mode will be found. See Section 6.5.3 [mktex script arguments],
page 36.

‘--must-exist’
Do everything possible to find the files, notably including searching the disk
and running the ‘mktex’ scripts. By default, only the 1s-R database is checked,
in the interest of efficiency.

‘--path=string’
Search along the path string (colon-separated as usual), instead of guessing the
search path from the filename. ‘//’ and all the usual expansions are supported
(see Section 5.3 [Path expansion|, page 12). This option and ‘--format’ are
mutually exclusive. To output the complete directory expansion of a path,
instead of doing a one-shot lookup, see ‘--expand-path’ and ‘--show-path’ in
the following section.

‘-—progname=name’
Set the program name to name; default is ‘kpsewhich’. This can affect the
search paths via the ‘. prognam’ feature in configuration files (see Section 5.2.1
[Config files], page 10).
‘-—subdir=string’
Report only those matches whose directory part ends with string (compared
literally, except case is ignored on a case-insensitive operating system). For
example, suppose there are two matches for a given name:
kpsewhich foo.sty
= /some/where/foo.sty
/another/place/foo.sty
Then we can narrow the result to what we are interested in with --subdir:
kpsewhich --subdir=where foo.sty
= /some/where/foo.sty

kpsewhich --subdir=place foo.sty
= /another/place/foo.sty

The string to match must be at the end of the directory part of the match, and
it is taken literally, with no pattern matching:

kpsewhich --subdir=another foo.sty

Chapter 5: Path searching 24

=
The string to match may cross directory components:

kpsewhich --subdir=some/where foo.sty
= /some/where/foo.sty

--subdir implies --all; if there is more than one match, they will all be
reported (in our example, both ‘where’ and ‘place’ end in ‘e’):

kpsewhich --subdir=e

= /some/where/foo.sty

/another/place/foo.sty

Because of the above rules, the presence of a leading ‘/’ is important, since it
“anchors” the match to a full component name:

kpsewhich --subdir=/lace foo.sty
=

However, a trailing ‘/’ is immaterial (and ignored), since the match always takes
place at the end of the directory part:

kpsewhich --subdir=lace/ foo.sty
= /another/place/foo.sty

The purpose of these rules is to make it convenient to find results only within a
particular area of the tree. For instance, a given script named foo.lua might ex-
ist within both texmf-dist/scripts/pkgl/ and texmf-dist/scripts/pkg2/.
By specifying, say, ‘--subdir=/pkgl’, you can be sure of getting the one you
are interested in.

We only match at the end because a site might happen to install TEX in
/some/coincidental/pkgl/path/, and we wouldn’t want to match texmf-
dist/scripts/pkg2/ that when searching for ‘/pkgl’.

5.6.3 Specially-recognized files for kpsewhich

kpsewhich recognizes a few special filenames on the command line and defaults to using
the ‘known’ file formats for them, merely to save the time and trouble of specifying the
format. This is only a feature of kpsewhich; when using the Kpathsea library itself, none
of these special filenames are recognized, and it’s still up to the caller to specify the desired

format.

Here is the list of special filenames to kpsewhich, along with their corresponding format:

config.ps

dvips config

dvipdfmx.cfg

‘other text files’

fmtutil.cnf

glyphlist.

mktex.cnf

‘web2c files’

txt

(map7

‘web2c files’

Chapter 5: Path searching 25

pdfglyphlist.txt

3 9y

map

pdftex.cfg
‘pdftex config’ (although pdftex.cfg is not used any more; look for the file
pdftexconfig.tex instead.)

texmf.cnf
‘cnf’

XDvi ‘other text files’

A user-specified format will override the above defaults.

Another reference for information about TEX’s many special files is tcfmgr .map, found
in texmf/texconfig/tcfmgr.map, which records various information about the above con-
figuration files (among others).

5.6.4 Auxiliary tasks
Kpsewhich provides some features in addition to path lookup as such:

‘~-—debug=num’
Set debugging options to num. See Section 8.3 [Debugging], page 43.

‘-—expand-braces=string’
Output variable, tilde, and brace expansion of string, which is assumed to be a
single path element. See Section 5.3 [Path expansion], page 12.

‘-—expand-path=string’

Output the complete expansion of string, with each element separated by the
usual path separator on the current system (‘;’ on Windows, ‘:’ otherwise).
This may be useful to construct a custom search path for a format not otherwise
supported. To retrieve the search path for a format that is already supported,
see ‘-—show-path’.
Nonexistent directories are culled from the output:

$ kpsewhich --expand-path '/tmp'

= /tmp

$ kpsewhich --expand-path '/nonesuch'

=

For one-shot uses of an arbitrary (not built in to Kpathsea) path, see ‘--path’
(see Section 5.6.2 [Path searching options|, page 20).

‘-—expand-var=string’
Output the variable and tilde expansion of string. For example, with the usual
texmf . cnf, ‘kpsewhich --expand-var='$TEXMF '’ returns the TEX system hi-
erarchy root(s). See Section 5.3 [Path expansion], page 12. The specified string
can contain anything, though, not just variable references. This calls kpse_
var_expand (see Section 7.5 [Programming with config files], page 40).

‘-~help-formats’
Output information about each supported format (see Section 6.1 [Supported
file formats], page 27), including the names and abbreviations, variables looked
for, and the original path.

Chapter 5: Path searching 26

‘--safe-extended-in-name=name’

‘--safe-extended-out-name=name’
As with ‘--safe-in-name’ and ‘--safe-out-name’ (next item), but also allow
files under the variables TEXMFVAR and TEXMFSYSVAR (see Section 7.2 [Calling
sequence], page 37).

‘--safe-in-name=name’

‘--safe-out-name=name’
Exit successfully if name is safe to open for reading or writing, respectively, else
unsuccessfully. No errors are output. These tests take account of the related
Kpathsea configuration settings (see Section 7.2 [Calling sequence], page 37).

‘~-show-path=name’
Show the path that would be used for file lookups of file type name. Either
a filename extension (‘pk’, ‘.vf’, etc.) or an integer can be used, just as with
‘-—format’, described in the previous section.

‘~-var-brace-value=variable’
Like ‘--var-value’ (next), but also expands ‘{...}’ constructs. (see Sec-
tion 5.3.4 [Brace expansion]|, page 14). Thus, the value is assumed to possibly
be several path elements, and ‘~’ is expanded at the beginning of each. The
path separator is changed to that of the current system in the expansion.

Example: ‘FO0='.;”' kpsewhich --var-brace-value=F00’ outputs (on a
Unix-ish system) ‘.:/home/karl’, supposing the latter is the current user’s
home directory. Note that the ‘;’ in the source value, as commonly used in
texmf . cnf, has changed to a ‘:’, as the normal path separator on the current
system. On a Windows-ish system, the ‘;’ would remain.

‘--var-value=variable’
Outputs the value of variable (a simple identifier like ‘TEXMFDIST’, with no
‘¢’ or other constructs), expanding ‘¢’ (see Section 5.3.2 [Variable expansion],
page 13) and ‘=’ (see Section 5.3.3 [Tilde expansion], page 13) constructs in the
value. ‘~’ expansion happens at the beginning of the overall value and at the
beginning of a variable expansion, but not arbitrarily within the string. Braces
are not expanded.

Example: ‘--var-value=texmf_casefold_search’ outputs (if the default is
not changed) ‘1’.

¢

Example to contrast with ‘--var-brace-value’: ‘FO0='.;~' kpsewhich
3 ~

--var-value=F00’ outputs ‘.;”’, i.e., the same as the input value, on all
systems.

5.6.5 Standard options
Kpsewhich accepts the standard GNU options:
e ‘—-help’ prints a help message on standard output and exits successfully.

e ‘—-version’ prints the Kpathsea version number and exits successfully.

27

6 TgX support

Although the basic features in Kpathsea can be used for any type of path searching, it came
about, as usual, with a specific application in mind: I wrote Kpathsea specifically for TEX
system programs. I had been struggling with the programs I was using (Dvips, Xdvi, and
TEX itself) having slightly different notions of how to specify paths; and debugging was
painful, since no code was shared.

Therefore, Kpathsea provides some TEX-specific formats and features. Indeed, many of
the purportedly generic path searching features were provided because they seemed useful
in that conTEXt (font lookup, particularly).

Kpathsea provides a standard way to search for files of any of the supported file types;
glyph fonts are a bit different than all the rest. Searches are based solely on names of files,
not their contents—if a GF file is (mis)named cmr10.600pk, it will be found as a PK file.

6.1 Supported file formats

Kpathsea has support for a number of file types. Each file type has a list of environment
and config file variables that are checked to define the search path, and most have a default
suffix that plays a role in finding files (see the next section). Some also define additional
suffixes, and/or a program to be run to create missing files on the fly.

Since environment variables containing periods, such as ‘TEXINPUTS.latex’, are not
allowed on some systems, Kpathsea looks for environment variables with an underscore,
e.g., ‘TEXINPUTS _latex’ (see Section 5.2.1 [Config files|, page 10).

The following table lists the above information. You can also get the list by giving the
‘~-~help-formats’ option to kpsewhich (see Section 5.6.4 [Auxiliary tasks|, page 25).

‘afm’ (Adobe font metrics, see Section “Metric files” in Dvips) AFMFONTS; suffix
‘Lafm’.
‘base’ (Metafont memory dump, see Section “Memory dumps” in Web2c) MFBASES,

TEXMFINI; suffix ‘.base’.

‘bib’ (BibTEX bibliography source, see Section “bibtex invocation” in Web2c)
BIBINPUTS, TEXBIB; suffix ‘.bib’.

‘bltxml’ (BibTEXML bibliography files for Biber, https://ctan.org/pkg/
biber) BLTXMLINPUTS suffix ‘.bltxml’.

‘bst’ (BibTEX style, see Section “Basic BibTEX style files” in Web2c¢) BSTINPUTS;
suffix ‘. bst’.

‘clua’ (dynamic libraries for Lua, https://ctan.org/pkg/luatex) CLUAINPUTS suf-
fixes ‘.d11’ and ‘.so’.

‘cmap’ (character map files) CMAPFONTS; suffix ‘. cmap’.

‘cnf’ (Runtime configuration files, see Section 5.2.1 [Config files], page 10) TEXMFCNF;

suffix ‘.cnf’.

‘cweb’ (CWEB input files) CWEBINPUTS; suffixes ‘.w’, ‘.web’; additional suffix ‘.ch’.

https://ctan.org/pkg/biber
https://ctan.org/pkg/biber
https://ctan.org/pkg/luatex

Chapter 6: TEX support 28

‘dvips config’
(Dvips ‘config.*’ files, such as config.ps, see Section “Config files” in Dvips)
TEXCONFIG.

‘enc files’
(encoding vectors) ENCFONTS; suffix ‘. enc’.

‘fmt’ (TgX memory dump, see Section “Memory dumps” in Web2c) TEXFORMATS,
TEXMFINT; suffix ‘. fmt’.

‘font cid map’
(CJK mapping) FONTCIDMAPS suffix ‘. cid’.

‘font feature files’
(primarily for OpenType font features) FONTFEATURES suffix ‘. fea’.

3

gf’ (generic font bitmap, see Section “Glyph files” in Dvips) programFONTS,
GFFONTS, GLYPHFONTS, TEXFONTS; suffix ‘gf’.

‘graphic/figure’

(Encapsulated PostScript figures, see Section “PostScript figures” in Dvips)
TEXPICTS, TEXINPUTS; additional suffixes: ‘.eps’, ‘.epsi’.

‘ist’ (makeindex style ﬁles) TEXINDEXSTYLE, INDEXSTYLE; suffix ‘.ist’.
‘lig files’
(ligature definition files) LIGFONTS; suffix ‘.1ig’.
‘1s-R’ (Filename databases, see Section 5.5 [Filename database], page 17) TEXMFDBS.
‘lua’ (Lua scripts, https://ctan.org/pkg/luatex) LUAINPUTS suffixes ‘.lua’,
‘.luatex’, ‘.1luc’, ‘.luctex’, ‘.texlua’, ‘.texluc’, ‘.tlu’.
‘map’ (Fontmaps, see Section 6.3.2 [Fontmap|, page 32) TEXFONTMAPS; suffix ‘.map’.
‘mem’ (MetaPost memory dump, see Section “Memory dumps” in Web2c) MPMEMS,

TEXMFINTI; suffix ‘.mem’.

‘MetaPost support’

(MetaPost support files, used by DMP; see Section “dmp invocation” in Web2c)
MPSUPPORT.

‘mf’ (Metafont source, see Section “mf invocation” in Web2c¢) MFINPUTS; suffix ‘.mf’;
dynamic creation program: mktexmf.

‘mfpool’ (Metafont program strings, see Section “pooltype invocation” in Web2c)
MFPOOL, TEXMFINI; suffix ‘.pool’.

‘mft’ (MFT style file, see Section “mft invocation” in Web2c¢) MFTINPUTS; suffix ‘.mft’.

‘misc fonts’
font-related files that don’t fit the other categories) MISCFONTS

(
‘mlbib’ (MIBibTEX bibliography source) MLBIBINPUTS, BIBINPUTS, TEXBIB; suffixes
‘.mlbib’, ‘.mlbib’.

‘mlbst’ (MIBibTEX style) MLBSTINPUTS, BSTINPUTS; suffixes ‘.mlbst’, ‘.bst’.

https://ctan.org/pkg/luatex

Chapter 6: TEX support 29

‘mp’ (MetaPost source, see Section “mpost invocation” in Web2c¢) MPINPUTS; suffix
‘.mp’.
‘mppool’ (MetaPost program strings, see Section “pooltype invocation” in Web2c)

MPPQOOL, TEXMFINTI; suffix ‘.pool’.

‘ocp’ (Omega compiled process files) OCPINPUTS;
suffix ‘. ocp’; dynamic creation program: MakeOmegaOCP.

4

ofm’ (Omega font metrics) OFMFONTS, TEXFONTS;
suffixes ‘.ofm’, ‘.tfm’; dynamic creation program: MakeOmegaOFM.

‘opentype fonts’
(OpenType fonts) OPENTYPEFONTS.

‘opl’ (Omega property lists) OPLFONTS, TEXFONTS; suffix ‘.opl’.

‘otp’ (Omega translation process files) 0TPINPUTS; suffix ‘. otp’.

‘ovf’ (Omega virtual fonts) OVFFONTS, TEXFONTS; suffix ‘. ovf’.

‘ovp’ (Omega virtual property lists) OVPFONTS, TEXFONTS; suffix ‘.ovp’.

‘pdftex config’
(PDFTEX-specific configuration files) PDFTEXCONFIG.

‘pk’ (packed bitmap fonts, see Section “Glyph files” in Dvips) PROGRAMFONTS (pro-
gram being ‘XDVI’, etc.), PKFONTS, TEXPKS, GLYPHFONTS, TEXFONTS; suffix ‘pk’;
dynamic creation program: mktexpk.

‘PostScript header’
(downloadable PostScript, see Section “Header files” in Dvips) TEXPSHEADERS,
PSHEADERS; additional suffix ‘.pro’.

ris (RIS bibliography files, primarily for Biber, https://ctan.org/pkg/biber)
RISINPUTS suffix ‘.ris’.

‘subfont definition files’
(subfont definition files) SFDFONTS suffix ‘.sfd’.

‘tex’ (TEX source, see Section “tex invocation” in Web2c¢) TEXINPUTS; suffix ‘.tex’;
additional suffixes: none, because such a list cannot be complete; dynamic
creation program: mktextex.

‘TeX system documentation’
(Documentation files for the TEX system) TEXDOCS.

‘TeX system sources’
(Source files for the TEX system) TEXSOURCES.

‘texmfscripts’
(Architecture-independent executables distributed in the texmf trees)
TEXMFSCRIPTS.

‘texpool’ (TEX program strings, see Section “pooltype invocation” in Web2¢) TEXPOOL,
TEXMFINTI; suffix ‘.pool’.

https://ctan.org/pkg/biber

Chapter 6: TEX support 30

‘tfm’ (TgX font metrics, see Section “Metric files” in Dvips) TFMFONTS, TEXFONTS;
suffix ‘. tfm’; dynamic creation program: mktextfm.

‘Troff fonts’
(Troff fonts, used by DMP; see Section “DMP invocation” in Web2c) TRFONTS.

‘truetype fonts’
(TrueType outline fonts) TTFONTS; suffixes ‘. ttf’ and ‘. TTF’, ‘. ttc’ and ‘. TTC’,
‘.dfont’.

‘typel fonts’
(Type 1 PostScript outline fonts, see Section “Glyph files” in Dvips) T1FONTS,
T1INPUTS, TEXPSHEADERS, DVIPSHEADERS; suffixes ‘.pfa’, ‘.pfb’.

‘type42 fonts’
(Type 42 PostScript outline fonts) T42FONTS.

‘vE’ (virtual fonts, see Section “Virtual fonts” in Dvips) VFFONTS, TEXFONTS; suffix
CLvE.
‘web’ WEB input files) WEBINPUTS; suffix ‘.web’; additional suffix ‘.ch’.
p

‘web2c files’
(files specific to the web2c implementation) WEB2C.

There are two special cases, because the paths and environment variables always depend
on the name of the program: the variable name is constructed by converting the program
name to upper case, and then appending ‘INPUTS’. Assuming the program is called ‘foo’,
this gives us the following table.

‘other text files’
(text files used by ‘foo’) FOOINPUTS.

‘other binary files’
(binary files used by ‘foo’) FOOINPUTS.

If an environment variable by these names are set, the corresponding texmf . cnf defini-
tion won’t be looked at (unless, as usual, the environment variable value has an extra ‘:’).
See Section 5.3.1 [Default expansion], page 12.

For the font variables, the intent is that:
e TEXFONTS is the default for everything.
e GLYPHFONTS is the default for bitmap (or, more precisely, non-metric) files.
e FEach font format has a variable of its own.

e FEach program has its own font override path as well; e.g., DVIPSFONTS for Dvipsk.
Again, this is for bitmaps, not metrics.

6.2 File lookup

This section describes how Kpathsea searches for most files (bitmap font searches are the
exception, as described in the next section).

Here is the search strategy for a file name:

1. If the file format defines default suffixes, and the suffix of name name is not already
a known suffix for that format, try the name with each default appended, and use

Chapter 6: TEX support 31

alternative names found in the fontmaps if necessary. Example: given ‘foo.bar’, look
for ‘foo.bar.tex’.

2. Search for name, and if necessary for alternative names found in the fontmaps. Exam-
ple: given ‘foo.bar’, we also look for ‘foo.bar’.

3. If the file format defines a program to invoke to create missing files, run it (see Sec-
tion 6.5 [mktex scripts], page 33).

The order in which we search for “suffixed” name (item 1) or the “as-is” name (item 2)
is controlled by the try_std_extension_first configuration value. The default set in
texmf .cnf is true, since common suffixes are already recognized: ‘babel.sty’ will only
look for ‘babel.sty’, not ‘babel.sty.tex’, regardless of this setting.

When the suffix is unknown (e.g., ‘foo.bar’), both names are always tried; the difference
is the order in which they are tried.

try_std_extension_first only affects names being looked up which *already™ have an
extension. A name without an extension (e.g., ‘tex story’) will always have an extension
added first.

This algorithm is implemented in the function kpathsea_find_file in the source file
kpathsea/tex-file.c. You can watch it in action with the debugging options (see Sec-
tion 8.3 [Debugging], page 43).

6.3 Glyph lookup

This section describes how Kpathsea searches for a bitmap font in GF or PK format (or
either) given a font name (e.g., ‘cmr10’) and a resolution (e.g., 600).

Here is an outline of the search strategy (details in the sections below) for a file name
at resolution dpi. The search stops at the first successful lookup.

1. Look for an existing file name.dpiformat in the specified format(s).
2. If name is an alias for a file f in the fontmap file texfonts.map, look for f.dpi.

3. Run an external program (typically named ‘mktexpk’) to generate the font (see Sec-
tion 6.5 [mktex scripts], page 33)

4. Look for fallback.dpi, where fallback is some last-resort font (typically ‘cmr10’).
This is implemented in kpathsea_find_glyph in kpathsea/tex-glyph.c.

6.3.1 Basic glyph lookup

When Kpathsea looks for a bitmap font name at resolution dpi in a format format, it
first checks each directory in the search path for a file ‘name.dpiformat’; for example,
‘cmr10.600pk’. Kpathsea looks for a PK file first, then a GF file.

If that fails, Kpathsea looks for ‘dpidpi/name. format’; for example, ‘dpi600/cmr10.pk’.
This is how fonts are typically stored on filesystems (such as DOS) that permit only three-
character extensions.

If that fails, Kpathsea looks for a font with a close-enough dpi. “Close enough” is de-
fined by the macro KPSE_BITMAP_TOLERANCE in kpathsea/tex-glyph.h to be dpi / 500
+ 1. This is slightly more than the 0.2% minimum allowed by the DVI standard (CTAN:/
dviware/driv-standard/level-0).

CTAN:/dviware/driv-standard/level-0
CTAN:/dviware/driv-standard/level-0

Chapter 6: TEX support 32

6.3.2 Fontmap

If a bitmap font or metric file is not found with the original name (see the previous section),
Kpathsea looks through any fontmap files for an alias for the original font name. These files
are named texfonts.map and searched for along the TEXFONTMAPS environment/config file
variable. All texfonts.map files that are found are read; earlier definitions override later
ones.

This feature is intended to help in two respects:

1. An alias name is limited in length only by available memory, not by your filesystem.
Therefore, if you want to ask for ‘Times-Roman’ instead of ptmr, you can (you get
‘ptmrsr’).

2. A few fonts have historically had multiple names: specifically, LaTgX’s “circle font”
has variously been known as circlel0, lcirclel0, and lcirc10. Aliases can make
all the names equivalent, so that it no longer matters what the name of the installed
file is; TEX documents will find their favorite name.

The format of fontmap files:

e Comments start with the last ‘4’ on a line and continue to the end of the line. (This
provides for names that include a %, ill-advised as that may be.)

e Blank lines are ignored.

e FEach nonblank line is broken up into a series of words: a sequence of non-whitespace
characters.

e If the first word is ‘include’, the second word is used as a filename, and it is searched
for and read.

e Otherwise, the first word on each line is the true filename;
e the second word is the alias;
e subsequent words are ignored.
If an alias has an extension, it matches only those files with that extension; otherwise,
it matches anything with the same root, regardless of extension. For example, an alias

‘foo.tfm’ matches only when foo.tfm is being searched for; but an alias ‘foo’ matches
foo.vf, foo.600pk, etc.

As an example, here is an excerpt from the texfonts.map in the Web2c distribution. It
makes the old and new names of the IWTEX circle fonts equivalent.

circlelO lcirclelO
circlelO lcirci10
lcirclelO circlelO
lcirclelO lcircil0
lcircil0 circlelO
lcircl0O lcirclelO

Fontmaps are implemented in the file kpathsea/fontmap.c. The Fontname distribution
has much more information on font naming (see Filenames for TEX fonts).

Chapter 6: TEX support 33

6.3.3 Fallback font

If a bitmap font cannot be found or created at the requested size, Kpathsea looks for the
font at a set of fallback resolutions. You specify these resolutions as a colon-separated list
(like search paths). Kpathsea looks first for a program-specific environment variable (e.g.,
DVIPSSIZES for Dvipsk), then the environment variable TEXSIZES, then a default specified
at compilation time (the Make variable default_texsizes). You can set this list to be
empty if you prefer to find fonts at their stated size or not at all.

Finally, if the font cannot be found even at the fallback resolutions, Kpathsea looks for
a fallback font, typically cmr10. Programs must enable this feature by calling kpathsea_
init_prog (see Section 7.2 [Calling sequence], page 37); the default is no fallback font.

6.4 Suppressing warnings

Kpathsea provides a way to suppress selected usually-harmless warnings; this is useful at
large sites where most users are not administrators, and thus the warnings are merely a
source of confusion, not a help. To do this, you set the environment variable or configuration
file value TEX_HUSH to a colon-separated list of values. Here are the possibilities:

‘all’ Suppress everything possible.

‘checksum’
Suppress mismatched font checksum warnings.

‘lostchar’
Suppress warnings when a character is missing from a font that a DVI or VF
file tries to typeset.

‘none’ Don’t suppress any warnings.

‘readable’
Suppress warnings about attempts to access a file whose permissions render it
unreadable.

‘special’ Suppresses warnings about an unimplemented or unparsable ‘\special’ com-
mand.

tex-hush. c defines the function that checks the variable value. Each driver implements its
own checks where appropriate.

6.5 mktex scripts

If Kpathsea cannot otherwise find a file, for some file types it is configured by default to
invoke an external program to create it dynamically (see Section 6.5.1 [mktex configuration],
page 34). These are collectively known as mktex scripts, since most of them are named
mktex....

For example, this is useful for fonts (bitmaps, TFM’s, and arbitrarily-sizable Metafont
sources such as the Sauter and EC fonts), since any given document can use fonts never
before referenced. Building all fonts in advance is therefore impractical, if not impossible.

It is also useful for the TEX ¢.fmt’ (and Metafont ‘.base’ and Metapost ‘.mem’ files, see
Section “Memory dumps” in web2c), where pre-generating every format consumes a lot of
both time and space.

Chapter 6: TEX support 34

The script is passed the name of the file to create and possibly other arguments, as
explained below. It must echo the full pathname of the file it created (and nothing else) to
standard output; it can write diagnostics to standard error.

6.5.1 mktex configuration

The list of file types and program names that can run an external program to create missing
files is listed in the next section. In the absence of configure options specifying otherwise,
everything but mktextex will be enabled by default. The configure options to change the
defaults are:
--without-mktexfmt-default
--without-mktexmf-default
--without-mktexocp-default
-—without-mktexofm-default
--without-mktexpk-default
--without-mktextfm-default
--with-mktextex-default
The configure setting is overridden if the environment variable or configuration file
value named for the script is set; e.g., MKTEXPK (see Section 6.5.3 [mktex script arguments],
page 36).
mktexfmt reads a file fmtutil. cnf, typically located in texmf/web2c/ to glean its config-
uration information. The rest of the files and features in this section are primarily intended
for the font generation scripts.

As distributed, all the scripts source a file texmf/web2c/mktex.cnf if it exists, so you
can override various defaults. See mktex.opt, for instance, which defines the default mode,
resolution, some special directory names, etc. If you prefer not to change the distributed
scripts, you can simply create mktex.cnf with the appropriate definitions (you do not need
to create it if you have nothing to put in it). mktex.cnf has no special syntax; it’s an
arbitrary Bourne shell script. The distribution contains a sample mktex.cnf for you to
copy and modify as you please (it is not installed anywhere).

In addition, you can configure a number of features with the MT_FEATURES variable,
which you can define:

e in mktex.opt, as just mentioned;
e by editing the file mktex.opt, either before ‘make install’ (in the source hierarchy)
or after (in the installed hierarchy);

e or in the environment.

If none of the options below are enabled, mktexpk, mktextfm, and mktexmf follow the
following procedure to decide where fonts should be installed. Find the tree where the font’s
sources are, and test the permissions of the ‘fonts’ directory of that tree to determine
whether it is writable. If it is, put the files in the tree in appropriate locations. If it isn’t
writable, see whether the tree is a system tree (named in SYSTEXMF). If so, the VARTEXFONTS
tree is used. In all other cases the working directory is used.

The ‘appendonlydir’ option is enabled by default.
‘appendonlydir’
Tell mktexdir to create directories append-only, i.e., set their sticky bit (see
Section “Mode Structure” in GNU Core Utilities). This feature is silently ig-

Chapter 6: TEX support 35

‘dosnames’

‘fontmaps’

nored on non-Unix platforms (e.g. Windows/NT and MS-DOS) which don’t
support similar functionality. This feature is enabled by default.

Use 8.3 names; e.g., dpi600/cmr10.pk instead of cmr10.600pk. Note that this
feature only affects filenames that would otherwise clash with other TeX-related
filenames; mktex scripts do nothing about filenames which exceed the 8+3 MS-
DOS limits but remain unique when truncated (by the OS) to these limits,
and nether do the scripts care about possible clashes with files which aren’t
related with TeX. For example, cmr10.600pk would clash with cmr10.600gf
and is therefore changed when ‘dosnames’ is in effect, but mf . pool and mp.base
don’t clash with any TeX-related files and are therefore unchanged.

This feature is turned on by default on MS-DOS. If you do not wish ‘dosnames’
to be set on an MS-DOS platform, you need to set the MT_FEATURES environ-
ment variable to a value that doesn’t include ‘dosnames’. You can also change
the default setting by editing mktex.opt, but only if you use the mktex shell
scripts; the emulation programs don’t consult mktex.opt.

Instead of deriving the location of a font in the destination tree from the location
of the sources, the aliases and directory names from the Fontname distribution
are used. (see Section “Introduction” in Fontname).

‘nomfdrivers’

‘nomode’

Let mktexpk and mktextfm create metafont driver files in a temporary directory.
These will be used for just one metafont run and not installed permanently.

Omit the directory level for the mode name; this is fine as long as you generate
fonts for only one mode.

‘stripsupplier’

Omit the font supplier name directory level.

‘striptypeface’

‘strip’

‘varfonts’

‘texmfvar’

Omit the font typeface name directory level.

Omit the font supplier and typeface name directory levels. This feature is
deprecated in favour of ‘stripsupplier’ and ‘striptypeface’.

When this option is enabled, fonts that would otherwise be written in sys-
tem texmf tree go to the VARTEXFONTS tree instead. The default value in
kpathsea/Makefile.in is /var/tmp/texfonts. The Linux File System Stan-
dard recommends /var/tex/fonts.

The ‘varfonts’ setting in MT_FEATURES is overridden by the USE_VARTEXFONTS
environment variable: if set to ‘1’, the feature is enabled, and if set to ‘0’, the
feature is disabled.

Force generated files that would go into a system tree (as defined by SYSTEXMF)
into TEXMFVAR. Starting with teTEX-3.0, the variable TEXMFVAR is always set.
The ‘varfonts’ feature takes precedence if also set.

Chapter 6: TEX support 36

The ‘texmfvar’ setting in MT_FEATURES is overridden by the USE_TEXMFVAR
environment variable: if set to ‘1’, the feature is enabled, and if set to ‘0’, the
feature is disabled.

6.5.2 mktex script names

The following table shows the default name of the script for each of the file types which
support runtime generation.

mktexfmt (‘.fmt’, ‘.base’, ‘.mem’) TEX/Metafont/MetaPost formats. This script is also
named fmtutil, and reads fmtutil.cnf for configuration information.

mktexmf (‘.mf’) Metafont input files.

mkocp (“.ocp’) Omega compiled process files.

mkofm (“.ofm’) Omega font metric files.

mktexpk (‘pk’) Glyph fonts.

mktextex (‘.tex’) TEX input files (disabled by default).

mktextfm (‘.tfm’) TFM files.

These names can be overridden by an environment variable specific to the program; for
example, DVIPSMAKEPK for Dvipsk.

If amktex. .. script fails, the invocation is appended to a file missfont.log (by default)
in the current directory. After fixing the problem, you can then execute the log file to create
the missing files.

If the environment variable TEXMF_OUTPUT_DIRECTORY is set, missfont.log is first tried
to be written there; if it’s not set, the current directory is tried first. If that first write fails
and the environment variable or configuration file value TEXMFOUTPUT is set, we try to write
missfont.log there. Otherwise nothing is written.

The base filename ‘missfont.log’ is overridden by the MISSFONT_LOG environment vari-
able or configuration file value.

6.5.3 mktex script arguments

The first argument to a mktex script is always the name of the file to be created.
In the default mktexpk implementation, additional arguments may also be passed:
‘-—dpi num’
Sets the resolution of the generated font to num.
‘-—mfmode name’
Sets the Metafont mode to name.
‘~=bdpi num’
Sets the “base dpi” for the font. This must match the mode being used.
‘--mag string’
A “magstep” string suitable for the Metafont mag variable. This must match
the combination of bdpi and dpi being used.

‘--destdir string’
A directory name. If the directory is absolute, it is used as-is. Otherwise, it is
appended to the root destination directory set in the script.

37

7 Programming

This chapter is for programmers who wish to use Kpathsea. See Chapter 1 [Introduction],
page 1, for the conditions under which you may do so (in short, it is released under LGPLv2.1
or later).

7.1 Programming overview

Aside from this manual, your best source of information is the source to the programs that
use Kpathsea (see Chapter 1 [Introduction], page 1). First, Kpsewhich is a small utility
program whose sole purpose is to exercise the main path-searching functionality. Of the
drivers, Dviljk is probably the simplest full application program. Xdvik adds VF support
and the complication of X resources. Dvipsk adds the complication of its own config files.
Web2c is source code I also maintain, so it uses Kpathsea rather straightforwardly, but is
of course complicated by the Web to C translation.

When looking at these program sources, you should know that previous versions of the
library had a different programming interface; the current interface supports re-entrancy.
Historically, the library function names were prefixed with kpse_ instead of kpathsea_,
and they did not need an instance variable as first argument. This change was made in
2009. The old functions will never disappear, and can reliably continue to be used when
they suffice, as they do for the programs above. The main application using the re-entrant
API is the MetaPost library used by MetaPost and LuaTgX.

Beyond these examples, the .h files in the Kpathsea source describe the interfaces
and functionality (and of course the .c files define the actual routines, which are the
ultimate documentation). pathsearch.h declares the basic searching routine. tex-file.h
and tex-glyph.h define the interfaces for looking up particular kinds of files. In view
of the way the headers depend on each other, it is recommended to use #include
<kpathsea/kpathsea.h> which includes every Kpathsea header.

If you want to include only specific headers, you should still consider including
kpathsea/config.h before including any other Kpathsea header, as it provides symbols
used in the other headers; kpathsea/config.h includes kpathsea/c-auto.h, which is
generated by Autoconf.

The library provides no way for an external program to register new file types: tex-
file. [ch] must be modified to do this. For example, Kpathsea has support for looking up
Dvips config files, even though no program other than Dvips is likely to ever want to do
so. I felt this was acceptable, since along with new file types should also come new defaults
in texmf.cnf (and its descendant paths.h), since it’s simplest for users if they can modify
one configuration file for all kinds of paths.

Kpathsea does not parse any formats itself; it barely opens any files. Its primary purpose
is to return filenames. The GNU font utilities package contains libraries to read TFM, GF,
and PK files, as do the programs above, of course.

7.2 Calling sequence

The typical way to use Kpathsea in your program goes something like this:

Chapter 7: Programming 38

1. Call kpathsea_new to create a new library instance. This variable must be passed as
the first argument to all the following library functions. The rest of this manual will
be using kpse as a placeholder for the name of this variable.

2. Call kpathsea_set_program_name with argv[0] as the second argument; the third
argument is a string or NULL. The third argument is used by Kpathsea as the program
name for the . program feature of config files (see Section 5.2.1 [Config files|, page 10).
If the third argument is NULL, the value of the second argument is used. This function
must be called before any other use of the Kpathsea library.

kpathsea_set_program_name always sets the variables kpse->invocation_name and
kpse->invocation_short_name. These variables are used in the error message macros
defined in kpathsea/lib.h. It sets the variable kpse->program_name to the program
name it uses.

It also initializes debugging options based on the environment variable KPATHSEA_DEBUG
(if that is set).

Finally, it sets the environment variables SELFAUTOLOC, SELFAUTODIR and
SELFAUTOPARENT to the location, parent and grandparent directory of the executable,
removing . and .. path elements and resolving symbolic links. These are used in the
default configuration file to allow people to invoke TeX from anywhere. You can use
‘kpsewhich --expand-var=\$SELFAUTOLOC’, etc., to see the values.

3. Set debugging options. See Section 8.3 [Debugging], page 43. If your program doesn’t
have a debugging option already, you can define one and set kpse->debug to the
number that the user supplies (as in Dviljk and Web2c), or you can just omit this
altogether (users can always set the KPATHSEA_DEBUG environment variable). If you do
have runtime debugging already, you need to merge Kpathsea’s options with yours (as
in Dvipsk and Xdvik).

4. If your program has its own configuration files that can define search paths, you should
assign those paths to the client_path member in the appropriate element of the
kpse->format_info array. (This array is indexed by file type; see tex-file.h.) See
resident.c in Dvipsk for an example.

5. Call kpathsea_init_prog (see proginit.c). It’s useful for the DVI drivers, at least,
but for other programs it may be simpler to extract the parts of it that actually apply.
This does not initialize any paths, it just looks for (and sets) certain environment
variables and other random information. Search paths are always initialized at the
first call to find a file of a given type, not requiring an explicit initialization call; this
eliminates much useless work, e.g., initializing the BibTEX search paths in a DVI driver.

6. The routine to actually find a file of type format is kpathsea_find_file. You can
call kpathsea_find_file after doing only the first and second of the initialization
steps above—Kpathsea automatically reads the texmf.cnf generic config files, looks
for environment variables, and does expansions at the first lookup.

7. To find PK and/or GF bitmap fonts, the routine is kpathsea_find_glyph, defined in
tex-glyph.h. This returns a structure in addition to the resultant filename, because
fonts can be found in so many ways. See the documentation in the source.

8. Before opening a file, especially for writing, you should check if the filename is accept-
able. See the next section (see Section 7.3 [Safe filenames], page 39).

Chapter 7: Programming 39

9. To actually open a file, not just return a filename, call kpathsea_open_file. This
function takes the name to look up and a Kpathsea file format as arguments, and
returns the usual FILE *. It always assumes the file must exist, and thus will search
the disk if necessary (unless the search path specified ‘!!’, etc.). In other words, if you
are looking up a VF or some other file that need not exist, don’t use this.

10. To close the Kpathsea library instance you are using, call kpathsea_finish. This
function closes any open log files and frees the memory used by the instance.

Kpathsea also provides many utility routines. Some are generic: hash tables, memory
allocation, string concatenation and copying, string lists, reading input lines of arbitrary
length, etc. Others are filename-related: default path, tilde, and variable expansion, stat
calls, etc.

The c-*.h header files can also help your program adapt to many different systems.
You will almost certainly want to use Autoconf and probably Automake for configuring
and building your software if you use Kpathsea; I strongly recommend using Autoconf and
Automake regardless. They are available from https://gnu.org/software.

7.3 Safe filenames

See Chapter 3 [Security], page 5, for some general security considerations with the TEX
system.

In the implementation, the main security feature to disallow writing to potentially dan-
gerous files is a configuration variable openout_any. It specifies one of three levels:

e When set to ‘a’ (for “any”), no restrictions are imposed.
e When is set to ‘r’ (for “restricted”), filenames beginning with ‘.’ are disallowed.
e When set to ‘p’ (for “paranoid”), additional restrictions are imposed.
1. First, an absolute filename must refer to a file in (or in a subdirectory of) either the

TEXMF_QUTPUT_DIRECTORY environment variable or the TEXMFOUTPUT environment
variable or configuration file setting.

2. LuaTgX uses a so-called “extended” mode, in which the values of TEXMFVAR and
TEXMFSYSVAR are also checked for absolute filenames. This is done because, in
practice, fundamental parts of the LualATEX system (notably luaotfload) need a
cache directory, and historically the TEXMF [SYS]VAR variables are what has been
used. We neither recommend nor expect any other programs to need this.

3. Finally, any attempt to go up a directory level is forbidden; that is, paths may not
contain a ‘..’ component.

The paranoid setting is the default. Any program intended to be safely called from TEX
should implement the same measures, one way or another. See Section “Shell escapes” in

Web2c¢.

Kpathsea does not resolve ‘..’ components, or symbolic links, to see if the final result is
an acceptable directory; they are simply forbidden. That is, Kpathsea merely considers the
value as a string, not looking on the filesystem at all. (However, if another program wants
to do such resolutions and check the result, that’s ok; possibly preferable.)

For backwards compatibility, ‘y’ and ‘1’ are synonyms of ‘a’; while ‘n’ and ‘0’ are syn-
onyms for ‘r’.

https://gnu.org/software

Chapter 7: Programming 40

The function kpathsea_out_name_ok, with a filename as second argument, returns true
if that filename is acceptable to be opened for output or false otherwise. The Kpsewhich
program has an option (‘--safe-out-name’) providing a command line interface for the

check.

For LuaTgEX’s extended mode, the function is kpathsea_out_name_ok_extended, and
the Kpsewhich option is ‘--safe-extended-out-name’.

Although the analogous functions kpathsea_in_name_ok (resp. _extended, as well as
the others below, exist to check a filename being acceptable for reading, as of 2026, they
always return true without checking anything. This is because no other value was useful (or
used) in practice. More comments about this are in the default texmf .cnf, at openin_any
(which variable is defined, but is now ignored).

The functions above write a message to standard error if the usage is forbidden (so every
caller does not have to do so). Each function has a _silent counterpart which does not
write the message; this is what Kpsewhich calls, since messages would be counterproductive
in that case. Thus:

kpathsea_out_name_ok_silent
kpathsea_out_name_ok_silent_extended
kpathsea_in_name_ok_silent
kpathsea_in_name_ok_silent_extended

Furthermore, there are kpse_... versions of all the above functions (as usual), with
the default library instance implicitly passed as the first argument. LuaTgX provides both
kpse.* and kpathsea.* bindings, so it’s good to always have both.

Sorry for the combinatorial explosion, but we hope no further options will ever be needed.
If so, we’ll likely provide a more generic interface as well as the above.

7.4 Program-specific files

Many programs will need to find some configuration files. Kpathsea contains some support
to make it easy to place them in their own directories. The Standard TEX directory structure
(see Section “Introduction” in A Directory Structure for TEX files), specifies that such files
should go into a subdirectory named after the program, like ‘texmf /ttf2pk’.

Two formats, ‘kpse_program_text_format’ and ‘kpse_program_binary_format’, use
. :$TEXMF/program// as their compiled-in search path. To override this default, you can
use the variable PROGRAMINPUTS in the environment and/or ‘texmf.cnf’. That is to say,
the name of the variable is constructed by converting the name of the program to upper
case, and appending INPUTS.

The only difference between these two formats is whether kpathsea_open_file will
open the files it finds in text or binary mode.

7.5 Programming with config files

You can (and probably should) use the same texmf.cnf configuration file that Kpathsea
uses for your program. This helps installers by keeping all configuration in one place.

To retrieve a value for a configuration variable var, the best way is to call
kpathsea_var_value on the string var. This will look first for an environment variable
var, then a config file value. The result will be the value found or ‘NULL’. This function

Chapter 7: Programming 41

is declared in kpathsea/variable.h. For an example, see the shell_escape code in
web2c/1ib/texmfmp. c.

The routine to do full variable and tilde expansion of an arbitrary string in the context
of a search path (as opposed to simply retrieving a value) is kpathsea_var_expand, also
declared in kpathsea/variable.h. However, it’s generally only necessary to set the search
path structure components as explained in the previous section instead of using this directly.
Because of its usage with any input string, undefined $F00 constructs in the argument to
kpathsea_var_expand are returned literally ("$F00"), while undefined ${F00} constructs
are expanded to the empty string.

If for some reason you want to retrieve a value only from a config file, not automati-
cally looking for a corresponding environment variable, call kpathsea_cnf_get (declared
in kpathsea/cnf.h) with the string var.

No initialization calls are needed.

42

8 Reporting bugs

If you have problems or suggestions, please report them to tex-k@tug.org using the bug
checklist below.

Please report bugs in the documentation; not only factual errors or inconsistent behavior,

but unclear or incomplete explanations, typos, wrong fonts, . ..

8.1 Bug checklist

Before reporting a bug, please check below to be sure it isn’t already known (see Section 8.5
[Common problems]|, page 45).

Bug reports should be sent via electronic mail to tex-k@tug.org.

The general principle is that a good bug report includes all the information necessary for

reproduction. Therefore, to enable investigation, your report should include the following;:

The version number(s) of the program(s) involved, and of Kpathsea itself. You can
get the former by giving a sole option ‘--version’ to the program, and the latter
by running ‘kpsewhich --version’. The NEWS and ChangeLog files also contain the
version number.

The hardware, operating system (including version), compiler, and make program you
are using (the output of uname -a is a start on the first two, though incomplete).

Any options you gave to configure. This is recorded in the config.status files.

If you are reporting a bug in ‘configure’ itself, it’s probably system-dependent, and it
will be unlikely the maintainers can do anything useful if you merely report that thus-
and-such is broken. Therefore, you need to do some additional work: for some bugs,
you can look in the file config.log where the test that failed should appear, along
with the compiler invocation and source program in question. You can then compile
it yourself by hand, and discover why the test failed. Other ‘configure’ bugs do not
involve the compiler; in that case, the only recourse is to inspect the configure shell
script itself, or the Autoconf macros that generated configure.

The log of all debugging output, if the bug is in path searching. You can get this by
setting the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.
Please look at the log yourself to make sure the behavior is really a bug before reporting
it; perhaps “old” environment variable settings are causing files not to be found, for
example.

The contents of any input files necessary to reproduce the bug. For bugs in DVI-reading
programs, for example, this generally means a DVI file (and any EPS or other files it
uses)—TEX source files are helpful, but the DVI file is required, because that’s the
actual program input.

If you are sending a patch (do so if you can!), please do so in the form of a context diff
(‘diff -c’) against the original distribution source. Any other form of diff is either not
as complete or harder for me to understand. Please also include a ChangeLog entry.

If the bug involved is an actual crash (i.e., core dump), it is easy and useful to include
a stack trace from a debugger (I recommend the GNU debugger GDB (https://gnu.
org/software/gdb). If the cause is apparent (a NULL value being dereferenced, for
example), please send the details along. If the program involved is TEX or Metafont,

mailto:tex-k@tug.org
mailto:tex-k@tug.org
https://gnu.org/software/gdb
https://gnu.org/software/gdb

Chapter 8: Reporting bugs 43

and the crash is happening at apparently-sound code, however, the bug may well be
in the compiler, rather than in the program or the library (see Section 8.5.4 [TEX or
Metafont failing], page 47).

e Any additional information that will be helpful in reproducing, diagnosing, or fixing
the bug.

8.2 Mailing lists

Web2c and Kpathsea in general are discussed on the mailing list tex-k@tug.org. You can
subscribe and peruse the archives on the web https://lists.tug.org/tex-k.

You do not need to join to submit a report, nor will it affect whether you get a response.
Be aware that large data files are sometimes included in bug reports. If this is a problem
for you, do not join the list.

If you are looking for general TEX help, such as how to install a full TEX system or how
to use TEX, please see https://tug.org/begin.html.

8.3 Debugging

Kpathsea provides a number of runtime debugging options, detailed below by their names
and corresponding numeric values. When the files you expect aren’t being found, the thing
to do is enable these options and examine the output.

You can set these with some runtime argument (e.g., ‘-d’) to the program; in that case,
you should use the numeric values described in the program’s documentation (which, for
Dvipsk and Xdvik, are different than those below). It’s best to give the ‘-d’ (or what-
ever) option first, for maximal output. Dvipsk and Xdvik have additional program-specific
debugging options as well.

You can also set the environment variable KPATHSEA_DEBUG; in this case, you should use
the numbers below. If you run the program under a debugger and set the instance variable
kpse->debug, also use the numbers below.

In any case, by far the simplest value to use is ‘-1’, which will turn on all debugging

output. This is usually better than guessing which particular values will yield the output
you need.

Debugging output always goes to standard error, so you can redirect it easily. For
example, in Bourne-compatible shells:

dvips -d -1 ... 2>/tmp/debug
It is sometimes helpful to run the standalone Kpsewhich utility (see Section 5.6 [Invoking
kpsewhich], page 19), instead of the original program.
In any case, you cannot use the names below; you must always use somebody’s numbers.
(Sorry.) To set more than one option, just sum the corresponding numbers.

KPSE_DEBUG_STAT (1)
Report ‘stat’(2) calls. This is useful for verifying that your directory struc-
ture is not forcing Kpathsea to do many additional file tests (see Section 8.5.2
[Slow path searching], page 46, and see Section 5.3.6 [Subdirectory expansion],
page 14). If you are using an up-to-date 1s-R database (see Section 5.5 [File-
name database], page 17), this should produce no output unless a nonexistent
file that must exist is searched for.

mailto:tex-k@tug.org
https://lists.tug.org/tex-k
https://tug.org/begin.html

Chapter 8: Reporting bugs 44

KPSE_DEBUG_HASH (2)
Report lookups in all hash tables: 1s-R and aliases (see Section 5.5 [Filename
database], page 17); font aliases (see Section 6.3.2 [Fontmap|, page 32); and
config file values (see Section 5.2.1 [Config files|, page 10). Useful when expected
values are not being found, e.g.., file searches are looking at the disk instead of
using 1s-R.

KPSE_DEBUG_FOPEN (4)
Report file openings and closings. Especially useful when your system’s file
table is full, for seeing which files have been opened but never closed. In case
you want to set breakpoints in a debugger: this works by redefining ‘fopen’
(‘fclose’) to be ‘kpse_fopen_trace’ (‘kpse_fclose_trace’).

KPSE_DEBUG_PATHS (8)
Report general path information for each file type Kpathsea is asked to search.
This is useful when you are trying to track down how a particular path got
defined—from texmf.cnf, config.ps, an environment variable, the compile-
time default, etc. This is the contents of the kpse_format_info_type structure
defined in tex-file.h.

KPSE_DEBUG_EXPAND (16)
Report the directory list corresponding to each path element Kpathsea searches.
This is only relevant when Kpathsea searches the disk, since 1s-R searches don’t
look through directory lists in this way.

KPSE_DEBUG_SEARCH (32)
Report on each file search: the name of the file searched for, the path searched
in, whether or not the file must exist (when drivers search for cmr10.vf, it need
not exist), and whether or not we are collecting all occurrences of the file in the
path (as with, e.g., texmf.cnf and texfonts.map), or just the first (as with
most lookups). This can help you correlate what Kpathsea is doing with what
is in your input file.

KPSE_DEBUG_VARS (64)
Report the value of each variable Kpathsea looks up. This is useful for verifying
that variables do indeed obtain their correct values.

GSFTOPK_DEBUG (128)
Activates debugging printout specific to gsftopk program.

MAKETEX_DEBUG (512)
If you use the optional mktex programs instead of the traditional shell scripts,
this will report the name of the site file (mktex.cnf by default) which is
read, directories created by mktexdir, the full path of the 1s-R database
built by mktexlsr, font map searches, MT_FEATURES in effect, parameters from
mktexnam, filenames added by mktexupd, and some subsidiary commands run
by the programs.

MAKETEX_FINE_DEBUG (1024)
When the optional mktex programs are used, this will print additional debug-
ging info from functions internal to these programs.

Chapter 8: Reporting bugs 45

Debugging output from Kpathsea is always written to standard error, and begins with
the string ‘kdebug:’. (Except for hash table buckets, which just start with the number,
but you can only get that output running under a debugger. See comments at the hash_
summary_only variable in kpathsea/db.c.)

8.4 Logging

Kpathsea can record the time and filename found for each successful search. This may be
useful in finding good candidates for deletion when your filesystem is full, or in discovering
usage patterns at your site.

To do this, define the environment or config file variable TEXMFLOG. The value is the
name of the file to append the information to. The file is created if it doesn’t exist, and
appended to if it does.

Each successful search turns into one line in the log file: two words separated by a space.
The first word is the time of the search, as the integer number of seconds since “the epoch”,
i.e., UTC midnight 1 January 1970 (more precisely, the result of the time system call). The
second word is the filename.

For example, after setenv TEXMFLOG /tmp/log, running Dvips on story.dvi appends
the following lines:

774455887 /usr/local/share/texmf/dvips/config.ps

774455887 /usr/local/share/texmf/dvips/psfonts.map

774455888 /usr/local/share/texmf/dvips/texc.pro

774455888 /usr/local/share/texmf/fonts/pk/1ljfour/public/cm/cmbx10.600pk
774455889 /usr/local/share/texmf/fonts/pk/ljfour/public/cm/cms110.600pk
774455889 /usr/local/share/texmf/fonts/pk/1ljfour/public/cm/cmr10.600pk
774455889 /usr/local/share/texmf/dvips/texc.pro

Only filenames that are absolute are recorded, to preserve some semblance of privacy.

In addition to this Kpathsea-specific logging, pdftex provides an option -recorder to
write the names of all files accessed during a run to the file basefile.fls.

Finally, most systems provide a general tool to output each system call, thus including
opening and closing files. It might be named strace, truss, struss, or something else.

8.5 Common problems

Here are some common problems with configuration, compilation, linking, execution, .. .

8.5.1 Unable to find files

If a program complains it cannot find fonts (or other input files), any of several things
might be wrong. In any case, you may find the debugging options helpful. See Section 8.3
[Debugging], page 43.
e Perhaps you simply haven’t installed all the necessary files; the basic fonts and input
files are distributed separately from the programs. See Chapter 2 [unixtex.ftp], page 4.

e You have (perhaps unknowingly) told Kpathsea to use search paths that don’t reflect
where the files actually are. One common cause is having environment variables set
from a previous installation, thus overriding what you carefully set in texmf .cnf (see

Chapter 8: Reporting bugs 46

Section 6.1 [Supported file formats|, page 27). System /etc/profile or other files such
may be the culprit.

e Your files reside in a directory that is only pointed to via a symbolic link within a leaf
directory, and is not listed in 1s-R.

Unfortunately, Kpathsea’s subdirectory searching has a problematic deficiency: If a
directory d being searched for subdirectories contains symbolic links to other directories
(and possibly other plain files or symlinks), but no true subdirectories, by default d
will be considered a leaf directory, i.e., the symbolic links will not be followed. See
Section 5.3.6 [Subdirectory expansion], page 14.

You can work around this problem by creating an empty dummy subdirectory in d.
Then d will no longer be a leaf, and the symlinks will be followed.

Another workaround is to set the configuration variable kpse_ignore_nlink_ for_leaf
to 1. Then Kpathsea will look at all entries in all directories in determining whether
they are (symlinks to) subdirectories. This is not the default because it is considerably
expensive to consider the contents of every leaf directory.

The directory immediately followed by the ‘//’ in the path specification is always
searched for subdirectories, even if it is a leaf. Presumably you would not have asked
for the directory to be searched for subdirectories if you didn’t want it to be.

e If the fonts (or whatever) don’t already exist, mktexpk (or mktexmf or mktextfm) will
try to create them. If these rather complicated shell scripts fail, you’ll eventually
get an error message saying something like ‘Can't find font fontname’. The best
solution is to fix (or at least report) the bug in mktexpk; the workaround is to generate
the necessary fonts by hand with Metafont, or to grab them from a CTAN site (see
Chapter 2 [unixtex.ftp], page 4).

e There is a bug in the library. See Chapter 8 [Reporting bugs|, page 42.

8.5.2 Slow path searching

If your program takes an excessively long time to find fonts or other input files, but does
eventually succeed, here are some possible culprits:

e Most likely, you just have a lot of directories to search, and that takes a noticeable
time. The solution is to create and maintain a separate 1s-R file that lists all the files
in your main TEX hierarchy. See Section 5.5 [Filename database], page 17. Kpathsea
always uses 1s-R if it’s present; there’s no need to recompile or reconfigure any of the
programs.

e Your recursively-searched directories (e.g., /usr/local/share/texmf/fonts//), con-
tain a mixture of files and directories. This prevents Kpathsea from using a useful
optimization (see Section 5.3.6 [Subdirectory expansion], page 14).

It is best to have only directories (and perhaps a README) in the upper levels of the
directory structure, and it’s very important to have only files, and no subdirectories,
in the leaf directories where the dozens of TFM, PK, or whatever files reside.

In any case, you may find the debugging options helpful in determining precisely when
the disk or network is being pounded. See Section 8.3 [Debugging], page 43.

Chapter 8: Reporting bugs 47

8.5.3 Unable to generate fonts

Metafont outputs fonts in bitmap format, tuned for a particular device at a particular res-
olution, in order to allow for the highest-possible quality of output. Some DVI-to-whatever
programs, such as Dvips, try to generate these on the fly when they are needed, but this
generation may fail in several cases.

If mktexpk runs, but fails with this error:

mktexpk: Can't guess mode for nnn dpi devices.
mktexpk: Use a config file to specify the mode, or update me.

you need to ensure the resolution and mode match; just specifying the resolution, as in
-D 360, is not enough.

You can specify the mode name with the -mode option on the Dvips command line, or in
a Dvips configuration file (see Section “Config files” in Dvips), such as config.ps in your
document directory, ~/.dvipsrc in your home directory, or in a system directory (again
named config.ps). (Other drivers use other files, naturally.)

For example, if you need 360 dpi fonts, you could include this in a configuration file:

D 360
M lgmed

If Metafont runs, but generates fonts at the wrong resolution or for the wrong device,
most likely mktexpk’s built-in guess for the mode is wrong, and you should override it as
above.

See https://ctan.org/pkg/modes for a list of resolutions and mode names for most
devices (additional submissions are welcome).

If Metafont runs but generates fonts at a resolution of 2602dpi (and prints out the
name of each character as well as just a character number, and maybe tries to display the
characters), then your Metafont base file probably hasn’t been made properly. (It’s using
the default proof mode, instead of an actual device mode.) To make a proper plain.base,
assuming the local mode definitions are contained in a file modes.mf, run the following
command (assuming Unix):

inimf "plain; input modes; dump"
Then copy the plain.base file from the current directory to where the base files are stored
on your system (/usr/local/share/texmf/web2c by default), and make a link (either hard

or soft) from plain.base to mf.base in that directory. See Section “inimf invocation” in
WebZ2c.

If mf is a command not found at all by mktexpk, then you need to install Metafont (see
Chapter 2 [unixtex.ftp], page 4).

8.5.4 TgX or Metafont failing

If TEX or Metafont get a segmentation fault or otherwise fail while running a normal input
file, the problem is usually a compiler bug (unlikely as that may sound). Even if the trip
and trap tests are passed, problems may lurk. Optimization occasionally causes trouble in
programs other than TEX and Metafont themselves, too.

For a workaround, if you enabled any optimization flags, it’s best to omit optimization
entirely. In any case, the way to find the facts is to run the program under the debugger
and see where it’s failing.

https://ctan.org/pkg/modes

Chapter 8: Reporting bugs 48

Also, if you have trouble with a system C compiler, I advise trying the GNU C compiler.
And vice versa, unfortunately; but in that case I also recommend reporting a bug to the
GCC mailing list; see Section “Bugs” in Using and Porting GNU CC.

To report compiler bugs effectively requires perseverance and perspicacity: you must find
the miscompiled line, and that usually involves delving backwards in time from the point
of error, checking through TEX’s (or whatever program’s) data structures. Good luck.

Index

!

1l and casefoldingo 16
'l in path specifications........................ 18
10 in TEXMFDBS. . ..o e e 17
$

$ eXPANSION . . oottt 13
—mald 20
--casefold-search........................ ... 20
-—cnf-line......... il 20
¢--cnf-line’, source forpath............... 10
——color=tty.......... ... 17
-—debug=num................... ...l 25
—=dpi=num. ... 21
--engine=name 21
--expand-braces=string...................... 25
--expand-path=string 25
-—expand-var=string.......................... 25
--format=name 21
——help.......... 26
—-help-formatst 25
--interactiveo ool 23
--mktex=filetype................ 23
-—mode=string, 23
--must-exist......... il 23
--no-casefold-search 20
—--no-mktex=filetype.......................... 23
--path=string......................... 23
——PTOgName=Namecouuuunnnnnnnnnnnnnns 23
--safe-extended-in-name=name............... 26
--safe-extended-out-name=name.............. 26
--safe-in-name=name................. 26
--safe-out-name=name 26
—--show-path=name............................. 26
--subdir=string..................... ...l 23
--var-brace-value=variable.................. 26
--var-value=variable........................ 26
SSVErSION . ..o 26
--with-mktextex-default..................... 34
--without-mktexfmt-default.................. 34
--without-mktexmf-default................... 34
--without-mktexocp-default.................. 34
--without-mktexofm-default.................. 34
--without-mktexpk-default................... 34
--without-mktextfm-default.................. 34
-1 debugging value............. 43
—Aoptiontols ... 18
FD UM 21
-iname, find predicate............. 16
“Loption to 1s v 18

49

. directories, ignored...........o 18

filles. ..o 18
26028F ...t 47
afm. ... 27
base.....oiii 27
bib. . 27
bltxml ... 27
bSt. . 27
Cid. . 28
CIMAD .+ ettt ettt e e et e 27
enf . 27
[27
BIIC . ettt e 28
1= o= 28
OPSI . 28
fea. . 28
fmt . 28
T 28
lig. 28
U . 28
TuateX .o 28
TUC . oo 28
TUCEEX ottt e 28
11 E= N 28
11T 28
mE . 28
MEL . 28
mlbib. ... 28
MIbSt. .. 28
TP o o ettt 29
O D e et ettt 29
Ofm. .o 29
OPLl. . o 29
OLD . o 29
OVE 29
Lo« T 29
Pla. 30
PEb 30
PR 29
Pool ... 28, 29
SPTO . 29
.profile, (un)writable by TEX.................. 5
.progname qualifier in texmf.cnf............... 11
B e = 29
sfd. ... 29
=] 27
775 29
tex file, included in 1s-R...................... 18
texlua ...l 28
teXIUC ..o 28
M. 30
tlu. . 28

Index

L7 30
VE 30
W e e e e e 27
Web L 27, 30
/maymnotbe /... i 9
/, trailing in home directory.................... 13
[14
/etc/profile........ ... i 45
/etc/profile and aliases 17
/var/tmp/texfontsSttt 35
may not be :..... ... 9
EeXPanSION. ...t 12

)
; translated to ‘:’ in texmf.cnf 11
= omitted in texmf.cnf and misparsing 11
\, line continuation in texmf.cnf............... 11
NOPENIN ..ottt 9
\OPENOUL ..ot vt i 5
\special, suppressing warnings about.......... 33

{

{expansion...........ooiiiiii 14
T EXPANSION . ..o 13

2

26028 . 47

8

8.3 filenames, using oo 35

50
A
absolute filenames............o il 9
access system call il 17
access Warnings............oviuviiiiiinenn. 10
AFMEONTS .ot e e e e 27
aliases for fonts o i 32
aliases, for filenames 18
ALl 33
all matches, finding 20
alphabetical order, not 14
announcement mailing list 43
API re-entrant 37
append-only directories and mktexpk 5
appendonlydirl 34
Apple filesystem, case-insensitive............... 15
arguments tomktex il 36
argvl[O] ... 38
autoconf, recommended 39
automounter, and 1s-R 18
auxiliary tasks........o ool 25
B
Bach, Johann Sebastian........................ 12
backslash-newline................... 11
basic glyph lookup..........ol 31
Berry, Karl ... oo 1
BIBINPUTS . ..ot 27, 28
blank lines, in texmf.cnf 11
BLTXMLINPUTS. ... e 27
brace expansion........... ..o 14
Breitenlohner, Peter............ 2
BSTINPUTS . ..ottt e 27, 28
bug address...... ... 42
bug checklist.......... ... i 42
bug mailing list i 43
bugs, reporting i 42
C
C=kx . 39
Cmauto. .l ... 37
cache of fonts, local 5
calling sequence............... L. 37
casefolding examples........... 15
casefolding fallback rationale................... 15
casefolding search...........ol 15
Changelog entryccoouvviieiniieeennnn... 42
checklist for bug reports........... 42
checksum........... i il 33
circle fonts...... ... i 32
client_path in kpse->format_info............ 38
CLUAINPUTS . .ottt e e 27
CMAPFONTS . oottt e e e e 27
cmr10, as fallback font L 33
emrlO0.vE .o 9
enf . C. 12

Index

comments, in fontmap files.................. ... 32
comments, in texmf.cnf 11
comments, making 1
common features in glyph lookup............... 31
common problems. 45
compilation value, source for path.............. 10
compiler bugs......... .o i 47
compiler bugs, finding................... ... 48
conditions for use........... ... i 1
config files........ il 10
config files, for Kpathsea-using programs 38
config files, programming with 40
config.h..... 37
config.log....ooviiiii 42
config.ps.....ooiiiiii 24
config.ps, search path for..................... 28
config.statusl 42
configuration bugs 42
configuration file, source for path............... 10
configuration of mktex scripts 34
configure options for mktex scripts............ 34
ConTEXt and (no) security.............coooo... 5
context diff L i 42
continuation character 11
core dumps, reporting.......................... 42
crashes of TEX and security 5
crashes, reporting.................. .. 42
CWEBINPUTSottt 27

D

database searchol 9
database, for filenames......................... 17
database, format ofol 18
debug.h 43
debugger...... ... 42
debugging 43
debugging options, in Kpathsea-using program . 38
debugging output.......... 43
default expansionol 12
default_texsizesooviirininininnnnn.. 33
device, WIONgo.oviiiiii i 47
directories, making append-only................ 34
directory permissions............. ... 6
directory structure, for TEX files................. 7
disabling mktex scripts......... 34
disk search.......o oo 9
disk searching, avoiding 18
disk usage, reducing.cooiiiiiiiia.. 45
doc files ... 29
DOS compatible names 35
dosnames ...t 35
dot files. ..o 18
doubled colons. ... 12
dpinnn directories.............. 35
DVILIMAKEPK.ttt 36
DVILJSIZES ... ottt et 33

dvipdfmx.cfg........ ..o 24

o1
DVIPSFONTS ..ottt 30
DVIPSHEADERS.t aas 30
DVIPSMAKEPKo 36
DVIPSSIZES ... i 33
dynamic creation of files 33
E
EC fonts, and dynamic source creation......... 33
elt-dirs.c..... ..ot 15
enabling mktex scripts 34
ENCEFONTS . .ot e 28
ENZINE NAIME . . .ot vv vttt 21
environment variable, source for path........... 10
environment variables for TEX 27
environment variables in paths................. 13
environment variables, old 45
epoch, seconds sincel 45
€TTOT MESSAZE MACTOS . .o v et vveeee e 38
examples, of casefolding searches............... 15
examples, of running kpsewhich................ 19
excessive startup time.............o o 46
@XPANA . C vttt et 14
expanding symlinks.......... ... oo oL 38
expansion, default............ L 12
expansion, path element......................... 9
expansion, search path...................... ... 12
expansion, subdirectory 14
expansion, tilde.........ol 13
expansion, variable...........o oo 13
explicitly relative filenames...................... 9
extensions, filename............... 31
externally-built filename database.............. 17
exXtra COlONS. ..ottt 12
F
failed mktex. .. script invocation............... 36
fallback font i 33
fallback resolutions............... ..., 33
FAQ, Kpathsea, 45
Farwell, Matthewo . 14
file formats, supported 27
file lookup ..o 30
file permissions. ..., 6
file types, registering new 37
filename aliasesc ... 18
filename database............. ... oo 17
filenames, absolute or explicitly relative 9
files, unable to find............l 45
filesystem search oL 9
filesystem, case-(in)sensitive.................... 15
Findutils, GNU package........................ 16
floating directories ..., 9
fmtutil ... 36
fmtutil.cnf........ o 24
fmtutils.cnf. ... 34
font alias files.......... ... o i 32

Index

font generation failures......................... 47
font of last resort oL 33
font set, infinite..........o 33
FONTCIDMAPS . ..o 28
FONTFEATURES.o et 28
fontmap files......... ... 32
fontmapsl 35
fontname 35
fontnames, arbitrary length 32
FOOINPUTS . . ottt e 30
fopen, redefined il 44
format of external database 18
ftp.cs.stanford.edu.................. ...l 4
FEP. tUG. O g . 4
fundamental purpose of Kpathsea 1

G

gdb, recommended o i 42
= 28
GEFONTS . ot 28
globally writable directories..................... 5
glyph lookup....... 31
glyph lookup bitmap tolerance 31
GLYPHFONTS . ..ot e 28, 29
glyphlist.tXt ... 24
GNU C compiler bugs 47
GNU General Public License.................... 1
group-writable directories 6
GSFTOPK_DEBUG (128)......\vveeiiieaeniinn. 44

H

hash table buckets, printing.................... 45
hash table routines...............o 39
hash_summary_only variable for debugging..... 45
history of Kpathsea 1
Hoekwater, Taco.............. 2
home directories in paths 13
HOME, as ~ expansioncc.oouuen... 13

I

identifiers, characters valid in 11
include fontmap directive 32
INDEXSTYLEt i 28
input lines, readingol 39
interactive qUEryooiiiiiiiii 23
interface, not frozen........... 1
introduction o i 1

52
K
Rdebug:’ ... 45
kdefault.c........................LL 13
Knuth, Donald E.......... oLl 1
Knuth, Donald E., archive of programs by 4
Kpathsea config file, source for path............ 10
kpathsea.h........... il 37
kpathsea_cnf_get........ ... 41
kpathsea_find_file....................... 31, 38
kpathsea_find_glyph...................... 31, 38
kpathsea_finish............... 39
kpathsea_in_name_OK...............ccoouunn... 40
kpathsea_in_name_ok_extended............... 40
kpathsea_in_name_ok_silent.................. 40
kpathsea_in_name_ok_silent_extended....... 40
kpathsea_init_prog....................... 33, 38
kpathsea new............cooiiiiiiiiiiinnnan. 38
kpathsea_open_file........................... 39
kpathsea_out_name_ok 39
kpathsea_out_name_ok_extended.............. 40
kpathsea_out_name_ok_silent 40
kpathsea_out_name_ok_silent_extended...... 40
kpathsea_set_program name................... 38
kpathsea_var_value.............ccouuuuieennn. 40
KPATHSEA_DEBUG.coiiiiniiniennn.. 38, 43
KPATHSEA_WARNING oot 10
kpse mode of LuaTEX ..ot 5
kpse->debug..... ..ottt 43
kpse->debug variable 38
kpse->format_info..............ciiiiiiiian, 38
kpse->invocation_name 38
kpse->invocation_short_name 38
kpse->program _nName..................c......nn. 38
kpse_format_info_type............... 44
KPSE_BITMAP_TOLERANCE 31
KPSE_DEBUG_EXPAND (16)ccoevnnnn... 44
KPSE_DEBUG_FOPEN (4) ..ovvviteiiieneaeenn 44
KPSE_DEBUG_HASH (2).....vvitiiinieeenan 44
KPSE_DEBUG_PATHS (8) ... vvvviriniiiaeneanne 44
KPSE_DEBUG_SEARCH (32)cvvieeniiinnn. 44
KPSE_DEBUG_STAT (1)........ovuiiviiniinannannn. 43
KPSE_DEBUG_VARS (64)ouviiiiniininenn 44
KPSE_DOT eXPansionooeeeuuuneeeennnn.. 14
kpsewhich........ ... i 19
kpsewhich examples 19
Kpsewhich, and debugging 43
L
last-resort font........ ool 33
lcirclelO ... 32
leading colons........... ... i il 12
leaf directories wrongly guessed 46
leaf directory trick i 14
license for using the library...................... 1
LIGFONTS ...t 28
lines, reading arbitrary-length.................. 39

Linux File System Standard.................... 35

Index

local cache of fonts............l 5
log file. ... 45
logging successful searches 45
lost+found directoryo 10
lostchar . ..o 33
1SR 28
1s-R databasefile............ 17
1s-R, simplest build.............. 17
LUAINPUTS . ..ot 28
luaotfload..........cooiiiiiiiiiiii i 39
LuaTgX and security............ 5

M

Mac filesystem, case-insensitive................. 15
MacKenzie, David........................... 2,14
magic characters............... 9
mailing listsoo i i i 43
MAKETEX_DEBUG (512).......ooeerrreeeennn... 44
MAKETEX_FINE_DEBUG(1024) 44
memory allocation routines 39
metafont driver files.............. 35
Metafont failures..............ccoiiiiiiiii, 47
Metafont installation................ 47
Metafont making too-large fonts................ 47
Metafont using the wrong device............... 47
MFBASES . . 27
MFINPUTS ..ot e 28
MEFPOOL. . ..o e e 28
MFTINPUTS ..ottt e e 28
MISCFONTS ..ottt e 28
mismatched checksum warnings................ 33
missfont.log. ... 36
MISSFONT_LOG.......oouniiiiiiiiii i 36
missing character warnings..................... 33
MKOCP .« ottt 36
mRoOfm.o 36
mktex script configuration...................... 34
mktex SCript Namesc.eeuuuununnnnn. 36
MEREEX SCTIPLS ...t 33
mktex.cnf 24, 34
mktex.opt 34
mktexdir 34
mktexfmt 36
mktexmf 36
mktexpk 36
mktexpk can’t guess mode...................... 47
MEEEXtEX ... 36
mktextfm...... i i 36
MLBIBINPUTS. ... oottt 28
MLBSTINPUTS . ..ottt e et 28
mode directory, omitting................ 35
Morgan, Timo i 1
MPINPUTS .ottt e et 29
MPMEMS . . e 28
MPPOOL. . .ottt e 29
MPSUPPORTot 28
MT_FEATURES. i 34

53
multiple TEX hierarchies....................... 14
must exist ... 9
N
names for mktex scripts........... ... 36
Neumann, Gustaf..............o 2
NFESand 1s-R......ccoiiiiiiiiiiiiiininn... 18
nomfdrivers.......... il 35
NOMOAE. ..ottt 35
4T3 2 1= 33
null pointers, dereferencing..................... 42
numeric debugging values...................... 43
O
obtaining TEX oo 4
OCPINPUTS ..ttt 29
OFMFONTS . .ottt 29
online Metafont display, spurious............... 47
OPEeNIN_aNY .. \viiiii i 40
OPENOUL_aNY.....oovviiiiiiiiiii 39
OPENTYPEFONTSottt 29
optimization caveat 47
options for debugging 43
OTPINPUTS . ..ot 29
overview of path searching 9
overview of programming with Kpathsea 37
OVFFONTS . .ottt 29
OVPFONTS ..ottt 29
P
paranoid mode, for output files................. 39
path expansion ... 12
path searching L 9
path searching options, 20
path searching, overview 9
path searching, standalone 19
path sources.......... ... i 10
pathsearch.h.......... ... i, 37
pc Pascal compiler............ ...l 1
pdfglyphlist.txt......cooviiiiiiiinn... 24
pdftex.cfg...... ... oo 25
pdftexconfig.tex.............l 25
PDFTEXCONFIG.ottt 29
permission denied oo 10
permissions, directory............. ... o il §
permissions, file............ ... i 6
PKEONTS .ottt e e e 29
plain.base............ 47
privacy, semblance of L. 45
problems, common............... i 45
proginit.h.....................ooooLL 38
program-varying paths......................... 27
programming overview 37
programming with config files.................. 40

programming with Kpathsea................... 37

Index

programs using the library 1
proof mode i 47
PSHEADERS e 29
pxp Pascal preprocessor................. 1
quoting variable values......................... 13

R

rationale for casefolding fallback................ 15
re-entrant APT...... oL 37
readable ...t 33
reading arbitrary-length lines................ ... 39
recording successful searches 45
relative filenames............ o 9
reporting bugs........... oo il 42
resident.c....... il 38
resolution, setting............. 21
resolutions, last-resort.......................... 33
restricted mode, for output files................ 39
retrieving TEX i 4
right-hand side of variable assignments......... 11
RISINPUTS .. ot e et 29
Rokicki, Tom ...t 1
TOOT USET . oottt ettt 13
runtime configuration files...................... 10
runtime debugging i 43

S

Sauter fonts, and dynamic source creation...... 33
scripts for file creation 33
search path, defined............................. 9
search, case-insensitive...................ouun. 15
searching for files L 30
searching for glyphs......................, 31
searching overview 9
searching the database 9
searching the disk........................... ... 9
security considerations 5
SELFAUTODIR ...t 38
SELFAUTOLOC. ... 38
SELFAUTOPARENTo, 38
sending patches............ol 42
setgid scripts...... ..o i 6
SEDFONTS ..ot e e 29
shell commands, security 5
shell variables........... o il 13
shell_escape, example for code................ 40
site overrides for mktex... 34
skeleton TEX directory 7
slow startup time oL 46
source files........... .o il 29
sources for search paths........................ 10
special 33
Sst_nlink ... 14

54
stack trace....... 42
standalone path searching...................... 19
standard error and debugging output........... 43
standard options............ oo 26
startup time, excessive.......... o oo 46
string routines.......... oo ool 39
strip....... 35
stripsupplier 35
striptypeface 35
subdirectory searching 14
suffixes, filename.............. oo 31
suggestions, making............. ... i 1
SUN 2. 1
supplier directory, omitting 35
supported file formats............ 27
suppressing warnings........................... 33
symbolic links not found 46
symbolic links, and 1s-R....................... 18
symlinks, resolving.................. 38
system C compiler bugs........................ 47
system-dependent casefolding behavior......... 15
T
TIFONTS .ot e e 30
TLIINPUTS ..ot e 30
TA2FONTSo 30
tefmgr.map..........oooiiiii 25
TS 7
tex-file.c...... ... i 31
tex-file.h..... ... o i 37
tex-glyph.c.......... . 31
tex-glyph.h..... 37
tex-kQ@tug.orgl 43
tex-k@tug.org (bug address) 42
teX.Web ... 4
TEX directory structureooo... 7
TEX environment variables..................... 27
TEX failures ... i 47
TEX file lookup ... 30
TEX glyph lookup....................oo ... 31
TEX support..........oooii i 27
TEX Users Groupvvvviiiiiiiiieinnnn.. 1
TEX_HUSH. ... 10, 33
TEXBIB . ..ot 27, 28
TEXCONFIG.ottt 28
TEXDOCS . .ot 29
TEXFONTMAPSo 28
texfonts.map............oi 32
TEXFONTS ..o 28, 29, 30
TEXFORMATS . .o e 28
TEXINDEXSTYLE 28
TEXINPUTS ..ot 28, 29
texmf.cnf 25
texmf . cnf missing, warning about 10
texmf . cnf, and variable expansion............. 13
texmf . cnf, definition for............... 10

texmf . cnf, source for path..................... 10

Index

texmf_casefold_search....................... 15
TEXMF_OUTPUT_DIRECTORY, and missfont.log... 36
TEXMF_OUTPUT_DIRECTORY, and paranoid output

files. .o 39
TEXMFCNF e 10, 27
TEXMFDBS. . ..o 17, 28
TEXMEFINI.o i 27, 28
TEXMFLOGot e i 45
TEXMFOUTPUT, and missfont.log............... 36
TEXMFOUTPUT, and paranoid output files 39
TEXMESCRIPTS. ... e 29
TEXMFSYSVARot 39
texmfvar 35
TERME . o 7
TEXMEFVAR. ... e 35, 39
TEXPICTS ..ot e e e 28
TEXPKS . . e 29
TEXPOOL . ..ot e e 29
TEXPSHEADERS 29, 30
TEXSIZES . ..ot 33
TEXSOURCES . . .ot 29
TFMEONTS . .o e e 30
tilde expansion......... oo, 13
tilde.C oo 13
time system callo 45
tolerance for glyph lookup...................... 31
trailing ‘/’ in home directory................... 13
trailing colons. i 12
translations, of path searching description 9
TREONTS . oot 30
trick for detecting leaf directories............... 14
trojan horse o i 39
trojan horse attack............ oL 5
try_std_extension_first..................... 31
TTFONTS . .o e e 30
P T of - 4
typeface directory, omitting 35
U
unable to find files........... oLl 45
unable to generate fonts........................ 47
UDAME . . .ote et ettt et ettt e e 42
unixtex . ftp..... ... 4
unknown special warnings...................... 33

unreadable file warnings............., 33

55
unreadable files.......... i 10
unrestricted mode, for output files.............. 39
unusable 1s-R warning......................... 18
usage patterns, finding......................... 45
USE_TEXMFVAR. i 35
USE_VARTEXFONTSciiiii it 35
USERPROFILE, as ~ expansion................... 13
\Va
varfonts 35
variable eXpansioniiiiiiii 13
variable.cC....... ... 13
variable.h..... ... 40
VARTEXFONTSo 35
VAX 11/750 0. c e 1
version numbers, determining 42
VF files, not found 9
VEFONTS ..o e 30
Vojta, Paul 2
%%
Walsh, Norman 2
warning about unusable 1s-R 18
warning, about missing texmf.cnf 10
warnings, file access. ... 10
warnings, suppressing....................o.o..... 33
WEB2C. . ot e 30
Weber, Olaf. ... 2
WEBINPUTS . ..ot e 30
whitespace, in fontmap files.................... 32
whitespace, not ignored on continuation lines... 11
Windows and casefolding....................... 15
{474 7 - o5 o - 4
X
DV ot 25
ADVIFONTS . .ottt et 30
XDVIMAKEPK . ..o e e 36
XDVISIZES ..ottt e 33
Z
zuhn, david........... 2

	Table of Contents
	1 Introduction
	History

	2 unixtex.ftp: Obtaining TeX
	3 Security
	Global font cache and security

	4 TeX directory structure
	5 Path searching
	Searching overview
	Path sources
	Config files

	Path expansion
	Default expansion
	Variable expansion
	Tilde expansion
	Brace expansion
	KPSE_DOT expansion
	Subdirectory expansion

	Casefolding search
	Casefolding rationale
	Casefolding examples

	Filename database (ls-R)
	ls-R
	Filename aliases
	Database format

	kpsewhich: Standalone path searching
	kpsewhich examples
	Path searching options
	Specially-recognized files for kpsewhich
	Auxiliary tasks
	Standard options

	6 TeX support
	Supported file formats
	File lookup
	Glyph lookup
	Basic glyph lookup
	Fontmap
	Fallback font

	Suppressing warnings
	mktex scripts
	mktex configuration
	mktex script names
	mktex script arguments

	7 Programming
	Programming overview
	Calling sequence
	Safe filenames
	Program-specific files
	Programming with config files

	8 Reporting bugs
	Bug checklist
	Mailing lists
	Debugging
	Logging
	Common problems
	Unable to find files
	Slow path searching
	Unable to generate fonts
	TeX or Metafont failing

	Index
	!
	$
	-
	.
	/
	:
	;
	=
	\
	{
	~
	2
	8
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

